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Objective: A limited number of studies have focused on the radiomic analysis

of contrast-enhanced mammography (CEM). We aimed to construct several

radiomics-based models of CEM for classifying benign and malignant breast lesions.

Materials and Methods: The retrospective, double-center study included women

who underwent CEM between November 2013 and February 2020. Radiomic analysis

was performed using high-energy (HE), low-energy (LE), and dual-energy subtraction

(DES) images from CEM. Datasets were randomly divided into the training and testing

sets at a ratio of 7:3. The maximum relevance minimum redundancy (mRMR) method

and least absolute shrinkage and selection operator (LASSO) logistic regression were

used to select the radiomic features and construct the best classification models. The

performances of the models were assessed by the area under the receiver operating

characteristic curve (AUC) with a 95% confidence interval (CI). Leave-group-out

cross-validation (LGOCV) for 100 rounds was performed to obtain themean AUCs, which

were compared by the Wilcoxon rank-sum test and the Kruskal–Wallis rank-sum test.

Results: A total of 192 women with 226 breast lesions (101 benign; 125 malignant)

were enrolled. The median age was 48 years (range, 22–70 years). For the classification

of breast lesions, the AUCs of the best models were 0.931 (95% CI: 0.873–0.989)

for HE, 0.897 (95% CI: 0.807–0.981) for LE, 0.882 (95% CI: 0.825–0.987) for DES

images and 0.960 (95% CI: 0.910–0.998) for all of the CEM images in the testing

set. According to LGOCV, the models constructed with the HE images and all of

the CEM images showed the highest mean AUCs for the training (0.931 and 0.938,

respectively; P < 0.05 for both) and testing sets (0.892 and 0.889, respectively;

P = 0.55 for both), which were significantly higher than those of the two models

constructed with the LE and DES images in the training (0.912 and 0.899, respectively;

all P < 0.05) and testing sets (0.866 and 0.862, respectively; all P < 0.05).
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Conclusions: Radiomic analysis of CEM images was valuable for classifying benign

and malignant breast lesions. The use of HE images or all three types of CEM images

can achieve the best performance.

Keywords: contrast-enhanced mammography, radiomics, breast lesions, classification, high-energy, low-energy,

dual-energy subtraction

INTRODUCTION

Among women, breast cancer is the most commonly diagnosed
cancer worldwide and the leading cause of cancer death in 103
countries (1). In the face of such a disease burden, precise, and
rapid diagnosis is crucial in clinical practice.

Mammography is commonly utilized for screening and
diagnostic use with detection of breast lesions. However, its
sensitivity can be as low as 30–50% in women with dense breasts
(2–4). Breast magnetic resonance imaging (MRI) is a state-of-
the-art technique with the highest sensitivity to detect breast
cancer (5, 6). However, the false-positive findings (7–10), lengthy
examination time, high cost, and lack of accessibility for all
patients (11, 12) are limitations of MRI.

Under such circumstances, contrast-enhanced
mammography (CEM) has emerged (13). This methodology can
demonstrate the morphological and angiogenic characteristics
of breast lesions after the injection of iodine-based contrast
material (14). CEM allows for obtaining three types of images for
each craniocaudal (CC) and mediolateral oblique (MLO) view,
including high-energy (HE), low-energy (LE), and dual-energy
subtraction (DES) images (Figure 1). LE and DES images are
used for clinical diagnosis, among which the former is considered
to be equivalent to routine mammography (15, 16), and the latter
can highlight areas of contrast enhancement (17).

In recent years, radiomics has been developing rapidly. It
utilizes high-throughput computing to extract large numbers
of image features and converts images into quantifiable data
(18–20). Since CEM images can reflect both morphological and
functional features of the lesions, such as MRI, and can have high
spatial resolution comparable with that of mammography, we
suspect that CEM would also have an encouraging application
in the field of radiomics. Several studies have performed some
preliminary work in this aspect (21–25), but the number of such
studies is rather limited. Furthermore, it is worth noting that no
studies thus far have used HE images in radiomic analysis since
this type of image is not used for clinical diagnosis. Instead, they
used LE images, DES images, or a combination of the two in their
research. Although HE images are not used for clinical diagnosis
(17), the subtle features of HE images may bemined with the help
of radiomics. Therefore, we suppose that radiomic analysis of HE,

Abbreviations: AUC, area under the receiver operating characteristic curve.

BI-RADS, breast imaging reporting and data system; CC, craniocaudal; CEM,

contrast-enhanced mammography; CI, confidence interval; DES, dual-energy

subtraction; DICOM, digital imaging and communications in medicine; HE, high-

energy; LASSO, least absolute shrinkage and selection operator; LE, low-energy;

LGOCV, leave-group-out cross-validation; MLO, mediolateral oblique; MRI,

magnetic resonance imaging; mRMR,maximum relevance minimum redundancy;

ROC, receiver operating characteristic; ROI, region of interest.

FIGURE 1 | Three types of contrast-enhanced mammography (CEM) images

of the craniocaudal view. The figure demonstrates a round-shaped lesion

(white arrow) in the outer quadrant of the left breast of a 63-year-old woman.

Biopsy revealed invasive ductal carcinoma (Grade II, Luminal A subtype). The

lesion was correctly classified as malignant by the proposed radiomics model

constructed by the combination of high-energy (HE), low-energy (LE), and

dual-energy subtraction (DES) images. (A) The HE image of CEM. This type of

image is not used for clinical diagnosis. (B) The LE image of CEM. This type of

image is considered to be equivalent to conventional mammography. (C) The

DES image of CEM. This type of image can highlight areas of contrast

enhancement. The lesion shows marked enhancement in this image, whereas

the patient shows minimal degree of background parenchymal enhancement.

LE, and DES images may contribute to the diagnosis of breast
lesions. The purpose of this study is to construct radiomics-based
models and to identify the model that can better classify breast
lesions, whichmay be helpful for radiologists in decision-making.

MATERIALS AND METHODS

Study Participants
This is a retrospective, double-center study. The Institutional
Review Board and Ethics Committee of each center approved
this study. The patient written informed consent was waived.
We collected consecutive CEM images from the two institutions
between November 2013 and February 2020. No study cohorts
have been previously reported.

The inclusion criteria were as follows: (1) patients with
suspected breast lesions after physical examination or ultrasound
and referred for CEM as part of diagnostic imaging, (2) patients
who completed CEM examinations, and (3) patients with a final
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FIGURE 2 | Flowchart of patient inclusion and exclusion criteria. n (C1): number of patients in Research Center 1. n (C2): number of patients in Research Center 2.

DES, dual-energy subtraction; HE, high-energy; CEM, contrast-enhanced mammography.

diagnosis that was confirmed by histopathology results within
2 weeks after CEM examination. We first excluded patients: (1)
lacking medical history, (2) with missing or incomplete image
data, and (3) with a history of breast surgery, breast radiotherapy,
chemotherapy, or hormone treatment within 1 year prior to CEM
examination. After preliminary evaluation of all the images, we
further excluded patients (1) with images with poor image quality
and (2) with no lesions detected on either HE, LE, or DES images.
The flowchart of the patient inclusion and exclusion criteria is
shown in Figure 2.

CEM Image Interpretation by Human
Readers
Two radiologists (NM and RL) with 8–10 years of experience
in breast imaging and 5 years of experience interpreting CEM
images reviewed the medical histories and the CEM images
of all the potential participants and selected the eligible ones
based on the inclusion and exclusion criteria. Several lesion

characteristics were obtained by the radiologists according to
the Breast Imaging Reporting and Data System (BI-RADS)
lexicons for mammography and MRI (26). Breast density (a,
b, c, or d) and lesion type (mass, calcification, architectural
distortion, or asymmetry) characteristics were obtained from LE
images. Degree of enhancement (no, mild, moderate, or marked
enhancement), type of enhancement (focal, mass, or non-mass),
and degree of background parenchymal enhancement (minimal,
mild, moderate, or marked) characteristics were obtained from
DES images.

Reference Standard
The histopathological results obtained by biopsy or surgical
specimens within 2 weeks after CEM examination are regarded
as the reference standard for the classification of breast lesions
in this study. None of the patients had undergone any form of
treatment for the suspected lesions before the specimens were
obtained. Lesions containing any invasive component or ductal
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carcinoma in situ are consideredmalignant; otherwise, the lesions
are considered benign.

CEM Examination
The examination protocols adopted by the two institutions
were the same. All CEM examinations were performed using
Senographe Essential mammography units (GE Healthcare, Buc,
France). Before the examination, each patient rested for a while,
and an intravenous catheter needle was placed in the antecubital
fossa vein. A dose of 1.5 ml/kg body weight iodinated contrast
material (iohexol, 300–350mg I/ml; Beilu Pharmaceutical Co.,
Ltd., Beijing, China) was injected intravenously using an
automated power injector at a flow rate of 3.0 ml/s, followed
by a 10-ml bolus of saline. Two min after the injection of the
contrast material, dual-energy exposures were performed using
a fully automated exposure control method depending on the
breast density and thickness. Bilateral CC views were obtained
first, beginning with the suspicious breast. Then, bilateral MLO
views were acquired in the same order. In a single projection,
LE (peak tube voltage: 26–31 kVp) and HE (peak tube voltage:
45–49 kVp) exposures were performed continuously within 1.5 s
to reduce motion artifacts. A proprietary algorithm was used
to automatically reconstruct the HE and LE images to generate
the DES images with the digital mammography unit. The total
examination time of each patient since the injection of contrast
material did not exceed 10min. No contrast material-related
adverse reactions were found in this study.

Lesion Segmentation
For radiomic analysis, all of the CEM images were stored in
the format of Digital Imaging and Communications in Medicine
(DICOM) and loaded into an open-source image processing
platform ITK-SNAP (version 3.6; www.itksnap.org) (27). Two
radiologists (SW and QL) with 3–5 years of experience in breast
imaging and 1 year of experience interpreting CEM images
manually delineated the regions of interest (ROIs) together along
the boundary of the lesions. Both of them were blinded to the
patients’ medical histories and histopathological results. Amonth
later, they randomly selected 30 patients and resegmented the
lesions to assess consistency for manual segmentation.

The criteria of lesion segmentation were as follows: (1) all
HE images were transformed into negative films by the ITK-
SNAP software for ROI delineation (Figures 3A–C); (2) for
all patients, contours were separately delineated on HE, LE,
and DES images of CC and MLO views if the lesions were
visible on each image; if not, contours were delineated on
either HE, LE, or DES images depending on which provided
the preferable visualization of the lesion. Then, these contours
were mapped onto other images, ensuring six ROIs for each
lesion; (3) for lesions such as microcalcification, asymmetry,
or architectural distortion without corresponding mass in LE
images, closed loops were delineated along the edge of the
lesions (Figures 3D,E); (4) multiple non-adjacent lesions were
delineated separately and regarded as different lesions. The
radiologists delineated all the suspicious lesions they had
identified; (5) after lesion segmentation, another radiologist (TJ)
who was not blinded to the histopathological results with 8

years of experience in breast imaging and 5 years of experience
interpreting CEM images reviewed all the ROIs and deleted the
ones without corresponding histopathological results. Therefore,
only the pathologically proven lesions were retained in the
following analysis.

Feature Extraction
Before radiomic feature extraction, image preprocessing,
including image resampling and gray level discretization,
was performed. All voxel sizes of all images were resampled
with the same size of 0.2 × 0.2mm. Gray-level discretization
was performed to discretize all the images to 256 gray levels.
Then, the ROIs and the matched raw data were integrated into
the Analysis Kit software (version 3.2.0; GE Healthcare) to
extract the radiomic features. For each ROI, a feature dataset
consisting of 392 radiomic features (including 42 histogram
features, 5 shape features, and 345 textural features) was obtained
(Supplementary Table 1). For each lesion, a total of six ROIs
were delineated (HE-CC, HE-MLO, LE-CC, LE-MLO, DES-CC,
and DES-MLO), thus producing six original feature datasets. All
of the classification models used the radiomic features of both
CC and MLO views in the following analysis.

Feature Selection and Radiomics Model
Construction
The radiomics classification model was used to differentiate
malignant from benign lesions. The workflow of the study is
shown in Figure 4, and the general structure of the radiomics
model is shown in Figure 5.

Before constructing the models, each dataset was randomly
divided into training and testing sets (training vs. testing set; 7:3)
using the stratified random sampling method. The training set
was further divided into the training and validation subsets to
perform 10-fold cross-validation. For radiomic feature selection,
we performed a three-step procedure. First, for the assessment
of consistency for manual segmentation, the interobserver
agreement test was conducted to choose the features that were not
sensitive to the variation of manual segmentation. The features
with interclass correlation coefficients <0.75 were kept in the
datasets and used for constructing the classification models.
Second, themaximum relevanceminimum redundancy (mRMR)
method (28) was performed to select the most relevant and least
redundant radiomic features. Twenty features were retained for
subsequent analyses. Third, least absolute shrinkage and selection
operator (LASSO) logistic regression was used to find the most
predictive subsets of features and to construct the corresponding
classification models. As a sparse penalized aggression approach,
LASSO regression (29, 30) has many desirable properties for
regression models with a large number of covariates (31, 32)
and can reduce variability and improve model accuracy. The
penalty parameters of the models were tuned through 10-fold
cross-validation, thus yielding the best classification model. The
testing set was independently used to evaluate the performance
of the established model without being involved in model
construction or parameter tuning. The performances of the
models were evaluated in terms of area under the receiver
operating characteristic (ROC) curve (AUC) value with a 95%
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FIGURE 3 | Examples of lesion segmentation. (A–C) The figures demonstrate an irregular-shaped lesion (black arrow) in the retro-areolar region of the right breast of a

60-year-old woman. Biopsy revealed invasive ductal carcinoma (Grade II, Luminal A subtype). The region of interest (ROI) was delineated on the negative film of the

high-energy (HE) image. (A) The original HE image, (B) negative film of HE image, and (C) delineated lesion ROI (shown in red). (D,E) The figures demonstrate a lesion

(white arrow) presented as microcalcifications without corresponding mass in the central area of the right breast of a 47-year-old woman. Biopsy revealed invasive

ductal carcinoma with ductal carcinoma in situ (Grade III, human epidermal growth factor receptor-2-positive subtype). A closed loop was delineated along the edge

of the microcalcifications as lesion ROI. (D) The low-energy image and (E) delineated lesion ROI (shown in red).

FIGURE 4 | The workflow of radiomic analysis in the study. mRMR, maximum relevance minimum redundancy; LASSO, least absolute shrinkage and selection

operator; ROC, receiver operating characteristic; LGOCV, leave-group-out cross-validation.

confidence interval (CI). The accuracy, sensitivity, and specificity
of the models were also calculated by selecting an optimal
threshold based on Youden’s Index.

Considering the variation and sampling bias due to the
random split of the datasets, we employed a nested cross-
validation method by further conducting 100 rounds of leave-
group-out cross-validation (LGOCV) to obtain 100 AUCs and
sensitivity and specificity values, which are shown as means
± standard deviations. To compare the mean AUC values of
different models, non-parametric tests were adopted, including
theWilcoxon rank-sum test for comparisons between two groups
and the Kruskal–Wallis rank-sum test for analysis of variance.

Statistical Analysis
All statistical analyses were performed using the statistical
software R (version 3.6.1; www.r-project.org). The LASSO
logistic regression and ROC curve analyses were conducted
using the glmnet and the pROC software packages.
Student’s t-test was used to compare between the benign
and malignant groups for the continuous variables, and
Chi-square test or Fisher’s Exact test was used for the
categorical variables, as appropriate. The false discovery rate
correction was also performed for multiple comparison.
A two-sided P-value of less than 0.05 was considered
statistically significant.
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FIGURE 5 | General structure of the radiomics-based classification model. After 100 rounds of leave-group-out cross-validation (LGOCV), the mean values of the area

under the receiver operating characteristic curve, sensitivity, and specificity of the models were generated. mRMR, maximum relevance minimum redundancy; CV,

cross-validation.

RESULTS

Study Population and Lesion
Characteristics
The patient and lesion characteristics are given in Table 1. A
total of 192 patients with 226 pathologically proven lesions were
included in our study. The median age of the patients was 48
years (range, 22–70 years). Of the 192 patients, 145 (75.5%)
had dense breasts (c or d), and 65 (33.9%) had moderate to
marked background parenchymal enhancement. Bilateral lesions
were found in 20 patients, and multiple lesions were found in
10 patients.

Of the 226 lesions, 101 (44.7%) were benign, including
41 (40.6%) fibroadenomas, 37 (36.6%) adenoses, 14 (13.9%)
intraductal papillomas, 5 (5.0%) inflammations, and 4 (4.0%)
other benign lesions; 125 (55.3%) were malignant, consisting
of 107 (85.6%) invasive ductal carcinomas, 8 (6.4%) ductal
carcinomas in situ, 4 (3.2%) invasive lobular carcinomas, 2 (1.6%)
papillary carcinomas, 2 (1.6%) mucinous carcinomas, and 2
(1.6%) other malignant lesions.

Performances of the Best Classification
Models
The performances of the best classification models of different
types of CEM images are shown in Table 2 and Figure 6. The
selected radiomic features and their corresponding coefficients
are provided in Supplementary Figure 1.

In both the training and testing sets, the performances of
the models generated by any type of CEM images (Table 2:
Models 1–3) were fairly good, with all AUCs <0.882 and all
accuracy values <83.8%. Importantly, the model constructed by
the combination of HE, LE, and DES images (Table 2: Model 4)
yielded the best overall performance [AUC for the testing set:

0.960 (95% CI: 0.910–0.998); accuracy for the testing set: 89.7%].
In addition, Model 1 constructed by the HE images presented
good overall diagnostic performance [AUC for the testing set:
0.931 (95% CI: 0.873–0.989); accuracy for the testing set: 88.2%]
among the three types of CEM images, followed by the other two
models with similar AUCs [AUC for Model 2 in the testing set:
0.897 (95% CI: 0.825–0.987); AUC for Model 3 in the testing set:
0.882 (95% CI: 0.807–0.980)].

In terms of sensitivity, in both the training and the testing sets,
Model 1 and Model 4 still ranked first (sensitivity = 91.9% for
both in the testing set), followed by Model 3 (sensitivity= 83.8%
in the testing set). Model 2 constructed by LE images showed the
lowest sensitivity in both the training and testing sets (sensitivity
= 81.1% in the testing set). In terms of specificity in the testing
set, Model 2 ranked first (specificity= 90.0%), followed byModel
4 (specificity = 86.7%), and both Model 1 and Model 3 had
specificity values of 83.3%. All of the models showed similar
trends in the training and testing sets in terms of AUC, accuracy,
sensitivity, and specificity.

LGOCV Analysis
After 100 rounds of LGOCV, the obtained mean values of the
AUC, sensitivity, and specificity are displayed in Table 3.

Consistent with the performances of the abovementioned
best models, the mean AUCs generated by any type of CEM
images (Table 3: Models 1–3) were still good, with all mean
AUCs <0.862 in both the training and testing sets. In both the
training and testing sets, the differences of mean AUCs of all
the models (Table 3: Models 1–4) were statistically significant
(Figure 7, both P < 0.01). In the testing set, Model 1 constructed
by HE images and Model 4 constructed by the combination
of HE, LE, and DES images still achieved the highest levels of
AUCs after 100 rounds of LGOCV (mean AUC = 0.892 ± 0.040
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TABLE 1 | Basic patient and lesion characteristics.

Characteristics Training set (n = 159) P-value Testing set (n = 67) P-value Total (n = 226) P-value

Benign

(n = 71)

Malignant

(n = 88)

Benign

(n = 30)

Malignant

(n = 37)

Benign

(n = 101)

Malignant

(n = 125)

Age (year)* 44.4 ± 9.7 51.2 ± 8.5 <0.001 40.2 ± 8.8 50.1 ± 10.5 <0.001 43.1 ± 9.6 50.9 ± 9.1 <0.001

Lesion size (mm)* 20.4 ± 14.6 29.8 ± 17.4 <0.001 17.7 ± 12.4 27.5 ± 12.3 0.001 19.6 ± 14.0 29.1 ± 16.1 <0.001

Breast density** 0.330 0.074 0.167

a 3/71 (4.2) 1/88 (1.1) 0/30 (0.0) 3/37 (8.1) 3/101 (3.0) 4/125 (3.2)

b 14/71 (19.7) 25/88 (28.4) 2/30 (6.7) 8/37 (21.6) 16/101

(15.8)

33/125

(26.4)

c 33/71 (46.5) 42/88 (47.7) 17/30 (56.7) 19/37 (51.4) 50/101

(49.5)

61/125

(48.8)

d 21/71 (29.6) 20/88 (22.7) 11/30 (36.7) 7/37 (18.9) 32/101

(31.7)

27/125

(21.6)

Mass** 0.212 0.227 0.066

Present 39/71 (54.9) 58/88 (65.9) 15/30 (50.0) 25/37 (67.6) 54/101

(53.5)

83/125

(66.4)

Absent 32/71 (45.1) 30/88 (34.1) 15/30 (50.0) 12/37 (32.4) 47/101

(46.5)

42/125

(33.6)

Microcalcification** 0.011 0.013 <0.001

Present 14/71 (19.7) 35/88 (39.8) 5/30 (16.7) 18/37 (48.6) 19/101

(18.8)

53/125

(42.4)

Absent 57/71 (80.3) 53/88 (60.2) 25/30 (83.3) 19/37 (51.4) 82/101

(81.2)

72/125

(57.6)

Architectural distortion** 0.005 0.068 <0.001

Present 1/71 (1.4) 14/88 (15.9) 1/30 (3.3) 8/37 (21.6) 2/101 (2.0) 22/125

(17.6)

Absent 70/71 (98.6) 74/88 (84.1) 29/30 (96.7) 29/37 (78.4) 99/101

(98.0)

103/125

(82.4)

Asymmetry ** 1.000 0.067 0.409

Present 10/71 (14.1) 13/88 (14.8) 6/30 (20.0) 1/37 (2.7) 16/101

(15.8)

14/125

(11.2)

Absent 61/71 (85.9) 75/88 (85.2) 24/30 (80.0) 36/37 (97.3) 85/101

(84.2)

111/125

(88.8)

Degree of enhancement*** <0.001 0.002 <0.001

No enhancement 13/71 (18.3) 1/88 (1.1) 4/30 (13.3) 0/37 (0.0) 17/101

(16.8)

1/125 (0.8)

Mild enhancement 34/71 (47.9) 20/88 (22.7) 16/30 (53.3) 9/37 (24.3) 50/101

(49.5)

29/125

(23.3)

Moderate enhancement 8/71 (11.3) 24/88 (27.3) 2/30 (6.7) 11/37 (29.7) 10/101 (9.9) 35/125

(28.0)

Marked enhancement 16/71 (22.5) 43/88 (48.9) 8/30 (26.7) 17/37 (45.9) 24/101

(23.8)

60/125

(48.0)

Type of enhancement*** 0.629 1.000 0.797

Focal enhancement 0/58 (0.0) 0/87 (0.0) 0/26 (0.0) 0/37 (0.0) 0/84 (0.0) 0/124 (0.0)

Mass enhancement 39/58 (67.2) 63/87 (72.4) 17/26 (65.4) 23/37 (62.2) 56/84 (66.7) 86/124

(69.4)

Non-mass enhancement 19/58 (32.8) 24/87 (27.6) 9/26 (34.6) 14/37 (37.8) 28/84 (33.3) 38/124

(30.6)

Degree of BPE*** 0.024 0.014 <0.001

Minimal 24/71 (33.8) 32/88 (36.4) 5/30 (16.7) 14/37 (37.8) 29/101

(28.7)

46/125

(36.8)

Mild 17/71 (23.9) 34/88 (38.6) 6/30 (20.0) 14/37 (37.8) 23/101

(22.8)

48/125

(38.4)

(Continued)
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TABLE 1 | Continued

Characteristics Training set (n = 159) P-value Testing set (n = 67) P-value Total (n = 226) P-value

Benign

(n = 71)

Malignant

(n = 88)

Benign

(n = 30)

Malignant

(n = 37)

Benign

(n = 101)

Malignant

(n = 125)

Moderate 13/71 (18.3) 15/88 (17.0) 11/30 (36.7) 6/37 (16.2) 24/101

(23.8)

21/125

(16.8)

Marked 17/71 (23.9) 7/88 (8.0) 8/30 (26.7) 3/37 (8.1) 25/101

(24.8)

10/125 (8.0)

*Data are shown as means ± standard deviations. Other data are shown as proportions with percentages in parentheses.

Student’s t-test was used to compare between the benign and malignant groups for age and lesion size. Chi-square test or Fisher’s Exact test was used to test the differences for

categorical variables, as appropriate. A P-value less than 0.05 is considered statistically significant.

**Lesion characteristics are obtained from low-energy (LE) images of contrast-enhanced mammography.

***Lesion characteristics are obtained from dual-energy subtraction (DES) images of contrast-enhanced mammography.

BPE, background parenchymal enhancement.

TABLE 2 | The performances of the best classification models.

Models Training set Testing set

AUC (95% CI) Accuracy* Sensitivity* Specificity* AUC (95% CI) Accuracy* Sensitivity* Specificity*

Model 1: HE 0.938

(0.901–0.974)

88.1

(140/159)

95.5 (84/88) 78.9 (56/71) 0.931

(0.873–0.989)

89.6 (60/67) 91.9 (34/37) 83.3 (25/30)

Model 2: LE 0.909

(0.865–0.953)

85.5

(136/159)

81.8 (72/88) 90.1 (64/71) 0.897

(0.825–0.987)

85.1 (57/67) 81.1 (30/37) 90.0 (27/30)

Model 3: DES 0.905

(0.857–0.954)

84.9

(135/159)

84.1 (74/88) 85.9 (61/71) 0.882

(0.807–0.980)

83.6 (56/67) 83.8 (31/37) 83.3 (25/30)

Model 4: HE + LE

+ DES

0.967

(0.942–0.991)

91.8

(146/159)

90.9 (80/88) 93.0 (66/71) 0.960

(0.910–0.998)

89.6 (60/67) 91.9 (34/37) 86.7 (26/30)

All of the models are constructed by the radiomic features of both craniocaudal (CC) and mediolateral oblique (MLO) views.

*Data are shown as percentages with proportions in parentheses.

HE, high-energy; LE, low-energy; DES, dual-energy subtraction; AUC, area under the receiver operating characteristic curve; CI, confidence interval.

for Model 1; mean AUC = 0.889 ± 0.038 for Model 4; P =

0.55), followed by the other two models (mean AUC = 0.866
± 0.045 for Model 2; mean AUC = 0.862 ± 0.039 for Model
3; P = 0.31). The mean AUCs of Model 1 and Model 4 were
significantly higher than those of Model 2 and Model 3 (all P
< 0.01) in the testing set, which was consistent with the results
of the best classification models without conducting LGOCV
analysis (Table 2).

In the testing set, Model 1 and Model 4 still reached high
levels of mean sensitivity (mean sensitivity= 88.7% for Model 1;
mean sensitivity= 88.3%), followed byModel 3 (mean sensitivity
= 83.2%) and Model 2 (mean sensitivity = 80.1%). In terms of
specificity, all of the models have reached good mean specificity
levels ranging from 85.9 to 88.7% in the training set and from
81.8 to 85.0% in the testing set. It is worth noting that the mean
specificity value of Model 2 constructed by LE images still ranked
first in both the training and testing sets (mean specificity =

88.7% for the training set; mean specificity= 85.0% for the testing
set), which was in line with the results of the best classification
models (Table 2: Model 2).

Furthermore, we combined the original six
datasets to generate six other datasets for each lesion
(Supplementary Figure 2). We also provided several
heatmaps showing the median AUCs of all the models

constructed with the 12 datasets to make the results more
intuitive (Supplementary Figure 3). The median AUCs
are essentially in parallel with the mean AUCs of the
corresponding models.

DISCUSSION

Our study has proposed a feasible radiomic analysis method for
CEM images for the differentiation of benign and malignant
breast lesions. The findings in our study have shown that
the models constructed with any type of CEM images show
good performances, among which the model constructed with
HE images performed the best. When the model employs
the radiomic features of all three types of images, it can
always achieve fairly satisfactory results with a high level of
robustness. The result suggests that all CEM images contribute
to the diagnosis of breast lesions to some extent, probably
because they can reflect diverse image characteristics containing
complementary information. Importantly, although HE images
are currently thought to be clinically uninterpretable, they may
contain useful information as original images without being
postprocessed and may be valuable in the field of radiomics.
Furthermore, we found that the radiomic analysis for DES images
alone is not as ideal as those of the others. This finding is similar
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FIGURE 6 | The receiver operating characteristic (ROC) curves of the proposed best classification models of different types of contrast-enhanced mammography

(CEM) images. (A) ROC curves in the training set. (B) ROC curves in the testing set. HE, high-energy; LE, low-energy; DES, dual-energy subtraction; “ALL” stands for

a combination of HE, LE, and DES images.

TABLE 3 | The results of leave-group-out cross-validation (LGOCV) analysis.

Models Training set Testing set

AUC Sensitivity Specificity AUC Sensitivity Specificity

Model 1: HE 0.931 ± 0.021 0.895 ± 0.034 0.881 ± 0.042 0.892 ± 0.040 0.887 ± 0.075 0.818 ± 0.108

Model 2: LE 0.912 ± 0.020 0.798 ± 0.055 0.887 ± 0.054 0.866 ± 0.045 0.801 ± 0.110 0.850 ± 0.114

Model 3: DES 0.899 ± 0.022 0.838 ± 0.044 0.857 ± 0.076 0.862 ± 0.039 0.832 ± 0.059 0.824 ± 0.084

Model 4: HE + LE + DES 0.938 ± 0.013 0.903 ± 0.049 0.853 ± 0.047 0.889 ± 0.038 0.883 ± 0.083 0.838 ± 0.100

Data are shown as means ± standard deviations.

HE, high-energy; LE, low-energy; DES, dual-energy subtraction; AUC, area under the receiver operating characteristic curve.

to another study (22) in which DES images were considered
to have lost some heterogeneity information due to the digital
subtraction process.

To the best of our knowledge, this is the first study to
fully evaluate the diagnostic performances of all types of CEM
images with use of radiomics. In addition, the numbers of
benign and malignant cases are relatively balanced, which may
reduce the potential classification bias toward the majority of
cases and the consequent overfitting problem. Some previous
studies have employed undersampling (21) or oversampling (22)
techniques under these circumstances, but we attempted to avoid
the problem from the origin.

In our study, we have defined the method of lesion
segmentation in detail by converting HE images into negative
images and mapping the optimal ROIs from one type of image
to the other type. In practice, we found that after converting HE
images into negative films and adjusting the window level and
window width, the outline of the lesion became clearer and could

be delineated effectively. Additionally, most of the patients in our
research had dense breasts, which are common in Asian women;
therefore, it was difficult to accurately segment the lesions in
LE images in some cases. Thus, the method of mapping the
optimal ROIs among different types of CEM images is advisable
and sometimes even necessary in women with extremely dense
breasts. One previous study concluded that by mapping the
optimal lesion segmentation from DES images onto LE images,
the classification performance can be significantly improved (22).
Some studies used the radiomic features of either CC or MLO
view images (21, 33), or both of them (23, 24), whereas another
study (22) used the mean value of two feature values separately
computed from CC and MLO view images to represent the final
feature value. Instead, we used the radiomic features of both
CC and MLO view images, hoping to make the best use of the
image information.

In addition to the 10-fold cross-validation, we further
conducted 100 rounds of LGOCV to validate the performances
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FIGURE 7 | Mean values of the areas under the receiver operating characteristic curves (AUCs) of different types of contrast-enhanced mammography images. All of

the models were constructed by the radiomic features of both craniocaudal and mediolateral oblique views. The Wilcoxon rank-sum test and the Kruskal–Wallis

rank-sum test were used to compare the mean AUC values of different models. The false discovery rate correction was performed for multiple comparison. (A) Mean

AUCs in the training set. (B) Mean AUCs in the testing set. HE, high-energy; LE, low-energy; DES, dual-energy subtraction; “ALL” stands for a combination of HE, LE,

and DES images. *P < 0.05. **P < 0.01.

of the models. The AUCs of different models were
relatively stable since they showed essentially the same
trend before and after the LGOCV step. Since the results
of radiomic analysis can be affected by the data to some
extent, this cross-validation method can minimize the case
partition bias.

Two meta-analyses reported the pooled specificity of CEM
in the diagnosis of breast cancer to be 58–84% (34, 35),
which denotes the discrepancies for specificity between
studies and leaves room for further improvement in the
diagnostic accuracy. The results of our study have shown
the potential to improve the specificity, with the highest
mean specificity value <84% (Table 3: Model 2). If our
results are further substantiated in future prospective studies,
the invasive biopsies of benign lesions may probably be
reduced by the help of non-invasive radiomic analysis of
CEM images. However, it seems that the HE and DES
images do not contribute greatly to the improvement of
the specificity obtained with the LE images, which still needs
further exploration.

Our study had the following limitations. First, we mixed the
data from two research centers to train and test the models
rather than using the data from Center 2 for independent
external testing; furthermore, all of the CEM examinations were
performed on the same type of equipment. These factors limit
the extrapolation of our conclusions. Second, since this is a
retrospective study, some image data, especially HE images, were
missing, which led to a smaller sample size than expected. Further
prospective research with a larger sample size is warranted. Third,

we manually delineated the contours of the lesions, which may
affect the repeatability of the research. Fourth, the sensitivities in
our study were not as high as the ones reported by human readers
(34, 35), which may need further improvement in future studies.
Finally, the dataset in our study was enriched for malignant
lesions, thus likely overestimating the models’ performances to
some extent.

In summary, we proposed a radiomics-based method to
classify benign and malignant breast lesions using CEM images
and found that all of the HE, LE, and DES images of CEM
can provide valuable information in the process, among which
HE images seem to perform better than the others. It is
recommended that all CEM images should be used in radiomic
analysis to obtain the most satisfactory and stable performance
in breast lesion classification.
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