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Non-small cell lung cancer (NSCLC) is the most common type of lung cancer. The tumor
immune microenvironment (TME) in NSCLC is closely correlated to tumor initiation,
progression, and prognosis. TME failure impedes the generation of an effective
antitumor immune response. In this study, we attempted to explore TME and identify a
potential biomarker for NSCLC immunotherapy. 48 potential immune-related genes were
identified from 11 eligible Gene Expression Omnibus (GEO) data sets. We applied the
CIBERSORT computational approach to quantify bulk gene expression profiles and
thereby infer the proportions of 22 subsets of tumor-infiltrating immune cells (TICs); 16
kinds of TICs showed differential distributions between the tumor and control tissue
samples. Multiple linear regression analysis was used to determine the correlation
between TICs and 48 potential immune-related genes. Nine differential immune-related
genes showed statistical significance. We analyzed the influence of nine differential
immune-related genes on NSCLC immunotherapy, and OLR1 exhibited the strongest
correlation with four well-recognized biomarkers (PD-L1, CD8A, GZMB, and NOS2) of
immunotherapy. Differential expression of OLR1 showed its considerable potential to
divide TICs distribution, as determined by non-linear dimensionality reduction analysis. In
immunotherapy prediction analysis with the comparatively reliable tool TIDE, patients with
higher OLR1 expression were predicted to have better immunotherapy outcomes, and
OLR1 expression was potentially highly correlated with PD-L1 expression, the average of
CD8A and CD8B, IFNG, and Merck18 expression, T cell dysfunction and exclusion
potential, and other significant immunotherapy predictors. These findings contribute to the
current understanding of TME with immunotherapy. OLR1 also shows potential as a
predictor or a regulator in NSCLC immunotherapy.
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INTRODUCTION

Lung cancer is one of the most commonly occurring
malignancies and is identified as leading cause of cancer-
related deaths worldwide. Statistics on cancer reveal that in
2018, more than 2 million patients suffered from lung cancer
worldwide, and lung cancer ranked first among all cancer types
(1). In China, lung cancer has shown the highest incidence and
mortality over the last decade and posed a significant threat to
human health (2). Lung cancer comprises nearly 20% of all
cancer deaths and its mortality may increase by approximately
40% by 2030 (3). Lung cancer has been subdivided based on
pathological classification into two groups: small-cell lung cancer
(SCLC) and Non-small cell lung cancer (NSCLC). NSCLC is
further stratified into three subsets: adenocarcinoma (the most
common type, which comprises 40% of all lung cancer types),
squamous cell carcinoma (25%) and large cell carcinoma (about
10%) (4). 75% of NSCLC is diagnosed at the advanced stage,
resulting in a five-year survival rate of less than 15% (5). In
addition to surgery and chemoradiotherapy, immunotherapy
shows promising potential in treatment of NSCLC.

Programmed death-1 (PD-1) and its ligand (PD-L1) antibody
based Immunotherapies have recently shown significant advances
in the treatment of NSCLC through enhancing the attack of the
host immune system on malignant cells (6). However, a number
of patients still fail to benefit from these immunotherapies
possibly because of tumor immune microenvironment (TME)
alterations (7). The tumor microenvironment includes cross-talks
among cancer cells, endothelial cells, fibroblasts and
immune cells. Previous studies have shown the potential
associations between the microenvironment and the effects
of immunotherapy (8). The tumor microenvironment presents
physical, immunologic, and metabolic barriers to enduring
immunotherapy responses, and the suppressive microenvironment
of tumors remains one of the limiting factors for immunotherapies.
In this study, we screened those genes that enriched in tumor
tissue and closely related to the immune microenvironment in
NSCLC. Targeting PD-L1, one of the most representative
immunotherapy strategies, was studied in relation to the
screened microenvironment genes. The response prediction
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markers of PD-L1 were used as standard and to study the
predictive value of each gene as biomarker for host tumor
immunity in NSCLC. We aimed to find a highly predictive PD-
L1 blockade therapy biomarker for clinical use, or the potential
targeting genes, to change the tumor microenvironment for
enhanced immunotherapy effects.
MATERIALS AND METHODS

Raw Data
Eligible data sets in GEO were selected according to the following
criteria and 11 data sets were obtained as of May 2020 (including
268 cases of control samples, 601 cases of lung tumor samples)
(9–18). Data sets details are listed in Table 1. The selection
criteria are as follows: definite diagnosis with NSCLC; inclusion
of control samples in the same data set; samples without any
treatment before sequencing; gene expression data based on the
Affymetrix platform. After normalization of mRNA data with the
limma algorithm in R language, all data sets were merged into a
new data set for downstream analysis.

Identification and Analysis of DEGs
Data were analyzed using the limma package in the R language.
Details on cutoffs were as follows: Fold change>1 or <−1, and adj.
P <0.05. Heatmaps and volcano plots were generated using the
limma package and pheatmap respectively. Gene ontology (Go)
and Kyoto Encyclopedia of Genes and Genomes (KEGG)
analyses with “clusterProfiler” and “org.Hs.eg.db” (the same as
below) were performed in R.

Identification of Potential Immune-Related
Genes and Analysis
In this study, the algorithm ESTIMATE outputs stromal,
immune, and ESTIMATE scores by performing “limma” and
“estimate” with merged data sets after normalization (19). The
cutoffs for high or low scores were 50% higher or lower. The
Venn diagram was drawn with the package “VennDiagram” and
an online tool from the Bioinformatics & Systems Biology
website. The intersection set of the results of the ESTIMATE
TABLE 1 | The detail of datasets using in this study.

Data Set Country Platforms Diagnosis Paired Control Tumor Control after filter Tumor after filter

GSE18842 Spain GPL570 NSCLC Part 45 46 45 45
GSE101929 USA GPL570 NSCLC Part 34 32 32 30
GSE103888 UK GPL570 NSCLC No 6 13 6 13
GSE104636 Switzerland GPL6244 lung tumor Yes 9 9 5 0
GSE118370 China GPL570 LUAD Yes 6 6 0 1
GSE134381 UK GPL11532 LUSC/LUAD Yes 37 37 22 22
GSE19804 China GPL570 lung tumor Yes 60 60 60 58
GSE23361 USA GPL5188 NSCLC part 7 5 0 1
GSE30219 France GPL570 lung tumor No 14 293 14 254
GSE33532 Germany GPL570 NSCLC Yes 20 20 20 19
GSE43458 USA GPL6244 LUAD part 30 80 18 49
April 2021 | Volume 1
NSCLC, there was clear statement that cancer tissues from NSCLC patients, but pathological classification not included in original article; Lung tumor, there was no clear statement about
lung cancer subtype, but small cell lung cancer was excluded; LUAD, articles had a clear statement of lung adenocarcinoma. LUSC, articles had a clear statement of lung squamous
cell carcinoma.
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scores were considered as control intersection genes and tumor
intersect genes off the up-regulated and down-regulated genes
respectively. In the subsequent step, the consistently intersecting
set was excluded from those tumor intersect genes, and the
remaining genes were considered as tumor specific intersect
genes. The intersection set of the tumor specific intersect genes
and DEGs were identified as potential immune-related genes and
used for further analysis.

Identification of Statistically TICs
The normalized data set was employed to estimate the TICs
abundance profile by using the CIBERSORT computational
method on all control and tumor samples (20). The resulting
data set was filtered with a self-compiled script in Perl to exclude
invalid data (detail of filtered data set is listed in Table 1). The
landscape of TICs is shown in a barplot. A heatmap was
generated with “pheatmap,” and a correlation heatmap was
generated using “corrplot.” As the filtered data were subjected
to a normality test based on skewness and kurtosis rather than its
fit in a normal distribution, non-parametric tests were used. For
the number of TICs in the control and tumor samples, the
differential distributions were analyzed using the Wilcoxon rank-
sum test.

Multiple Linear Regression Analysis for
Identifying Differential Immune-Related
Genes From Potential Immune-Related
Genes
The filtered data were used to analyze the effect of gene
expression on the TICs distribution. A total of 16 TICs with
different distributions were entered as dependent variable and
potential immune-related genes entered as independent
variables. Predictive factor analysis for TICs distribution was
conducted via least-squares regression. With both accuracy and
computational efficiency considered, adjusted P< 0.1 was
considered significant in this part. We selected the significantly
ones from 48 potential immune-related genes and identified
those exhibiting the opposite regression trend in different tissue
samples. Those selected genes would be labeled as differential
immune-related genes.

Gene Set Enrichment Analysis With
Differential Immune-Related Genes
Gene set enrichment analysis (GSEA) was conducted on all
differential immune-related genes on the GSEA portal (http://
www.broad.mit.edu/GSEA/) with the following parameter
settings: probe set collapse = false; phenotype = high vs. low;
permutation: sample, permutations = 1000. The gene set size
was 15 < n < 500. We manually discriminated pathways of
interest in immune related pathways, microenvironment and
metabolic pathways, and classic cancer pathways. The GSEA
results were separately shown based on the pathway function.

Non-Linear Dimensionality Reduction
In this study, we selected one differential immune-related gene
that is most stable and highly correlated with other well-
recognized immunotherapy signatures to perform downstream
Frontiers in Oncology | www.frontiersin.org 3
analysis, which was OLR1 (oxidized low density lipoprotein
receptor 1). We determined whether OLR1 was a key gene for
the microenvironment and could be a biomarker for
immunotherapy. We first analyzed the influence of OLR1
expression to divide the differential immune microenvironment
with non-linear dimensionality reduction. We used t-distributed
stochastic neighbor embedding (t-SNE) to complete the
dimensionality reduction. T-SNE, a non-linear dimensionality
reduction technique, is particularly suitable for visualizing high-
dimensional data sets. We reduced the dimensionality to two
dimensions to reveal the significant difference between the 50%
higher OLR1 expression tissue samples and the 50% lower OLR
expression tissue samples. The T-SNE plot was completed using
the R package “t-SNE.”

Prediction of Benefits to Immune
Checkpoint Blockade Therapy
We used TIDE, an online prediction tool to predict the
responder rate in the samples with higher or lower OLR1
expression under immune checkpoint blockade therapy. TIDE
is a novel computational framework that evaluates the potential
of tumor immune escape, particularly for melanoma and
NSCLC, on the basis of gene expression data (21). Owing to
tool limitations, only the top or bottom 50 cases of OLR
expression data were selected from the 284 samples. The result
was reorganized into a figure with improved readability. We
collected predictive indicators and calculated them to explore the
details of the predicated therapeutic effect.

Cell Culture
We used BEAS-2B (human normal lung epithelial cell, Cat.
3131C0001000200027), NCI-H460 (human large cell lung
cancer cell, Cat. 3111C0001CCC000355), PLA-801D (lung
giant cell carcinoma cell, Cat. 3142C0001000000356), A549
( h uman non - sma l l c e l l l u n g c a n c e r c e l l , C a t .
3111C0001CCC000002), HCC827 (human non-small cell lung
cancer cell, Cat. 3111C0001CCC000478), NCI-H1299 (human
non-small cell lung cancer cell, Cat. 3111C0001CCC000469),
and NCI-H661 (human large cell lung cancer cell, Cat.
3111C0001CCC000357) to detect the basic expression of OLR1
in lung normal and tumor cell lines for verification of data
mining results. They were purchased from Chinese National
Infrastructure of Cell Line Resource and cultured in PRMI-1640
medium with 10% FBS.

qPCR
RNA was isolated with TRIzol® reagent (Cat.15596018, Thermo
Fisher). Reverse-transcription of the RNA was performed with
EasyScript First-Strand cDNA Synthesis SuperMix Kit (Cat.
AE301-03, TransGen Biotech). The qPCR assay was performed
in triplicate with PowerUp SYBE Green Master Mix Kit
(Cat.A25741, Applied Biosystems) on an ABI StepOnePlus
Real-time PCR system (ABI-7500, Applied Biosystems). The
qPCR primer was following: OLR1-F:5′-ACTCTCCATGG
TGGTGCCTGG-3′; OLR1-R:5′-GCTTGTTGCCGGGCTGA
GATCT-3′; GAPDH-F:5′-GGACTCATGACCACAGTCCA
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TGCC-3 ′ ; GAPDH-R:5 ′-TCAGGGATGACCTTGCCC
ACAG-3′.
Statistical Methods
Microarray data analysis was performed using the R
programming language. The normality of data distributions
was assessed using the Shapiro-Wilk test. Data that were nor
normally distributed were compared using the Wilcoxon rank-
sum test run with GraphPad Prism. Multivariate analysis was
performed using multiple linear regression in Eviews. P value <
0.05 was considered significant.
RESULTS

613 Differentially Expressed Genes Were
Identified in 11 Data Sets
For this study, 11 data sets were selected based on our screening
criteria (Table 1). After the data sets were merged and
normalized, 601 NSCLC samples and 268 control samples were
included. We defined statistical differential significance as P <
0.05 and fold change >10 between the tumor and control
samples. A total of 613 differentially expressed genes
(DEGs) were identified from 869 samples with 12596 gene
expression data. Their gene symbols are listed based on their
respective logFC (base 2 logarithm of fold change) values
A

DC

FIGURE 1 | 613 DEGs were identified in 11 datasets. (A) Heatmap showed the exp
showed the higher or lower DEGs between the tumor and control tissue samples; (C
(E) The Go analyses of lower DEGs; (F) The KEGG analyses of lower DEGs.
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(Supplementary Table 1). The results revealed that 200 of the
DEGs were highly expressed, whereas the remaining 413 DEGs
were down-regulated in tumor tissues (Figures 1A, B). GO and
KEGG pathway enrichment analyses of up-regulated or down-
regulated DEGs were implemented separately. The up-regulated
DEGs were enriched in the extracellular matrix structural
constituent, glycosaminoglycan binding and growth factor
binding (Supplementary Table 2 and Figure 1C). The
corresponding signaling pathways were the most enriched
(Supplementary Table 3 and Figure 1D). The down-regulated
DEGs mainly involved the cytokine-cytokine receptor
interaction, transcriptional miss-regulation in cancer, and cell
cycle, as well as corresponding gene functions (Figures 1E, F).

166 Tumor-Specific Intersect Genes Were
Identified Using ESTIMATE Scores, With
48 of Them Identified as Potential
Immune-Related Genes by the
Intersection With DEGs
ESTIMATE scores were calculated based on immune and
stromal scores. We calculated the immune and stromal scores
in the tumor and control samples, respectively. The samples were
divided into the high-score and low-score groups by the median
value of the immune score (or stromal score). For the immune
score, 1,457 (1,276) and 359 (31) up-regulated (down-regulated)
immune scores genes were identified in the control and tumor
samples, respectively. For the stromal score, 461 (203) and 351
B

E F

ression of genes between the tumor and control tissue samples; (B) Scatterplot
) The Go analyses of higher DEGs; (D) The KEGG analyses of higher DEGs;
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(30) up-regulated (down-regulated) genes were identified in the
control and tumor samples, respectively (Figure 2A). The
intersection represented the genes with the same trends of up-
regulation or down-regulation of immune or stromal score genes
in the tumor and control samples. In the control samples, we
identified 342 up-regulated immune score genes and 197 down-
regulated stromal score genes. Meanwhile, 211 up-regulation
immune score genes and 17 down-regulated stromal score genes
were found in the tumor samples (Figure 2A). A total of 553 up-
regulated genes and 214 down-regulated genes were identified in
the tumor and control samples (Figure 2B). They were regarded
as important factors for ESTIMATE scores. Subsequently, 60 up-
regulated and two down-regulated genes were duplicates,
exhibiting a similar trend of immune or stromal score genes
were similar in the tumor and control samples (Figure 2B). A
A

B

D E F

FIGURE 2 | 166 tumor-special intersect genes were identified and 48 of them identi
(down-regulated) genes were identified using ESTIMATE in the control and tumor sam
and 15 down-regulated ESTIMATE score genes (total 166 tumor-special intersect ge
151 up-regulated tumor-special intersect genes; (D) The KEGG analyses of 151 up-r
regulated tumor-special intersect genes; (F) The KEGG analyses of 15 down-regulate
immune-related genes, were identified between 613 DEGs and 166 tumor-special int
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concerning finding of this study is that 151 up-regulated and 15
down-regulated ESTIMATE score genes were specifically
expressed in the tumor samples (Supplementary Table 4 and
Figure 2B with *). Thus, the 166 tumor specific intersect genes
were selected for GO enrichment and KEGG pathway analysis.
They were enriched in pathways including, immune receptor
activity, chemokine activity and receptor binding, receptor
ligand activity, glycosaminoglycan binding, phagosome, and
lgA immune network (Supplementary Tables 5 and 6, Figures
2C–F). We then found the intersection of 166 tumor specific
intersect genes and 613 DEGs and identified 48 intersected genes
(Supplementary Table 7 and Figure 2G).The 48 genes were
identified as potential immune-related genes. Potential immune-
related genes have significant differences in expression and
specific immune effects in the tumor samples.
G

C

fied as potential immune-related genes. (A) 461 (203) and 351 (30) up-regulated
ples. ※ mean this part would be used in following step; (B) 151 up-regulated

nes) were specifically expressed in the tumor samples; (C) The Go analyses of
egulated tumor-special intersect genes; (E). The Go analyses of 15 down-
d tumor-special intersect genes; (G) 48 intersected genes, referred to potential
ersect genes.
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16 Kinds of TICs Showed Differences in
Distribution Between the Tumor and
Control Samples
The proportion of tumor-infiltrating immune subsets was
analyzed using CIBERSORT in R. A total of 22 TICs profile
types in the tumor and control samples were to be constructed. A
landscape is presented for preliminary subjective judgment of
TICs distributions (Supplementary Figure 1). We found that
TICs distribution varied based on the kind of TICs. Some of TICs
had more immune cells in tumor tissues, whereas others showed
the opposite (Figure 3A). No significant correlation was found
between them with regard to numerical values in both the tumor
samples and the control samples (Figure 3B). The Mann-
Whitney rank-sum test was used to calculate differences in
TICs distribution. A significant difference in the distribution of
16 kinds of TICs was found between the tumor and control
samples (Supplementary Table 8 and Figures 3C–R).

9 Differentially Expressed Immune-Related
Genes Showed Opposite Statistically
Significant Regression Trends of TICs
Distribution Between the Tumor and
Control Samples
We used multiple linear regression with the least square method
to calculate the most important genes from 48 potential
immune-related genes for differential the distribution of TICs.
The control and tumor samples were separated as independent
data sets. For an enhanced screen effect, P<0.1 was the level of
significance selected. A total of 24 intersected genes were
statistically significant both in the tumor and control samples;
16 of these genes showed similar regression trends for some
kinds of TICs in both samples (Supplementary Table 9), and 9
other genes exhibited the opposite regression trend in different
tissue samples (Supplementary Table 10). OLR1 showed the
same regression trend for resting natural killer (NK) cells and
eosinophils; however, it exhibited the opposite regression trend
for resting mast cell. Thus, OLR1 was counted separately. The
genes showing opposite regression trends between the tumor and
control samples were referred to as differential immune-related
genes in accordance with the purpose of the study. Subsequently,
9 differential immune-related genes were identified: ADH1B,
CHRDL1, DMBT1, MMP, OLR1, PBK, PLA2G1B, SCGB3A1,
and TREM1. The potential functions of these genes were
analyzed by GSEA. We classified some important pathways
into three categories, based on their function for clarity. Some
pathways could be activated/repressed by each of the 9
differential immune-related genes (Figure 4).

OLR1, One of the Differential Immune-
Related Genes, Showed Significant
Correlations With Four Known
Immunotherapy Biomarkers
Since the data were from 11 data sets merged with different
platforms, and some data were lost during merging, we selected
only 4 well-recognized biomarkers in the data set with gene
expression data: PD-L1, CD8A, GZMB, and NOS2. To reduce
Frontiers in Oncology | www.frontiersin.org 6
potential bias and achieve improved effectiveness, we used only
part of the data for downstream analysis. The 284 tumor samples
in GSE101929 and GSE30219 with clinical data were used to
calculate separately the correlation between 9 differential
immune-related genes and 4 known biomarkers. Consequently,
OLR1 exhibited the highest correlation with PD-L1,
CD8A, GZMB, and NOS2 (Supplementary Table 11 and
Figures 5A–D), and each correlation was significant (r>0.4,
P<0.0001, moderate intensity). Chi-square test was used to detect
whether different expression level of known biomarker was followed
by changing of OLR1 expression level. We can found more positive
expression for immunotherapy in higher OLR1 group patients
(Supplementary Table 12). This result suggests the important
role of OLR1 in the TME with a changing TICs distribution for
immunotherapy prediction.

OLR1 Expression Marked the TICs
Distribution
We ran t-SNE to determine the overall distribution of TICs with
different levels of OLR1 expression. The OLR1 expression could
effectively distinguish the distribution of immune cells (Figure
5E). A violin plot of 22 immune cell types shows 14 kinds of
immune cells with significantly different distributions between
the higher and lower OLR1 expression samples (Figure 5F).

OLR1 Affected the Prediction of Clinical
Benefits to Immunotherapy in NSCLC
Patients
We selected the 50 samples with the highest or lowest OLR1
expression levels from the 284 tumor samples and predicted the
responder rate of the immune checkpoint blockade therapy in
each group. Among the 50 samples with the lowest OLR1
expression levels, 16 cases were predicted to respond to
immune checkpoint blockade therapy. They were also
predicted to benefit from immunotherapy. The responder
number was 27 in the top 50 OLR1 expression samples. The
responder rate was significantly higher in the high OLR1
expression group (Figure 6A). We also calculated all
indicators of TIDE prediction. OLR1 expression and MSI score
exhibited a significant positive correlation. The T cell exclusion
potential of the tumor was predicted to be negatively correlated
with OLR1 expression. Specifically, a strong positive correlation
(r>0.7) was observed between OLR1 expression and the
T cell-inflamed signature (Merck18), the average of CD8A
and CD8B, both of which were important indicators of
immunotherapy (Supplementary Table 13 and Figures 6B–E).
Verification of OLR1 Expression in Lung
Normal and Tumor Cell Lines
BEAS-2B was human normal lung epithelial cell. It was used
as control cell line comparison with other NSCLC cell lines. The
result of qPCR analysis showed a significant reduction in
the expression of OLR1 in the most NSCLC cell lines (Figure 7).
The validation result of cell lines had the same trend as data mining
in OLR1 expression.
April 2021 | Volume 11 | Article 629333
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FIGURE 3 | Different distribution of TICs between the tumor and control tissue samples. (A) Heatmap showed the distribution state in tumor and control tissue
samples; (B) The correlation among TICs in the tumor and control tissue samples; (C–R) 16 TICs which showed significant difference in the distribution between the
tumor and control tissue samples.
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FIGURE 4 | Some pathways could be activated or repressed by each of the 9 differential immune-related genes.
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DISCUSSION

In the current study based on GEO data mining, we identified
NSCLC microenvironment-related key genes, which show
potential as biomarkers for immunotherapy. During the
Frontiers in Oncology | www.frontiersin.org 8
analysis, significant expressions of DEGs were identified
between the control and tumor tissue samples; meanwhile,
tumor-specific intersect genes also showed significant
difference between the immune and stromal components of
the tumor samples; further intersection of DEGs and tumor-
April 2021 | Volume 11 | Article 629333
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FIGURE 5 | OLR1 showed moderately strong correlations with 4 known immunotherapy biomarkers and its expression marked the TICs distribution. (A–D) OLR1
exhibited the highest correlation with PD-L1, CD8A, GZMB, and NOS2; (E) OLR1 expression could divide overall status of TICs distribution; (F) Violin plot showed
the ratio differentiation of 22 kinds of TICs between higher 50% OLR1 expression tumor samples and lower 50% OLR1 expression tumor samples.

A B

D E

C

FIGURE 6 | OLR1 may affect the clinical benefits to immunotherapy in NSCLC patients. (A) The comparison of responder number in top or bottom OLR1
expression samples. (B–E) OLR1 has strong positive correlation with some indicators of TIDE prediction.
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specific intersect genes identified potential immune-related
genes, both of which were considered different gene expression
and significantly affected the ESTIMATE TME scores; finally
differential immune-related genes exhibited a significant and
Frontiers in Oncology | www.frontiersin.org 9
opposite correlation with the differential distribution of
TICs between the tumor and control samples. OLR1 was
considered as a novel potential predictor to immunotherapy
of NSCLC.
April 2021 | Volume 11 | Article 629333
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FIGURE 7 | The basic expression level of OLR1 in normal and part NSCLC cell lines.
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DEG analysis has been demonstrated as a canonical way to
identify novel biomarker genes or novel therapeutic target genes
between the normal and tumor samples. In this study, DEG acted
as a signature of potential immune-related factors. The screening
accuracy of DEGs may be improved using two methods (22). A
large sample is expected to improve the screening yield, and
analysis with perspective-taking may help improve accuracy
based on multiple bioinformatics methods. Other studies
randomly chose data sets; in this study, we filtered all GEO
data sets by using the selection criteria (see Methods), ultimately
including 11 data sets in our analysis cohort. There were 601
tumor samples and 268 control samples across 7 countries and
11 research groups. As our selection criteria, all the 11 data sets
should include tumor and normal tissue data for better
comparability and higher quality of homogenization data. All
data sets were also based on the Affymetrix platform for less data
loss in the normalization process. A total of 613 DEGs were
identified based on the mRNA array data. These results may be
representative and provide an insight in the differences in gene
expression in NSCLC. The 613 DEGs were the limited scope for
screening in downstream analysis.

The TME is rather complex and largely varies from the
microenvironment of normal tissue (7). The TME has been
implicated in cancer initiation, development, and treatment
resistance. Except for cancer cells, the stromal tumor
microenvironment consists of stromal cells and immune cells.
The immune cells include T cells, B cells, NK cells, and so on.
Stromal cells are the main non-tumor components of the tumor
microenvironment (23). Thus, the ESTIMATE algorithm
consists of a non-immune “stromal score” parameter and an
“immune score” parameter. In this study, the immune and
stromal scores, which were determined using ESTIMATE, were
used to analyze the infiltration levels of the immune and stromal
cells in the tumor and control samples. We focused on genes that
specifically regulated the stromal and immune cells in the tumor
samples, referred to as the tumor specific intersect gene. We
found 166 tumor specific intersect genes in our cohort. They may
exhibit cancer-specific effects and show potential to highly
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regulate the development of the TME in the tumor tissue
samples. To determine the type of tumor specific intersect
genes with the potential to regulate and control expression;
thus the intersecting of the tumor specific intersect genes and
DEGs was identified as potential immune-related genes.

Immune cells in TME are the most important defense to
eliminate damaged or cancerous cells (23). An established view is
that the spatial distribution and the location of immune cells are
critical in the immune-oncology field (24). In this study, we tried
to identify the differential distributions of immune cells,
particularly for TICs. CIBERSORT estimate the abundances of
cell types in a mixed cell population based on gene expression
data. The CIBERSORTmethod identified 16 kinds of TICs in our
cohort, which were significantly different between the tumor and
control samples and not correlated among them. They may each
play an independent role in the tumor environment. We
explored the correlation between the TICs and 48 potential
immune-related genes; the results of multiple non-linear
regression analysis indicated that 9 potential immune-related
genes with opposite significant correlation between the control
and tumor tissue samples. Referred to as differential immune-
related genes, those 9 potential immune-related genes, may have
tumor tissue-specific functions in the regulation of the immune
environment. We evaluated their potential influence on the
biological function by using GSEA, and the results showed
their potential to activate or inactivate multiple types of
signaling pathways, including the immune pathway,
microenvironment, and metabolic pathway, and some
canonical cancer pathways. The pathways are widely
recognized as cancer regulatory mechanisms.

Though much effort has been on identifying genes as
biomarkers for immunotherapy, little progress has been made.
We thus determined the predicted values for differential
immune-related genes in NSCLC. We selected well-recognized
biomarkers with gene expression data in our data set (25). PD-
L1, also named as B7-H1 or CD274, is the first ligand of PD-1
discovered and widely expressed. It is the main factor responsible
for promoting tumor immune evasion (26), and has been a major
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clinical target for immunotherapy in NSCLC. CD8A is one of the
hallmarks of CD8+ T-cell activation signature genes, as well as
GZMB (27). NOS2 is the classically activated macrophage
transcript (28). They are widely used in multiple studies to
predict the efficacy of immunotherapy. In this study, we
calculate the relationship between differential immune-related
genes and 4 well-recognized immunotherapy biomarkers. OLR1
showed the best correlation with those existing biomarkers and
thus was selected to explore its specific relationship with TME.
PD-L1 is the most important clinical predictors of
immunotherapy and its expression level in tumor tissue
determines whether to apply immunotherapy. The NSCLC
patient with higher PD-L1 would be believed get better clinical
benefit from PD-1/PD-L1 antibody therapy. In this study, there
were numerically positive correlations between PD-L1 and
OLR1. It may imply that OLR1 could be used as an auxiliary
diagnostic marker for immunotherapy. CD8+ activation is the
signature event of anti-cancer effect for immune-checkpoint
inhibitors. The positive numerically correlation between OLR1
and CD8+ could provide further support for OLR1 plays as a
biomarker of immunotherapy. Notably, all analyses were based
on gene expression data and all positive or negative correlations
just showed statistically significant. However, they have not been
assessed in either clinical or experimental models.

Moreover, t-SNE analysis showed a significant difference in
the distribution of immune cells with 50% high or low OLR1
expression tumor samples. This finding suggests that OLR1 can
distinguish the state of TME by influencing the distribution of
immune cells. Fourteen kinds of immune cells changed in OLR1
expression level, and the ratios (low or high) of four well-
recognized immunotherapy biomarkers were significantly
different between the low and high OLR1 expression groups.
Furthermore, we found an interesting result when we compared
TILs distribution between “normal vs. tumor” and “lower OLR1
expression vs. higher OLR1 expression” (Figures 3C–R, and
Figure 5F). There were 16 kinds of TILs with different
distribution between normal tissue and tumor tissue and 14
kinds of different distribution TILs between lower OLR1
expression tissue and higher OLR1 expression tissue. Ten
kinds of TILs were identical in both comparisons. A term TILs
(B cells memory, plasma cells, T cells follicular helper and T cells
regulatory) have more distribution in tumor tissue (compared
with normal tissue) and lower OLR1 expression tissue
(compared with higher OLR1 expression tissue), and another
term (T cells CD4 memory resting, monocytes, eosinophilia and
neutrophils) showed the opposite distribution. It indicates that
lower OLR1 expression has close relationship with tumor
microenvironment. OLR1 also named LOX1. It was first
identified as a scavenger receptor for oxLDL in bovine aortic
endothelias cells (29). It is also expressed in macrophages,
vascular smooth muscle cells, platelets and tumor cells (30). Its
overexpression enhances the migration in breast via NF-kB (31).
The transcription of OLR1 could be regulated by multiple
transcriptional factors, and its activation depended on a wide
range of stimuli indicative of dyslipidemia, inflammation and
damage initiates several signaling cascades including MAPKs,
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other protein kinases as well as transcription factors NF-kB and
AP-1 (32).

The predictive values of biomarkers should support clinical
values. We used TIDE to detect the predictive effect of OLR1 on
NSCLC immunotherapy. TIDE is a gene expression biomarker
for predicting clinical response to immune checkpoint
blockade. Melanoma and NSCLC data are included in the
data sets. Given the limitation of the website, we chose 100
tumor samples (top 50 and bottom 50 samples of OLR1
expression in the last cohort) to run the TIDE prediction
process. Results showed that the prediction response rate in
the top 50 OLR1 expression group was 54% (27/50), which was
significantly higher than that in the bottom 50 OLR1 expression
group (16/50). In the comparison of other predictive indicators
of TIDE, OLR1 expression showed statistical relevance. The
results suggested that OLR1 could be used as a biomarker for
immunotherapy in NSCLC. As the main disadvantage of data
mining study, there are number of limitations of the work. In
this study, all analyses used the same data set and all data was
from gene expression micro-assay. The single source of data
might affect the reliability of the results. Meanwhile, data are
derived from multiple countries in this study. Though we set
explicit criteria before normalization of data sets, it is inevitable
that data missing happens, or some data from different sources
may interfere and cancel each other. Therefore, the results
might have been biased to a certain degree. In addition, the
algorithms are also immature, though we used the well-accepted
ones, such as limma, ESTIMATE or CIBERSORT. At last,
TIDE, a novel online tool to predict immunotherapy outcome
with gene expression data, is used as the last analyses of OLR1
in this research. It is likely that there is no enough evidence for
authenticity and reliability of the TIDE prediction results.
Those data mining results may change with different data
processing or novel algorithm. However, it also provided
some clues now for our study and we are trying to validated
it experimentally for more evidence. In verification the basic
gene expression of OLR1 in multiple NSCLC cell lines, the
result showed the significant reduction of OLR1 level in most
NSCLC cells than normal lung cell line.

This study explores TME with bioinformatics analysis of
public gene expression data sets in NSCLC. Multi-omics data
mining shows its reliability in screening meaningful genes in
NSCLC with public data sets. The principal findings of this
research are that OLR1 played a key role in TME and could
predict or potentially be regulated for NSCLC immunotherapy.
OLR1 expression was correlated with some well-recognized
biomarkers of immunotherapy, including PD-L1, CD8A,
GZMB, NOS2, and other predictors. OLR1 expression could
divide the differential TICs distribution, and those patients with
higher OLR1 expression were predicted to obtain more benefits
from immunotherapy in NSCLC. Given the limitations in time
and technology, the regulatory role and molecular mechanism of
OLR1 were not investigated in depth; regardless, the properties
of OLR1 indicate its potential value in NSCLC immunotherapy.
We intend to continue this study in future research and explore
more clinical data.
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