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Our study aimed to develop an immune prognostic signature that could provide accurate
guidance for the treatment of esophageal squamous cell cancer (ESCC). By implementing
Single-SampleGeneSetEnrichmentAnalysis (ssGSEA),weestablished twoESCCsubtypes
(Immunity High and Immunity Low) in GSE53625 based on immune-genomic profiling of
twenty-nine immune signature. We verified the reliability and reproducibility of this
classification in the TCGA database. Immunity High could respond optimally to
immunotherapy due to higher expression of immune checkpoints, including PD1, PDL1,
CTLA4, and CD80. We used WGCNA analysis to explore the underlying regulatory
mechanism of the Immunity High group. We further identified differentially expressed
immune-related genes (CCR5, TSPAN2) in GSE53625 and constructed an independent
two-gene prognostic signature we internally validated through calibration plots. We
established that high-risk ESCC patients had worse overall survival (P=0.002, HR=2.03).
Besides, high-risk ESCCpatients had elevated levels of infiltrating follicle-helper T cells, naïve
Bcells, andmacrophagesaswell as hadoverexpressed levels of some immunecheckpoints,
including B3H7, CTLA4, CD83, OX40L, and GEM. Moreover, through analyzing the
Genomics of Drug Sensitivity in Cancer (GDSC) database, the high-risk group
demonstrated drug resistance to some chemotherapy and targeted drugs such as
paclitaxel, gefitinib, erlotinib, and lapatinib. Furthermore, we established a robust
nomogram model to predict the clinical outcome in ESCC patients. Altogether, our
proposed immune prognostic signature constitutes a clinically potential biomarker that will
aid in evaluating ESCC outcomes and promote personalized treatment.

Keywords: esophageal squamous cell carcinoma, prognosis, signature, immunotherapy, cancer drug resistance,
tumor microenvironment
INTRODUCTION

Esophageal carcinoma (EC) is one of themost commoncancersworldwide and the 6th leading cause of
cancer related deaths globally (1). Esophageal squamous cell cancer (ESCC) is the commonest subtype
of esophageal carcinoma. ESCC incidence is particularly high in East Asia, where it accounts for
accounting about 90% of ECs (2). Despite recent advances in diagnosis and treatment, most ESCC
cases are diagnosed at an advanced stage and are characterized by rates ofmetastasis and relapse (3, 4).
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As a result of high genetic heterogeneity and development of drug
resistance, ESCC prognosis remains very poor, with a 5-year
survival rate of <30% (5, 6). Recent research has aimed to
uncover biomarkers with early diagnostic and prognostic value
against EC. A 3-miRNA signature (miR-1301-3p, miR-769-5p,
and miR-431-5p) has been suggested as a novel prognostic
biomarker for EC (7). Li et al. developed a prognostic tool for
ESCC based on 8 lncRNA and used weighted gene co-expression
network analysis (WGCNA) to evaluate internal interaction
between gene expressions (8). A study by Shao et al. identified
key genes with potential for use as biomarkers for diagnosis,
treatment, and prognosis of ESCC (9).

The immune system has been shown to possess tumor
suppressive and tumor promoting properties (10), and cancer
immunotherapy has achieved significant success against various
malignancies (11). Given that ESCC is characterized by multiple
genetic lesions, including a high rate of nonsynonymous mutations
and several immunogenic peptides, there is growing interest
understanding the benefits of immunotherapy in the context of
surgery, chemotherapy, radiation, and other molecular therapies for
ESCCs (12). Indeed, many trials are underway to assess
immunotherapy as first line treatment in ESCC. Moreover, recent
breakthroughs in the use immune checkpoint inhibitors to treat
various cancers has encouraged the exploration of their use against
ESCC (13). However, not all cancer patients are equally likely to
benefit from immunotherapy, highlighting the need to identify
which ESCC patients are likely to respond to immunotherapy.
Mounting evidence has shown that multiple factors, including
immune cell infiltration, interferon (IFN) signaling, deficient
DNA mismatch repair, checkpoint expression (PD-1, PD-L1) or
high tumor mutational burden affect clinical outcomes (14–16).
However, little has been done to characterize the immunogenomic
profile in ESCC and to leverage these findings for improved patient
outcomes. Additional research is needed to elucidate novel, robust
prognostic biomarkers and to personalize ESCC therapy.

Here, we analyzed ESCC datasets obtained from GSE53625. We
classified the ESCCpatients inGSE53625 into two subtypes based on
immunogenomic signature: Immunity High (Immunity_H) and
Immunity Low (Immunity_L). Reliability of the classification was
verified in the TCGA dataset. We assessed the relationship between
subtype and some immune checkpoints, gene expression and clinical
features. WGCNA analysis was then used to evaluate the regulatory
mechanism ofmodules related to the Immunity_H group. A concise
prognostic signature basedon the two immune classes developed and
nomogram analysis used to predict the clinical value of the signature
via integrated bioinformatics approaches. Subsequently, we
examined correlation of the signature with drug resistance,
immune cell, and immune checkpoint. This risk signature model
maybeused topredict patientoutcomesand improve theprecisionof
ESCC personalized therapy.

MATERIALS AND METHODS

Data Collection and Preprocessing
We downloaded the microarray profiling dataset, GSE53625, as
well as the corresponding clinical data from the GEO database.
Frontiers in Oncology | www.frontiersin.org 2
These datasets comprised of 179 ESCC samples and 179
adjacent, matching non-tumor tissues. ESCC mRNA-Seq data
for 81 ESCCs, along with associated clinical data, were
downloaded from the TCGA database.

Single-Sample Geneset
Enrichment Analysis
The GSE53625 and TCGA cohorts were analyzed to quantify the
enrichment level of the twenty-nine immune signatures (17–20)
for each ESCC sample using ssGSEA analysis in the R package
gsva (21, 22). ESCC patients were grouped into immunity High
and immunity Low as per the ssGSEA scores of the twenty-nine
immune signatures using hierarchical agglomerative clustering
as per Euclidean distance and Ward’s linkage.

Estimation of Immune Cell Invasion Level,
Stromal Content, and Tumor Purity
in ESCC
Next, we evaluated the level of immune cell infiltration (immune
score), stromal level (stromal score), tumor purity, and estimate
score for each ESCC sample using ESTIMATE (23). Results from
this analysis were visualized in heat-maps using the pheatmap R
package. The correlation between the two subtypes and immune
score, estimate score, tumor purity, and the stromal score was
analyzed using the ggpubr R package.

Comparison of the Proportions of Immune
Cell Subsets Between ESCC Subtypes
The proportions of 22 human immune cell subsets were
calculated using CIBERSORT (24) with the reference of 1,000
permutations and LM22 signature. P <0.05 indicated a successful
deconvolution standard, indicating that the calculated fractions
of immune cell populations were accurate. Results were
visualized in heat maps using the pheatmap R package.

Weighted Gene Co-Expression
Network Analysis
WGCNA reveals complex relationships between genes and
phenotypes (25). We utilized WGCNA to establish potentially
critical gene modules associated with ESCC subtypes using the
WGCNA R package. WGCNA analysis involves identification of
gene expression similarity-matrix, adjacency matrix as well as the
co-expression network. When the correlation between k (the
average degree of connectivity) and p (k) reached 0.8, an optimal
power value ranging from 1 to 20 was set to build a scale-free
topology network. Thus, we set the power value of the soft
threshold at 7 to meet the scale-free topology standard. Analysis
with a dynamic tree cut algorithm was done to identify gene co-
expression modules. The relevance between modules and
subtypes was analyzed to determine the related module.

Establishment of Differentially Expressed
Immune-Related Genes and Construction
of Training Set and Testing Set
We analyzed for the differentially expressed genes (DEGs)
between tumor samples and normal samples in the GSE53625
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dataset using the limma R package to determine the differentially
expressed immune-related genes (DE IRGs) associated with
ESCC prognosis. Similarly, we identified the immune-related
genes (IRGs) differentially expressed between the Immunity
High and Immunity Low groups. The DEGs and IRGs with an
adjusted P <.05 as well as absolute log2-fold change (FC) >1 were
selected for further analyses. We identified the DE IRGs at the
points of intersection between the DEG and the IRG lists.
Because of the limited number of normal esophageal tissue in
the TCGA database, we split the GSE53625 dataset randomly
into training as well as the testing sets (7:3). We used the training
set to construct a potential prognostic signature and the testing
for validation.
Establishment and Validation of an
Immune Prognostic Predictive Signature
We used the Univariate Cox proportional hazards regression
analysis to identify DE IRGs capable of predicting overall survival
(OS). A log-rank test analysis was done, and a P <.05 threshold was
set to identify the candidate genes. Next, we performed the least
absolute shrinkage and selection operator (LASSO) Cox (26)
examination to identify more relevant IRGs. LASSO Cox
regression analysis was done by performing 1000 substitution
samplings in the dataset and genes with a recurrence frequency
greater than 900 selected. Next, we used the multivariate Cox
regression investigation of these genes to determine those with
the best prognostic value and construct the prognostic signature.
The prognosis index (PI) = (bmRNA1* expression level of mRNA1)
+ (bmRNA2* expression level of mRNA2) +…+ (bmRNAn*
expression level of mRNAn) and the b acquired from multivariate
Cox regression analysis. We computed the risk score of each patient
and classified them into the low-risk or high-risk group as per the
median risk score of the training database as the cutoff. We further
used the Kaplan-Meier survival examination and the time-
dependent receptor working characteristic (ROC) curve analysis
to assess the predictive value of the prognostic signature. Finally, we
validated the signature using the testing cohort.

Independence of the Immune Prognostic
Signature and Construction of a Predictive
Nomogram
Univariate and multivariate Cox proportional hazard regression
investigations were done to assess whether the immune prognostic
signature has independent prognostic value. Next, a nomogram
(27) was built using all the independent prognostic factors to
predict the prognostic value at 1-,3-, and 5-year survival of ESCC
patients. We then plotted calibration plots for internal validation.
We used the ROC curve examination to compare the predictive
performance of single independent prognostic factors to the
nomogram. After that, we performed a decision curve analysis
(DCA) to assess the clinical net benefit (28).

GDSC and TIMER Database Analysis
Next, the drug response data (defined by IC50 value), as well as the
gene bulk expression profiles of cancer cell lines, were downloaded
Frontiers in Oncology | www.frontiersin.org 3
from the GDSC (Genomics of Drug Sensitivity in Cancer) database.
GDSC constitutes the most extensive public arsenal of data on drug
sensitivity in cancer cells as well as molecular markers of drug
response (29). Next, we predicted the IC50 value for each drug using
the LIBSVM package in R under default parameters and linear
kernel. We then compared the differences between the low-risk and
high-risk groups to establish whether the two groups exhibit
different drug sensitivities. We then evaluated the association
between abundant tumor immune infiltrates (CD4+ T-cells, CD8
+ T-cells, B-cell, dendritic cells, macrophages, and neutrophils) as
well as the expression levels of the selected genes using the TIMER
(Tumor Immune Estimation Resource) platform. TIMER is used to
explore and visualize immune infiltrates comprehensively among
different types of cancer (30, 31). Purity-corrected partial Pearson’s
correlation and its statistical significance were visualized using
correlation graphics.
Statistical Analysis
Wilcox test was used in comparing the differences between groups.
We used the Database for Annotation, Visualization, and Integrated
Discovery to perform the GO term analysis of biological processes
(GO_BP) and KEGG analysis of pathway enrichment. Statistical
analyses were performed using the R software.
RESULTS

ESCC Patients Cluster Into Immunity High
and Immunity Low Groups
We examined 29 immune-related gene sets representing multiple
immune cell types, pathways, and functions (Supplementary
Table 1). The enrichment levels of immune cells, pathways, and
functions were quantified using the ssGSEA assessment of the
ESCC samples. ssGSEA assessment of the 29 gene signature was
used to hierarchically cluster the ESCC cases in the GSE53625
dataset, with two distinct clusters emerging (Figure 1A).
Evaluation of the TCGA database revealed identical clustering
(Figure 1F). The two clusters were designated as Immunity High
(Immunity_H) and Immunity Low (Immunity_L). Since tumors
consist mainly of tumor cells, immune cells, and stromal cells, we
analyzed for the immune cell infiltration levels (immune scores),
stromal cell content (stromal scores), and tumor purity between
the two groups. Consequently, we found that immune scores,
stromal scores as well as the estimate scores were markedly
higher in Immunity_H cluster than in the Immunity_L arm in
both datasets. However, we reported a contrasting trend for
tumor purity (Figures 1B–E, G–J). These findings indicated that
Immunity_H patients possess more immune and stromal cells
compared to Immunity_L patients, while Immunity_L patients
have more tumor cells.

HLA and Hot Immune Checkpoint Genes Are
Overexpressed in Immunity High Patients
We analyzed the GSE53625 dataset and established the proportions
of 22 immune cell subsets using CIBERSORT as well as the
expression level of some genes in the two clusters (Figures 2A,
February 2021 | Volume 11 | Article 603634
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B). The expression of most HLA genes in the Immunity_H armwas
significantly higher relative to the Immunity_L group (Figure 2C).
Moreover, we examined the expression levels of some hot immune
checkpoints in the two groups, including PDCD1, CD274, CTLA4,
and CD80. The results indicated that the expression of these genes
was remarkably higher in the Immunity_H arm relative to the
Immunity_L group (Figures 2D–G). These results suggested that
the Immunity High ESCC patients responded better to the immune
checkpoint inhibitors than the Immunity Low ESCC patients since
immune checkpoint expression is positively associated with the
immunotherapeutic effect. Next, we assessed the relationship
between the two subtypes and clinical features (Figures 2H–K).
Finally, these findings were verified using the TCGA dataset. The
distribution of the immune cell subsets and expression analysis of
some genes in the two subtypes are shown in Figures 3A, B. The
expression levels of most HLA genes, PDCD1, CD274, CTLA4, and
CD80 in the Immunity_H group were also higher than in the
Immunity_L arm, consistent with the above results (Figures 3C–G).
The relationship between the two subtypes and clinical
characteristics is shown in Figures 3H–K.
Gene Modules Are Significantly
Associated With Immunity High
We performed a WGCNA analysis to identify the gene modules
associated with the ESCC subtypes. First, the DEG analysis
Frontiers in Oncology | www.frontiersin.org 4
between tumor and normal groups in the GSE53625 database
was done (Figure 4A). At a soft threshold power (b) of 7, the
association between genes reached a scale-free network
distribution (Figure 4B). Next, we used a dynamic tree-cutting
algorithm to identify 6 distinct co-expression modules with
different numbers of genes (Figure 4C). The grey module
consisted of a gene set that was not designated to any of the
modules. Connectivity examination of the crucial genes in
discrete modules is shown in Figure 4D. Notably, we found a
strong association between the green and tan modules (Figure
4E). Analysis of the linear mixed-effects model revealed that the
tan module genes (t-value=0.63, P=4e-41) and the green module
genes (t-value=0.36, P=4e-12) are markedly associated with the
Immunity High group (Figure 4F). A scatter plot of multiple
module memberships for each gene contained in these modules
revealed similar findings (Figures 4G, H). We next performed
GO term and KEGG pathway analysis of the genes in the green
and tan modules to understand their roles. The KEGG analysis
revealed that the genes related to the two modules are involved in
the following pathways; cell adhesion molecules (CAMs),
vascular smooth muscle contraction, cGMP−PKG signaling
pathway, adrenergic signaling in cardiomyocytes, and the
calcium signaling pathway (Figure 4I). GO term analysis
revealed that the genes significantly regulate immune response
processes (including T cell migration) and regulation of protein
processing (Figure 4J).
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FIGURE 1 | Hierarchical clustering of ESCC yielding two stable subtypes in two different datasets. (A) Heat map of ESCC clustering in GSE53625 database.
(B–E) Comparison of the Immune Score, Estimate Score, Stromal Score, and Tumor purity in GSE53625 database. (F) Heat map of ESCC clustering in TCGA
database. (G–J) Comparison of the Immune Score, Estimate Score, Tumor purity, and Stromal Score in TCGA database. *P < .05, **P < .01, ***P < .001.
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The Immune-Related Prognostic Signature
Has a Good Prognostic Performance
We compared gene expression data between ESCC tissues and
adjacent non-tumor tissue in GSE53625 and identified the DEGs
(|LogFC| >1, P <.05). We used the same method to identify DE
IRGs expressed in the Immunity_H and Immunity_L classes.
Consequently, we identified 662 DE IRGs, which we subjected to
further analysis (Figure S1). Next, 127 genes that significantly
correlated with ESCC OS were identified using univariate Cox
regression analysis (P=<.01). After that, the LASSO Cox analysis
was performed to reduce further the number of candidate genes
with the penalty parameter set at 10-fold cross-validation.
Therefore, 6 genes that emerged more than 900 times
following a 1,000 repetition were selected (Figure S2). Finally,
we carried out a multivariate Cox regression analysis and
identified two genes (CCR5 and TSPAN2). These two genes
were used to construct a prognostic signature, the prognostic
index (PI) = (-0.288 * expression level of CCR5) + (0.176 *
expression level of TSPAN2). The risk score for each patient was
Frontiers in Oncology | www.frontiersin.org 5
then calculated, and the patients classified into high-risk or low-
risk groups based on the median risk score as the optimal cutoff
point. Kaplan-Meier survival analysis revealed that the OS in the
high-risk group was significantly lower than in the low-risk
group (P=0.002, HR = 2.03) (Figure 5A). Time-dependent
ROC curve analysis showed the predictive value of the
signature (Figures 5C, D). The area under the time-dependent
ROC curves (AUCs) for 1-, 2-, 3-, and 4-year OS were 0.63, 0.67,
0.67, and 0.7, respectively, indicating our prognostic signature
has good performance. The performance was verified using the
validation cohort. Based on these findings, ESCC patients were
grouped into high-risk and low-risk groups. Patients in the high-
risk group exhibited dismal survival relative to those in the low-
risk group (P=0.026, HR = 2.13) (Figure 5B). A great difference
in risk-score distribution and gene expression was observed
(Figure 5E). The AUCs of the two-gene prognostic signature
were 0.6, 0.65, 0.76, and 0.76 for the 0.5-, 1-, 3-, and 4-year
survival, respectively (Figure 5F). Therefore, our prognostic
model demonstrated a high degree of sensitivity and specificity.
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FIGURE 2 | Two ESCC subtypes showing different phenotype in GSE53625 database. (A) Proportion of the immune cell invasion between ESCC subtypes.
(B) Heat map of the expression levels of different gene between ESCC subtypes. (C) Comparison of the expression of HLA genes between ESCC subtypes.
(D–G) Comparison of PDCD1, CD274, CTLA4, and CD80 expression levels between TNBC subtypes. (H–K) The relationship between ESCC subtypes and clinical
characteristics including age as well as the TNM stage. *P <.05, **P <.01, ***P <.001.
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Combining Our Prognostic Signature
With the TNM Stage Enhances
Prognostic Power
We used univariate and multivariate Cox regression analyses to
evaluate the independence of our prognostic model using standard
prognostic indicators. The results demonstrated that the TNM stage
(P= <.001, HR = 1.992) and the risk score (P=<.001, HR = 2.596)
were independent indicators of OS (Figure 6A). Predictive
nomogram analysis based on the two independent prognosis
factors was used to evaluate the clinical prognosis. Each
independent prognosis factor was assigned a score, and the total
point value obtained by summing the respective scores corresponding
to each prognostic variable. The corresponding OS for a patient at 1,
3, and 5 years was determined (Figure 6B). We performed an
internal validation of the nomogram using the calibration plot that
indicated consistency between predicted OS outcomes and actual
observations (Figures 6C–E). The C index of the nomogram in OS
prediction was 0.65, which was superior to the C index of the TNM
stage (0.59) and the prognostic signature (0.64). These findings
indicated that our model has a higher prediction power. By
Frontiers in Oncology | www.frontiersin.org 6
combining our prognostic model with the TNM stage, the AUCs
for 1-, 3-, and 5-year OS were 0.647, 0.720, and 0.719, respectively,
which were better than models relying on single independent
predictive factors (Figures 6F–H). Next, we used DCA to evaluate
the suitability of this model in clinical settings and established that the
combined model is the best for predicting OS (Figures 6I–K).
High-Risk ESCC Patients Exhibit
Resistance to Paclitaxel, Gefitinib, and
Erlotinib et Cancer Drugs
Next, we downloaded data on the response of cancer cells to
various drugs from the GDSC database. To predict the IC50 for
each drug, we analyzed drug response data (IC50) and robust
multi-array (RMA) gene expression profiles obtained from the
GDSC database. IC50s helps to quantify the ability of a drug to
induce apoptosis, which is inversely related to drug sensitivity. We
compared the estimated IC50s of some drugs in the low-risk and
high-risk ESCC subtypes (Figures 7A–G). Paclitaxel, gefitinib, and
erlotinib are commonly used drugs to treat ESCC. Our analysis
A B
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FIGURE 3 | Two ESCC subtypes showing different phenotype in TCGA database. (A) Proportion of the immune cell invasion between ESCC subtypes. (B) Heat map of
the expression profiles of different genes between ESCC subtypes. (C) Comparison of the expression levels of HLA genes between ESCC subtypes. (D–G) Comparison
of PDCD1, CD274, CTLA4, and CD80 expression levels between TNBC subtypes. (H–K) The relationship between ESCC subtypes and clinical characteristics including
age as well as the TNM stage. *P <.05, **P <.01, ***P <.001.
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revealed that the IC50s of these drugs were significantly higher in
the high-risk than in the low-risk ESCC subtypes. This suggests
that high-risk ESCC patients cannot benefit from treatment using
these drugs due to drug resistance. Moreover, GSEA analysis of the
biological functions in the immune-related model, revealed that
the genes highly expressed in the high-risk group are significantly
enriched in various signaling pathways, includingWNT and TGF-
b signaling pathways (Figures 7H, I). The impaired TGF-b
signaling pathway is associated with inflammatory disorders,
tumorigenesis, and immunosuppression in the tumor
microenvironment (32). Further studies on the relationship
Frontiers in Oncology | www.frontiersin.org 7
between the signature and immune cell infiltration should
be conducted.

Immune Infiltration Cells Are Positively
Associated With the Prognostic Signature
We studied the immune microenvironment status by evaluating
the features of immune infiltration that favor tumor-immune
interaction. This analysis revealed that tumor-infiltrating immune
cells, including T helper cells, naive B cells, and M2 macrophages,
were positively associated with our signature (Figures 8A–C). There
has been increasing interest in immune checkpoints due to their
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FIGURE 4 | WGCNA analysis indicating ESCC subtypes-specific pathways, gene ontology. (A) Volcano plot indicating differentially expressed genes between ESCC and
normal tissues. (B) Investigating scale-free topology model fit measure of different soft-thresholding powers (b) as well as the mean connectivity of various soft-thresholding
powers. (C) Clustering gene dendrogram based on Dynamic Tree Cut algorithm. (D) Analyzing the connectivity of critical genes in different module. (E) Hierarchical clustering
as well as the heat map of the hub gene network. (F) Heat map showing the relationship between ESCC subtypes and module eigengenes. (G, H) Scatter plot showing
module eigengenes in green and tan modules. (I, J) KEGG pathway and GO enrichment of genes in green and tan modules.
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essential roles in immune modulation, and immune checkpoint
inhibitors have potential application in cancer treatment. Therefore,
we assessed the association between the signature and the expression
of immune checkpoint modulators, including B3H7, CTLA4, CD83,
OX40L, and GEM. Consequently, the risk score was positively
associated with the expression of these genes (Figure 8D).
Additionally, we compared the expression of B3H7, CTLA4, CD83,
OX40L, and GEM in low-risk and high-risk ESCCs. Expressions of
these genes were remarkably higher in the high-risk ESCC group
relative to the low-risk HCC group. This suggests that the
dismal prognosis exhibited by high-risk ESCC patients is at least
partially caused by the immunosuppressive microenvironment
(Figures 8E–I). Finally, we used TIMER database to study the link
between abundant tumor immune infiltrates (CD4+ T-cells, CD8+
T-cells, B-cell, neutrophils, macrophages, and dendritic cells) and the
expression of CCR5 and TSPAN2. Our results showed that the
expression level of CCR5 was linked to the presence of B cells
(part.cor=0.512), CD4+T cells (part.cor=0.471), macrophages
(part.cor=0.47) and neutrophils (part.cor=0.432) (Figure 8J). The
expression level of TSPAN2 was associated with infiltration by B cells
(part.cor=0.148), CD4+T cells (part.cor=0.19) and macrophages
(part.cor=0.523) (Figure 8K). These results independently validated
the connection between our signature and infiltrating immune cells.

DISCUSSION

Esophageal squamous cell carcinoma (ESCC) constitutes the most
common esophageal cancer (EC) subtype among African and Asian
populations. ESCC is associated with >400,000 deaths annually (33–
36). Presently, pathological analysis of various cancer types does not
take into account tumor heterogeneity at the molecular and genetic
Frontiers in Oncology | www.frontiersin.org 8
levels (37, 38). Owing to this heterogeneity, patients at the same
cancer stage could have completely different clinical outcomes after
receiving a similar therapy. The recent advances in data analysis and
high-throughput sequencing enable further research into the
molecular heterogeneity of ESCC to develop personalized
ESCC treatment.

A few previous studies have stratified subtypes of ESCC based on
genomic profiling (7–9, 39). However, the stratification of ESCC by
immune signatures is poorly studied. Herein, we classified ESCC
patients into two distinct subtypes based on immunogenomic
profiling comprising of the Immunity High and Immunity low
profiles. Furthermore, our analysis showed that this classification is
reproducible and predictable. Immune scores were considerably
higher in the Immunity High profile suggesting higher immune
activity in Immunity High ESCC patients. Our findings revealed
that significantly higher levels of most human leukocyte antigen
(HLA) genes are expressed in the Immunity High ESCC subtype,
indicatingmore potent immunogenicity compared to the Immunity
Low subtype. Immunotherapy has been extensively studied (40),
and immune checkpoint inhibitors show potential applications in
several refractory cancers in therapeutic development (41–43).
However, less than 20% of cancer patients have benefited from
immunotherapy (18). Therefore, ESCC classification using an
immune signature could help in the identification of patients who
could well respond to immunotherapy. Due to the stronger
immunogenicity, Immunity High ESCC patients are more likely
to respond to immunotherapy. Such patients are more likely to
benefit from immune checkpoint inhibitors, since PD-L1, PD-1,
CTLA4, and CD80 are highly expressed in Immunity High ESCC
patients. WGCNA analysis of the underlying regulatory mechanism
of modules related to the Immunity High group revealed that the
A B

D E FC

FIGURE 5 | Establishment of a two-gene immune prognosis signature. (A, B) Kaplan-Meier survival curves designating OS among the risk stratification clusters in
the training and validation cohort. (C, E) Distribution of risk scores of ESCC patients with different gene expression levels in the training as well as the validation
cohort. (D, F) Time-dependent ROC analysis with calculated AUCs for OS prediction in the training as well as the validation cohort.
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genes in the associated modules are significantly enriched in
immune responses and several cancer-associated pathways,
including cell adhesion molecules (CAMs), vascular smooth
muscle contraction, the calcium signaling pathway, and the
cGMP−PKG signaling pathway. The relationship between these
pathways and immunity in ESCC requires further investigations.

We exploited high-throughput data analysis methods and
databases to elucidate novel ESCC prognostic biomarkers and
constructed an immune-related prognostic signature based on
CCR5 and TSPAN2. CCR5 (C-C chemokine receptor type 5) is
expressed in T cells, other leukocytes, macrophages, and certain
types of cancer cells (44). This gene plays an important role in
recruiting leukocytes into target sites (44, 45). The interaction
between CCR5 and its ligand (CCL5) drives cell proliferation,
immunosuppression, angiogenesis, and migration, thereby
promoting tumorigenesis (44, 46–48). TSPAN2 is a member of a
transmembrane-spanning protein family, which removes
Frontiers in Oncology | www.frontiersin.org 9
intracellular reactive oxygen species through CD44-mediated
pathways; thus, enhancing cell motility and invasiveness (49).
Elevated TSPAN2 levels are associated with dismal prognosis in
lung cancer (49, 50). Our results revealed that this two-gene
signature has independent prognostic value in ESCC patients. We
developed a robust nomogrammodel that offers excellent prognosis
capacity by integrating the corresponding value of molecular and
clinical features. However, resistance to chemotherapy, which limits
long-term cancer patient outcomes, remains an important challenge
in oncology. Recent advancements in targeted anti-cancer therapies
is a breakthrough. However, even after an initial response, various
cancer types develop resistance to targeted therapy (51).
The mechanisms of drug resistance are complex, with no existing
approaches to accurately predicting their effectiveness. Herein, we
predicted the immune signature using 266 chemotherapeutic and
targeted drugs on the GDSC database. Our results showed that the
immune signature is associated with resistance to chemotherapy
A B
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FIGURE 6 | Construction of the nomogram model. (A) Forrest plot showing the univariate as well as multivariate analyses indicating association of the prognostic model
and clinicopathological features with overall survival. (B) The nomogram was constructed as per two independent prognostic factors for predicting OS in ESCC patients
at 1, 3, and 5 years. (C–E) Nomogram calibration plots for predicting the probability of OS at 1, 3, and 5 years. (F–H) Nomogram time-dependent ROC curves for 1-,3-,
and 5-year OS. (I–K) Nomogram DCA curves for 1-,3-, and 5-year OS to evaluate the clinical decision-making benefits of the nomogram.
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and targeted drugs, including paclitaxel, gefitinib, and erlotinib,
providing a method of personalizing treatment and limiting
resistance. The GSEA analysis results revealed that our immune
signature promotes drug resistance by regulating the TGF-b
signaling pathway.

The tumor microenvironment (TME) is thought to enable
cancer cell immune evasion, inhibit apoptosis, and promote
proliferation, angiogenesis, invasion, and metastasis (52). Studying
immune infiltration is essential to elucidate the relationship between
tumors and immunity. Herein, we evaluated the association
between the immune signature and immune cell infiltration to
elucidate the immune microenvironment status in ESCCs. The
immune signature was found to be positively associated with tumor
infiltration through immune cells, including T helper cells, naive B
cells, and M2 macrophages, which was validated by analysis of the
TIMER database. This implies that the heterogeneity of immune
infiltration is essential for ESCC development. Thus, this signature
predicts high immune cell infiltration, which has important clinical
implications. Analysis of the relationship between risk score and the
expression of crucial immune checkpoint genes revealed that high-
Frontiers in Oncology | www.frontiersin.org 10
risk patients had higher CTLA4, CD83, B3H7, OX40L, and GEM
levels in the tumor microenvironment. This implies poorer
outcomes for these patients are at least partially caused by an
immunosuppressive microenvironment, and these patients respond
better to immune checkpoint inhibitors.

A limitation of this study is that crucial modulators of ESCC
prognosis could have been missed when adjusting for the weight of
the regression coefficient in LASSO. Secondly, our signature has
only been validated internally. The retrospective nature of this study
calls for further validation using a prospective investigation.
CONCLUSION

Herein, we categorized ESCC patients into two classes with latent
clinical implications for ESCC treatment based on immune
signatures and constructed a two-gene immune prognostic model.
The proposed immune prognostic model has the potential to
predict ESCC outcomes and guide personalized therapy.
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FIGURE 7 | Heterogeneous drug resistance and gene set enrichment analysis in the low-risk and high-risk score groups. (A–G) Comparison of the computed IC50
between the high-risk and low-risk groups of paclitaxel, Gefitinib, Bosutinib, Erlotinib, Lapatinib, Bicalutamide, and Vinorelbine. (H, I) Gene set enrichment analysis
between the high-risk and low-risk groups.
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FIGURE 8 | Association of the risk score with immune cell infiltrating levels and immune checkpoints. (A–C) Correlation analysis between infiltrating level of follicle-
helper T cells, naive B cells and M2 macrophages and risk score. (D) The relationship between the risk score and the expression of several critical immune
checkpoints. (E–I) Violin plots visualizing markedly different immune checkpoint expression levels between the high-risk and low-risk patients. (J, K) Partial correlation
analysis between genes expression (CCR5, TSPAN2) and the level of tumor immune infiltrates (CD4+ T-cells, CD8+ T-cells, B-cell, macrophages, dendritic cells, and
neutrophils) in TIMER database.
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