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Purpose: We developed and validated a contrast-enhanced spectral mammography
(CESM)-based radiomics nomogram to predict neoadjuvant chemotherapy (NAC)-
insensitive breast cancers prior to treatment.

Methods: We enrolled 117 patients with breast cancer who underwent CESM
examination and NAC treatment from July 2017 to April 2019. The patients were
grouped randomly into a training set (n = 97) and a validation set (n = 20) in a ratio of
8:2. 792 radiomics features were extracted from CESM images including low-energy and
recombined images for each patient. Optimal radiomics features were selected by using
analysis of variance (ANOVA) and least absolute shrinkage and selection operator
(LASSO) regression with 10-fold cross-validation, to develop a radiomics score in the
training set. A radiomics nomogram incorporating the radiomics score and independent
clinical risk factors was then developed using multivariate logistic regression analysis. With
regard to discrimination and clinical usefulness, radiomics nomogramwas evaluated using
the area under the receiver operator characteristic (ROC) curve (AUC) and decision curve
analysis (DCA).

Results: The radiomics nomogram that incorporates 11 radiomics features and 3
independent clinical risk factors, including Ki-67 index, background parenchymal
enhancement (BPE) and human epidermal growth factor receptor-2 (HER-2) status,
showed an encouraging discrimination power with AUCs of 0.877 [95% confidence
interval (CI) 0.816 to 0.924] and 0.81 (95% CI 0.575 to 0.948) in the training and validation
sets, respectively. DCA revealed the increased clinical usefulness of this nomogram.
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Conclusion: The proposed radiomics nomogram that integrates CESM-derived
radiomics features and clinical parameters showed potential feasibility for predicting
NAC-insensitive breast cancers.
Keywords: radiomics, breast cancer, contrast-enhanced spectral mammograph, neoadjuvant chemotherapy,
oncology
INTRODUCTION

Neoadjuvant chemotherapy (NAC) represents the primary and
direct treatment modality of locally advanced breast cancers (1).
The main advantages of NAC treatment are the reduction of
tumor volume and metastasis, increased breast-conserving
surgery probabilities instead of mastectomy, and determination
of drug sensitivity (2–4). Nevertheless, response rates to NAC
vary among patients due to intrinsic heterogeneity influenced by
molecular features, clinical behavior, and morphological
appearance (5). Approximately 10–35% of patients may be
insensitive to NAC, and 5% have further disease progression
after NAC (6). In these patients, NAC is proportionally less
beneficial, delays surgery, contributes to poor prognosis, and
increases treatment costs. Thus, an accurate method for
predicting treatment resistance prior to NAC is necessary for
personalized clinical strategies and further optimal triage of care,
especially for short term survivors.

Varying methods are used to evaluate the response to NAC.
Among them, magnetic resonance imaging (MRI) is regarded as
the “gold-standard” for assessing response to NAC (7). whenMRI
is contraindicated, contrast-enhanced spectral mammography
(CESM) may be a substitute novel instrumentation for breast
cancer diagnosis, as revealed in recent studies (8). CESM has
better sensitivity (SEN), significantly shorter exam time, and
lower cost and higher negative predictive value (NPV), positive
predictive value (PPV)and lesser background enhancement
than MRI (9–12). Patients exhibit significantly high overall
preference toward CESM, due to great comfort and low rate of
anxiety (13).

Initial work on assessing treatment response was focused on
the imaging measurements of tumor diameter before NAC, after
NAC, and sometimes during NAC according to the response
evaluation criteria in solid tumor (RECIST) criteria (14, 15).
Despite the merits of CESM examination, the changes in tumor
size on the image occurring after NAC treatment limits the role
of CESM in the early determination of therapeutic outcomes. As
a new method, radiomics has currently gained recognition in the
field of oncology for noninvasive analysis (16). More specifically,
previous studies revealed that response to anti-tumor therapy
can be assessed using radiomics analysis, exemplified by rectal
and breast cancers (6, 17–19). Moreover, our group has also
achieved some encouraging outcomes in the field of breast
cancer based on radiomics methods (20–22). Radiomics
involves extracting quantitative imaging features to investigate
associations between radiomics feature and clinicopathology
beyond human capabilities (23–25) and connects medical
imaging and precision medicine (26). A wide cluster of
2

machine learning methods, including logistic regression
analysis, random forest and support vector machine, have been
successfully applied to various clinical research areas.

In this preliminary research, we developed and validated a
radiomics nomogram based on CESM-derived radiomics
features and clinical risk factors for the pretreatment
determination of NAC-insensitive breast cancers.
MATERIALS AND METHODS

Patients
This study was reviewed and approved by the Research Ethics
Committee of Yantai Yuhuangding Hospital, and patient
informed consent was waived. The initial cohort of 198
patients was retrospectively reviewed through July 2017 to
April 2019. All eligible patients met the following inclusion
criteria: (i) biopsy-confirmed unilateral invasive breast cancer
without distant metastasis; (ii) no prior treatment other than
NAC and no history of other malignancy; (iii) CESM
examination conducted before and after the initiation of NAC;
and (iv) a pathologic examination performed before the
implementation of NAC. The exclusion criteria were as
follows: (i) multifocal or bilateral lesions (ii) lack of CESM
image data or clinical data before and after NAC; (iii) surgery
not performed or incomplete immunohistochemical
information; and (iv) insufficient CESM image quality for
measurements. The entire cohort of 117 patients conforming
to the inclusion criteria was divided randomly into the training
and validation sets in a ratio of 8:2. Correspondingly, different
treatment regimens were also randomly distributed in the
training and validation sets.

CESM Data Acquisition
Only the CESM images before initiating NAC with cranial caudal
(CC) projection of the eligible patients were routinely acquired
from our Department of Radiology in this study, mainly
including the low-energy and recombined images of suspected
side in DICOM format. CESM is based on a dual-energy system
developed by GE Healthcare (Chalfont St-Giles, UK): following
2 min of injection of an iodinated contrast agent (1.5 ml/kg body
weight), and low- and high-energy images are acquired in rapid
succession while the breast remains compressed, from which a
recombined image is obtained. The average gland dose of
examination is 3mGy. The low-energy image is the same as a
conventional mammogram, whereas a recombined image shows
contrast medium uptake (27–29). In a monolateral CESM, the
radiographer compressed the breast for the mediolateral oblique
February 2021 | Volume 11 | Article 605230
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(MLO) view 2 min after injecting the contrast agent and then
decompressed the breast, and the breast was compressed for the
CC view after another 2 min (14).

NAC Scheme and Response Assessment
All patients receivedNAC treatment before breast surgery, following
the National Comprehensive Cancer Network (NCCN) guideline
(1). 98 patients (84%) received taxane-based NAC schemes and 19
patients (16%) received anthracycline- and taxane-based NAC
schemes. Furthermore, human epidermal growth factor receptor-2
(HER2) positive patients also received trastuzumab.

RECIST criteria was used to assess the response to NAC by
comparing the largest dimension of tumor at baseline (pre-NAC)
with that of residual lesion later during treatment (post-NAC) on
the recombined image with CC projection. According to the
reference standard, patients with tumors graded as stable disease
(SD, < 30% dimensional reduction/< 20% dimensional increase)
or progressive disease (PD ≥ 20% dimensional increase) were
included in the NAC-ineffective group.

Tumor Masking and Radiomics
Feature Extraction
Two experienced breast radiologists blinded to pathological
outcomes manually delineated the tumor region of interest (ROI)
by outlining the tumor margin on the low-energy and recombined
Frontiers in Oncology | www.frontiersin.org 3
images with standard CC projection before NAC via the ITK-
SNAP software, as shown in Figure 1. If contradictory, other senior
radiologists will evaluate the tumormask again to reach agreement.
The recombined images were used as reference to determine the
tumor boundary on the low-energy images. Radiomics features per
patient were then extracted from pretreatment CESM images with
manually segmented ROIs. The task of radiomics feature extraction
was conducted in the AK software (Artificial Intelligence Kit; GE
Healthcare, China, Shanghai).

To ensure reproducibility of radiomics feature extraction, we
employed intra-class correlation coefficients (ICCs) for assessing
the intra- and inter-observer agreement of ROI delineation. First,
two radiologists with 8 years (Reader 1) and 9 years (Reader 2) of
experience in diagnosis of breast cancer delineated the ROI of 30
randomly chosen CESM images. One week later, Reader 1
repeated the same procedure. An ICC > 0.75 was considered as
substantial agreement.

Radiomics Feature Selection and
Radiomics Score Construction
Before the selection of radiomics feature, the normalization
processing of all extracted features was performed in the
training set, followed by sample augmentation technology
which was used to artificially increase the training data set.
First, features with ICC >0.75 within the training set were
FIGURE 1 | Example of delineating region of interest (ROI) in a 35 year-old woman with a 4.5-cm mass in the left breast. (Left) The low-energy and (Right)
recombined images with cranial caudal (CC) projection.
February 2021 | Volume 11 | Article 605230
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retained. Second, features were further selected using analysis of
variance (ANOVA). Third, we applied the least absolute
shrinkage and selection operator (LASSO) regression for
selecting the key radiomics features with nonzero coefficients,
and a 10-fold cross-validation with a maximum area under the
receiver operator characteristic (ROC) curve (AUC) criterion
was conducted to determine an optimal regulation weight (l). A
radiomics score for each patient was then computed using a
linear combination of the key features weighted by their LASSO
coefficients. We finally calculated AUC value to assess the
predictive performance of the radiomics score.

Clinical Factor Selection, and Clinical
Model Construction
Pretreatment clinicopathologic information was collected and
identified by two experienced radiologists. ANOVA was applied
to clinical variables for selecting the optimal clinical parameters.
The clinical model was then developed with the key clinical risk
factors by using multivariate logistic regression analysis.

Construction and Assessment of
Radiomics Nomogram
A radiomics nomogram incorporating radiomics score and
clinical risk factors was built using the multivariate logistic
regression in the training set and used as a convenient visible
tool to predict the individual probability of NAC-insensitivity.

The discrimination power of the radiomics nomogram was
quantified by calculating AUC in both sets. In addition, the point
on the ROC curve farthest from the diagonal line corresponds
Frontiers in Oncology | www.frontiersin.org 4
with the largest of the Youden index by calculating the sum of
SEN and specificity (SPE) and then subtracting 1 over all possible
threshold values, which was used to determine the cutoff value
dividing the NAC-ineffective and NAC-effective patient
predictive values. According to the cutoff value, the accuracy,
PPV, NPV, SEN, and SPE were calculated in both sets.

Decision curve analysis (DCA) was employed to evaluate the
benefit of nomogram-assisted decisions in a clinical context. The
net benefit was calculated by subtracting the proportion of all
false positive patients from the proportion of true positive
patients. Standardized net benefit was scaled into the range
between 0 and 1.

Statistical Analysis
The radiomics nomogram was developed in the training set by
using multivariate logistic regression, whereas the validation set
was used to validate the radiomics nomogram. Clinical
characteristics between two sets were compared using the chi-
squared or fisher exact tests for categorical variables and
independent sample t test for continuous variables. The
DeLong test was used to determine the statistical significance
of the AUC of different models. LASSO regression analysis was
performed by “python” scikit-learning package, and ANOVA
was performed with the “anova” software package. ROC curves
were plotted with the “roc” software package, and DCA was
performed with the “decision-curve” software package. The
statistical analyses were conducted using the R software
version 3.5.3. P values < 0.05 were interpreted as
statistical significance.
FIGURE 2 | Flow chart of the study population with exclusion criteria.
February 2021 | Volume 11 | Article 605230
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RESULTS

Clinical Characteristics
A total of 198 patients with breast cancer undergoing NAC
treatment were recruited in the study, and 117 patients were
finally enrolled. The training set included 97 patients and the
validation set included 20 patients, as shown in Figure 2. Patient
Characteristics are shown in Table 1. No significant difference
was found between the two sets in terms of no response
prevalence (P = 22.7% and 50% in the training and validation
sets, respectively, p = 0.82). No significant statistical differences
in clinical characteristics were found between the NAC-effective
Frontiers in Oncology | www.frontiersin.org 5
and NAC-ineffective groups in the training set (P = 0.075–1), as
well as in the validation set (P = 0.303–0.937).

Radiomics Feature Selection and
Radiomics Score Development
We extracted 792 radiomics features from CESM images with
manually segmented ROIs in the training set, including shape-
and size-based, first-order statistical, and texture features. The
substantial reproducibility of radiomics feature extraction were
achieved with the intra- and inter- observer ICCs from 0.823 to
0.890 and 0.789 to 0.835, respectively. In order to determine the
optimal regulation weight l [−log(l) = 1.5] for the LASSO
TABLE 1 | Clinical characteristics in the training and validation cohorts.

Characteristics Training set (N = 97) p Validation set (N = 20) p

NAC-ineffective
(N = 22)

NAC-effective
(N = 75)

NAC-ineffective
(N = 10)

NAC-effective
(N = 10)

Age(years), (mean ± SD), years 48.7 ± 10.2 49.5 ± 8.3 0.71 51.1 ± 7.0 49.3 ± 8.6 0.63
Size (cm), (mean ± SD), cm 5.2 ± 2.5 4.9 ± 2.8 0.73 4.9 ± 2.8 4.7 ± 3.2 0.88
ER status 0.17 0.58
Positive (N = 84) 18 (81.8%) 50 (66.7%) 9 (90.0%) 7 (70.0%)
Negative (N = 33) 4 (18.2%) 25 (33.3%) 1 (10.0%) 3 (30.0%)
PR status 0.34 0.65
Positive (N = 79) 17 (77.3%) 50 (66.7%) 7 (70.0%) 5 (50.0%)
Negative (N = 38) 5 (22.7%) 25 (33.3%) 3 (30.0%) 5 50.0%)
HER status 0.38 0.30
Positive (N = 49) 16 (72.7%) 28 (37.3%) 1 (10.0%) 4 (40.0%)
Negative (N = 58) 6 (27.3%) 47 (62.7%) 9 (90.0%) 6 (60.0%)
Ki67 0.07 1.00
Positive (N = 110) 19 (86.4%) 73 (97.3%) 9 (90.0%) 9 (90.0%)
Negative (N = 7) 3 (13.6%) 2 (2.6%) 1 (10.0%) 1 (10.0%)
Molecular subtype 0.60 0.45
Luminal (N = 88) 18 (81.8%) 54 (72.0%) 9 (90.0%) 7 (70.0%)
HER2 over-expression (N = 16) 2 (9.1%) 13 (17.3%) 0 (0%) 1 (10.0%)
Basal-like (N = 13) 2 (9.1%) 8 (10.7%) 1 (10.0%) 2 (20.0%)
T stage 0.46 0.16
1 (N = 6) 0 (0%) 3 (4.0%) 0 (0%) 3 (30.0%)
2 (N = 61) 14 (63.6%) 39 (52%) 5 (50.0%) 3 (30.0%)
3 (N = 50) 8 (36.4%) 33 (44%) 5 (50.0%) 4 (40.0%)
LNM 1.00 —

Positive (N = 115) 22 (100.0%) 73 (97.3%) 10(100.0%)
(100.0%)
(100.0%)
(100.0%)

10(100.0%)

Negative (N = 2) 0 (0%) 2 (2.7%) 0 (0%) 0(0%)
BPE 0.53 0.18
Minimal (N = 60) 10 (45.5%) 41 (54.7%) 6 (60.0%) 3 (30.0%)
Mild (N = 39) 7 (31.8%) 24 (32.0%) 2 (20.0%) 6 (60.0%)
Moderate (N = 18) 5 (22.7%) 10 (13.3%) 2 (20.0%) 1 (10.0%)
Marked (N = 0) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
BD 0.53 0.83
Almost fatty (N = 32) 7 (31.8%) 18 (24.0%) 4 (40.0%) 3 (30.0%)
Scattered fibroglandular (N = 38) 7 (31.8%) 26 (34.7%) 2 (20.0%) 3 (30.0%)
Heterogeneously (N = 36) 5 (22.7%) 26 (34.7%) 2 (20.0%) 3 (30.0%)
Extremely dense (N = 11) 3 (13.6%) 5 (6.6%) 2 (20.0%) 1 (10.0%)
NAC scheme 0.83 1.00
Taxane based (N = 98) 20 (90.9%) 67 (89.3%) 6 (60%) 5 (50%)
Anthracycline and taxane 2(9.1%) 8(10.7%) 4 (40%) 5 (50%)
based (N = 19)
February 2021 | Volume 11 | Article 60
ER, estrogen receptor; PR, progesterone receptor; HER2, human epidermal growth factor receptor 2; LNM, lymph node metastasis; BPE, background parenchymal enhancement; BD,
breast density; SD, standard deviation; NAC, neoadjuvant chemotherapy.
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algorithm, we finally screened 11 optimal radiomics features with
nonzero coefficients for calculating radiomics score (Figures 3A,
B, Table 2). The radiomics scores for each patient are shown in
Figure 4. The red and blue colors indicate the NAC- ineffective
and NAC-effective patient, respectively. The bars above and
below the horizontal line indicate NAC-effective and NAC-
ineffective patient as distinguished by the radiomics score,
respectively. The results revealed that the radiomics score has a
good predictive ability.

Construction of Radiomics Nomogram
The radiomics score and clinical characteristics, namely, HER-2
status, Ki67 index, and background parenchymal enhancement
(BPE), significantly predicted early NAC-ineffective patients.
Thus, the radiomics nomogram was developed with the
Frontiers in Oncology | www.frontiersin.org 6
combination of radiomics score, HER-2 status, Ki67 index, and
BPE as listed in Figure 5.

Performances of Radiomics Score,
Radiomics Nomogram, and Clinical Model
The radiomics nomogram yielded AUC values of 0.877 (95% CI,
0.816–0.924) and 0.810 (95% CI, 0.575–0.948) in the training
and validation sets, as shown Figure 6, respectively. The results
showed that our nomogram had favorable predictive
performances. The AUCs of the radiomics score and clinical
model were 0.861 (95% CI, 0.798–0.911) and 0.668 (95% CI,
0.589–0.74) in the training set and 0.81 (95% CI, 0.575–0.948)
and 0.55 (95% CI, 0.315–0.769) in the validation set, respectively.
The diagnostic performances of three models are shown in Table
3. The results revealed that radiomics nomogram showed the
highest accuracy, SEN, SPE, PPV, and NPV in both sets.

DCA was conducted to assess the benefit of the radiomics
nomogram in Figure 7. The results showed that radiomics
nomogram presented the greatest net benefit compared with
either the treat-all patients or the treat-none patients strategies at
between 0.24 to 1 threshold probability.
DISCUSSION

In the study, the proposed CESM-based radiomics nomogram
showed a favorable pretreatment predictive ability for NAC-
ineffective patients in breast cancer. Although prior studies
proved that CESM seems at least as reliable as MRI in
assessing response to NAC (14), the novelty of our findings
may help to predict breast cancer response to NAC.

The means of predicting response to NAC was a key issue in
the study. With the flourishing applications of radiomics, MRI,
mammography, ultrasonography, diffuse optical spectroscopic,
and positron emission tomography/computed tomography
(PET/CT) have been successfully applied in treatment
evaluation. For example, Antunovic et al. assessed the value of
A B

FIGURE 3 | Feature selection for the LASSO logistic regression and the predictive accuracy of the radiomics signature. (A) Tuning parameter (l) selection by 10-fold
cross-validation with minimum criteria. Mean square error (y-axis) was plotted as a function of log(l) (x-axis). The dotted vertical lines were drawn at the optimal value
of l, where the model provided its best fit of the data. The optimal value -log(alpha) = 1.50 (B) LASSO coefficient profiles for the whole features. The dotted vertical
line was plotted at the value selected with 10-fold cross-validation, where eleven optimal features with nonzero coefficients are indicated in the plot.
TABLE 2 | Radiomics feature for establishing radiomics score.

Intercept and variable Modality Coefficient

Skewness Low-energy
image

−0.05380741

LongRunEmphasis_angle0_offset1 low-energy
image

0.093650085

ShortRunEmphasis_angle135_offset7 Recombined
image

−0.011611473

Inverse Difference Moment Recombined
image

0.006785827

RunLengthNonuniformity_AllDirection_offset1_SD Recombined
image

0.012658414

kurtosis Recombined
image

0.023503887

ShortRunEmphasis_AllDirection_offset1_SD Recombined
image

0.024338342

Large Area Emphasis Recombined
image

0.05187876

GreyLevelNonuniformity_AllDirection_offset1_SD Recombined
image

0.090814997

ShortRunLowGreyLevelEmphasis_angle0_offset4 Recombined
image

0.105234074

GreyLevelNonuniformity_angle0_offset4 Recombined
image

0.142534338
February 2021 | Volume 11 | Article 605230
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PET/CT radiomics features in predicting pathological complete
response and used two approaches, namely, complete case and
sensitivity, to build four radiomics models (30). Their model 4
showed the best discrimination, yielding an AUC of 0.73 without
independent internal validation. Unlike the above research, we
developed and validated a CESM-based radiomics model with a
larger sample size (sample size, 117 vs. 79) and improved
discriminatory power (AUC, 0.81 vs. 0.73). Moreover, in
clinical practice, our CESM-based radiomics nomogram
displayed a promising application prospect due to the
mentioned strengths of CESM examination. From the results
A B

FIGURE 4 | Predicted scores of patients in (A) the training and (B) validation set. The red color indicates NAC-ineffective patient and blue color indicates NAC-
effective patient. The bars above the horizontal line indicates NAC-effective patient and the bars below the horizontal line indicates NAC-ineffective distinguished by
the radiomics score.
FIGURE 5 | A radiomics nomogram for the prediction of NAC- ineffective patients in the primary cohort.
FIGURE 6 | ROC curve of radiomics nomogram in the training and validation
set. AUC, area under the curve.
TABLE 3 | Predictive performances of the three models.

Metrics Accuracy SEN SPE PPV NPV

Radiomics score Training set 0.79 0.74 0.85 0.83 0.76
Validation set 0.80 0.90 0.70 0.75 0.88

Clinical model Training set 0.69 0.69 0.70 0.70 0.69
Validation set 0.65 0.70 0.60 0.64 0.67

nomogram Training set 0.81 0.78 0.85 0.84 0.79
Validation set 0.80 0.90 0.70 0.75 0.88
F
ebruary 2021
 | Volum
e 11 | A
rticle 60
SEN, sensitive; SPE, specificity; PPV, positive predictive value; NPV, negative predictive value.
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of the paper, we found that the radiomics model achieved a
significantly better discriminative ability compared to clinical
model (AUC, 0.81 vs. 0.55, p < 0.01). Adding clinical factors did
not significantly improve the performance of the radiomics
model (0.81vs. 0.81, p = 1.00), which may be caused by small
sample size and unbalanced distribution of sample. We will
continue our research with larger sample size in the future. The
results of DCA proved that radiomics nomogram presented the
greatest net benefit compared with either the treat-all patients or
the treat-none patients strategies. It is worth noting that BPE was
integrated into the radiomics nomogram in our study, which is
consistent with recent evidence stating that BPE may be a novel
predictor of treatment outcomes (31, 32). However, other studies
found no significant relationship between BPE and response to
NAC (33, 34). Thus, the relationship of BPE with response to
NAC may be further discussed due to the variability and
subjectivity inherent in the qualitative assessments of BPE. It
was worth noting that most patients (84%) received taxane-based
NAC schemes, according the National Comprehensive Cancer
Network (NCCN) guideline (1), and 19 patients (16%) received
anthracycline- and taxane-based NAC schemes. Although the
distribution of treatment regimen was imbalanced, it was in
accordance with the actual situation in clinical practice.
Moreover, patients with different treatment regimens were
divided randomly into two sets because of small sample size,
which may affect the results of the study.

Our retrospective, single-institutional study exhibits several
limitations. Firstly, the study includes a small sample size. The
Frontiers in Oncology | www.frontiersin.org 8
limited number of events (i.e., NAC-ineffective), related to the
novelty of CESM examination and rigorous patient inclusion
criteria, compromises the generalization of the results. Future
work should include a highly standardized, large, multicenter
dataset across patients and institutions. Secondly, ROIs were
outlined manually by experienced radiologists. Although we
sought to avoid inter- and intra-observer variabilities by using
ICCs, this may still hinder the performance of the nomogram.
Finally, compared with traditional radiomics method used in the
study, the performance of the prediction model may be improved
to some degree based on deep learning (DL). DL methods, such
as convolution neural network, are emerging machine learning
technologies suitable for to classification task, and DL
application will be the priority of our future studies.

In conclusion, the proposed CESM-derived radiomics
nomogram may provide a non-invasive tool for predicting
response to NAC. A large sample size, multicenter, multimodal
study with advanced image analysis should be further conducted
to improve the performance of radiomics nomogram in
predicting NAC-insensitive patients with breast cancer.
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FIGURE 7 | Decision curve analysis of three models. The y-axis measures
the net benefit. The black thick line represents the radiomics nomogram. The
red thick line represents the radiomics score. The blue thick line represents
the clinical model. The gray line represents the assumption that all patients
gained substantial benefit after NAC. The horizontal black thin line represents
the assumption that no patients gained substantial benefit after NAC.
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