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DNA methylation has been reported as one of the most critical epigenetic aberrations

during the tumorigenesis and development of breast cancer (BC). This study explored a

novel promoter CpG-based signature for long-term survival prediction of BC patients. We

used The Cancer Genome Atlas (TCGA) data as training set, and results were validated

in an independent dataset from Gene Expression Omnibus (GEO). First, the differential

methylation CpG sites were screened in TCGA dataset, of which the candidate promoter

CpG sites were preliminarily identified with the univariate Cox regression analysis and

the least absolute shrinkage and selection operator regression analysis. Second, the

signature was constructed with stepwise regression analysis and multivariate Cox

proportional hazards model, which was validated with the survival analysis of two cohorts

each from TCGA and GEO databases. The 10-year receiver operating characteristic

curves of risk score presented an area under the curve of over 0.7 for both cohorts. A

nomogram was also constructed and released. Moreover, Gene Set Enrichment Analysis

was performed to identify the more active pathways in high-risk patients. The CpG

sites–target gene correlations and differential methylation regions were further explored.

In conclusion, the promoter CpG-based signature exhibited good prognostic prediction

efficacy in the long-term overall survival of BC patients.
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INTRODUCTION

Breast cancer (BC) has become one of the most concerned public health issues in the worldwide,
because of the growing incidence, high mortality, and huge economic burden (1, 2). More than
1 million new BC cases were diagnosed in 2002 (3). For women, BC led to <25% of the newly
diagnosed cancer cases and caused 14.7% of cancer-associated deaths (4). Further, the treatment
costs of BC have been generally escalated with the advance of disease stage at diagnosis (5). BC
patients can greatly benefit from early diagnosis, both in therapeutic efficacy and economic burden.

With the advances of molecular diagnosis technology, the heterogeneity and complexity of BC
have been revealed (6). BC can be classified into different subgroups based on histopathologic
characteristics or gene expression profiles. The molecular characterization of BC would provide
much information for understanding the pathogenesis of BC and exploring potential markers for
early diagnosis and target therapy (7).

DNA methylation, mainly occurring at cytosine-phosphate-guanosine dinucleotide (also
designated as CpG) where cytosine was converted to 5-methylcytosine (5meC), has been
considered to make important effects in cancer development (8). The covalent addition of a
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methyl group was generally observed in cytosine within CpG
dinucleotides, which were concentrated in large clusters called
CpG islands (9). The abnormal methylation of promoter CpG
dinucleotide sites in cancer leads to transcriptional silencing,
which would be heritable in progeny cells (10). Because the
DNA methylation can be varied with internal and external
factors, it has become a research hotspot for investigating the
tumorigenesis and cancer development (11). At the same time,
DNA methylation has also been intensively explored as a target
for epigenetic treatment.

Aberrant DNA methylation makes effects in BC. One
study investigated the link between DNA methylation
and gene expression in BC. The result identified a
transcriptional network regulated by DNA methylation
at enhancers, in a cell lineage–specific manner (12).
Some BC-associated heritable DNA methylation markers
were screened through detecting and comparing DNA
methylation levels in BC patients and their family members
(13). The endogenous and external factors may make
effects via modulating DNA methylation patterns, such
as oxidative DNA damage and age-related reproductive
factors (14, 15).

After verifying the association between DNA methylation
and gene expression in BC, some large-scale studies have
been performed to comprehensively explore the potential
DNA methylation markers with clinical significance (16). In
another study, blood-based DNA methylation biomarkers were
summarized, which showed significance in risk stratification or
the early detection of BC (17).

Infinium HumanMethylation450 Bead Chip contained a total
of 485,764 CpG dinucleotide sites in the human genome.
The whole genome could be divided into four regions:
promoter, body, 3′-UTR (3′-untranslated region) and intergenic
region. The promoter region was subdivided into 5′-UTR (5′-
untranslated region), TSS200 (within 200 bp upstream of the

SCHEME 1 | Flow diagram of the analysis procedure: data collection, processing, analysis, and validation.

transcription start site), TSS1500 (within 1,500 bp upstream
of the transcription start site), and 1stExon. According to
the distance from CpG islands, CpG shores referred to the
area within 2 kb upstream and downstream of CpG islands;
CpG shelves referred to the area within 2 kb upstream and
downstream of CpG shores; open sea referred to other areas
except CpG islands, CpG shores, and CpG shelves. From
the functional genome distribution standpoint, 200,339 CpG
sites were located in promoter regions; 15,383, 150,212 and
119,830 CpG sites correspond to 3′-UTR, gene body, and
intergenic–open sea sequences, respectively. From the CpG
content and neighborhood context, 150,254 were located in
CpG islands, 112,072 in CpG shores, 47,161 in CpG shelves,
and 176,277 were isolated CpG sites in the genome defined as
“open sea” (18).

In this study, we aimed to explore novel survival-associated
promoter CpG dinucleotide sites for prognostic prediction
in BC patients. The BC methylation 450K datasets and
corresponding clinical features were obtained from both The
Cancer Genome Atlas (TCGA) and Gene Expression Omnibus
(GEO) databases. First, the differential methylation CpG
(dmCpG) sites were screened in TCGA dataset, of which the
candidate promoter CpG sites were preliminarily identified with
the univariate Cox regression analysis and the least absolute
shrinkage and selection operator (LASSO) regression analysis.
Second, the promoter CpG-based signature was constructed
with stepwise regression analysis, which was validated with
the survival analysis of two cohorts each from TCGA and
GEO databases. A nomogram was also constructed, and the
calibration curves showed that it was able to predict 5-, 7-,
and 10-year survival accurately. Moreover, Gene Set Enrichment
Analysis (GSEA) was performed to identify the more active
pathways in high-risk patients and the CpG sites–target gene
correlations and differential methylation regions (DMRs) were
further explored.
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FIGURE 1 | Identification and function enrichment of dmCpG sites in the TCGA cohort. (A) Histogram of the distribution regions of dmCpG sites in the genome. (B)

Heatmap of dmCpG sites in the promoter region between normal and tumor samples. (C) GO function enrichment analysis of 78 dmCpG sites.
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TABLE 1 | The univariate Cox regression analysis of TCGA cohort.

CpG ID HR HR.95L HR.95H p Gene CpG ID HR HR.95L HR.95H p Gene

cg03225817 9.135 3.827 21.807 0.000 GRIA4 cg17253709 0.031 0.005 0.214 0.000 B3GNT2

cg07972135 9.093 3.774 21.909 0.000 GRIA4 cg13525197 6.825 2.349 19.830 0.000 ZSCAN23

cg25482786 9.768 3.481 27.410 0.000 CHL1 cg01321962 0.274 0.134 0.563 0.000 ESR1

cg09093993 0.123 0.047 0.319 0.000 PLEKHF2 cg18784113 0.143 0.049 0.424 0.000 THRB

cg09869811 0.115 0.042 0.317 0.000 NUTF2 cg15379185 5.720 2.159 15.150 0.000 EVX1

cg03940684 5.322 2.397 11.817 0.000 CHL1 cg03329976 8.503 2.568 28.162 0.000 SOX17

cg07746943 6.081 2.570 14.392 0.000 CHL1 cg24970620 0.166 0.061 0.454 0.000 SLC7A7

cg06332621 0.110 0.038 0.325 0.000 RBM47 cg19002907 0.187 0.073 0.478 0.000 TDRD1

cg21217024 4.660 2.169 10.011 0.000 GRIA4 cg11429283 0.208 0.086 0.501 0.000 SYTL2

cg02631468 8.651 2.959 25.291 0.000 VSX1 cg04975519 0.189 0.074 0.481 0.000 RNF32

cg06818710 6.783 2.596 17.727 0.000 ZSCAN23 cg20924470 4.494 1.930 10.465 0.000 FBXL21

cg00043788 8.475 2.896 24.800 0.000 VSX1 cg02006107 0.164 0.059 0.454 0.001 MRPS28

cg17576603 0.155 0.060 0.398 0.000 DAB2 cg16703956 6.069 2.187 16.842 0.001 SLC6A3

cg01279654 0.193 0.084 0.444 0.000 VGLL4 cg27626299 7.201 2.347 22.088 0.001 EVX1

cg02919712 0.109 0.035 0.338 0.000 DEPDC6 cg10898212 0.167 0.061 0.463 0.001 CDK5R1

cg23559689 4.498 2.075 9.749 0.000 GRIA4 cg05144884 0.210 0.086 0.511 0.001 PRSS27

cg25609507 5.104 2.203 11.822 0.000 CHAT cg14763548 3.816 1.780 8.184 0.001 VSX1

cg25160286 7.081 2.578 19.454 0.000 EVX1 cg09529093 0.215 0.089 0.519 0.001 ANGPT1

cg15287850 0.089 0.025 0.310 0.000 ST6GAL1 cg26065909 0.111 0.031 0.391 0.001 SELENBP1

cg09884146 0.047 0.010 0.230 0.000 SPRED2 cg04034767 3.489 1.703 7.151 0.001 GRASP

cg25520146 0.190 0.080 0.452 0.000 HPYR1 cg06327814 0.159 0.055 0.457 0.001 C7orf53

cg04054313 6.529 2.410 17.687 0.000 GLT1D1 cg13027458 0.181 0.068 0.483 0.001 LOC644649

cg10546487 0.115 0.036 0.365 0.000 CLIC4 cg12042659 3.690 1.738 7.831 0.001 ZNF132

cg05481991 5.512 2.217 13.704 0.000 HMGA2 cg08506163 6.358 2.187 18.485 0.001 C6orf174

cg08539965 0.105 0.032 0.350 0.000 EIF4G3 cg02337653 5.839 2.108 16.175 0.001 C6orf174

cg09968620 6.839 2.445 19.128 0.000 HOXD9 cg05223720 4.847 1.943 12.091 0.001 CALN1

cg10603275 4.181 1.943 8.997 0.000 CHL1 cg05863502 9.087 2.519 32.783 0.001 CACNA1B

cg00822495 4.572 2.020 10.349 0.000 OTX2 cg11523712 5.754 2.073 15.973 0.001 HOXD13

cg09260773 6.071 2.303 16.005 0.000 TBX15 cg27304204 0.240 0.104 0.555 0.001 TSPAN8

cg05663573 6.106 2.297 16.237 0.000 SLC7A14 cg26657920 0.203 0.079 0.517 0.001 ACTBL2

cg09871043 0.065 0.015 0.285 0.000 PKHD1 cg16636226 0.239 0.103 0.553 0.001 LRRC3B

cg13557668 5.153 2.117 12.545 0.000 FBXL21 cg14768785 4.648 1.886 11.453 0.001 GHSR

cg06884401 0.121 0.039 0.381 0.000 FAM13A cg17465304 0.126 0.038 0.426 0.001 KIF12

cg16716750 4.143 1.915 8.963 0.000 RGS17 cg24475782 5.650 2.032 15.705 0.001 TBX15

cg23458558 5.638 2.190 14.516 0.000 RALYL cg06578434 0.146 0.047 0.455 0.001 SBNO2

cg07277549 0.176 0.068 0.459 0.000 NOD1 cg14650610 3.463 1.661 7.222 0.001 SPOCK1

cg11413039 6.424 2.301 17.934 0.000 PUS3 cg00930873 5.258 1.969 14.046 0.001 ALDH1A2

cg18397523 6.636 2.331 18.887 0.000 EVX1 cg00880452 5.975 2.071 17.244 0.001 SYCN

cg01035160 4.861 2.027 11.659 0.000 SNCA cg13032463 4.145 1.782 9.640 0.001 T

MATERIALS AND METHODS

Data Resources
Two datasets were included in this analysis. Breast-invasive
carcinoma methylation 450K dataset (designated as TCGA-
BRCA) and clinical information of patients were downloaded
from UCSC Xena database (https://xena.ucsc.edu/), involving 96
normal samples and 794 tumor samples. The dataset GSE72308
and corresponding clinical information were downloaded from
the GEO database (designated as GEO-BRCA), including 295

patients (19). All the data were obtained based on the platform
of Illumina Infinium Human Methylation 450 Bead Chip.

Data Filter and Normalization
For the two datasets, the methylation beta matrix was filtered and
normalized with ChAMP R package (20). The batch effect was
removed with SVAR package. Probes in two datasets were filtered
with the exclusion criteria including: (i) detection p > 0.01; (ii)
bead count <3 in at least 5% of samples; (iii) non-CpG sites;
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FIGURE 2 | The construction of dmCpG-based prognostic signature. (A) LASSO regression analysis of CpG sites in the regions of promoter, with the selection of

tuning parameter (lambda) and dynamic LASSO coefficient profiling. (B) The HR and coefficient of each dmCpG involved in the multivariate Cox proportional

hazards model.

(iv) all SNP-related probes and multihit probes; and (v) probes
on X and Y chromosomes. The BMIQ method was applied for
types I and II probe correction. In particular, probes with SNPs
were identified in general 450K SNP list (21) and filtered by
champ.filter() function included in ChAMP R package.

dmCpG Sites
The dmCpG sites were preliminarily screened with ChAMP R
package. In this study, CpG sites with |1β|> 0.2 and Benjamini–
Hochberg adjusted P < 0.05 were identified as dmCpG sites. The

dmCpG sites located in the promoter regions (5′-UTR, TSS200,
TSS1500 and 1stExon) were further screened and visualized with
the pheatmap R package.

The dmCpG Sites Identification in TCGA
Dataset
TCGA dataset was applied as training cohort, of which only
the patients with overall survival (OS) ranging from 90 to
3,650 days were included for further analysis. The males
and patients without OS information were removed, and 715
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FIGURE 3 | The correlation of risk score and clinical features, including age and TNM (tumor, node, metastasis). (A) Correlation with age. (B) Correlation with T stage.

(C) Correlation with different lymph node status. (D) Correlation with distant metastasis.

patients were finally included. The univariate Cox regression
analysis was applied for screening OS-associated dmCpG sites
preliminarily with survival R package. The hazard ratio (HR)
and p-value were provided. The dmCpG sites with P <

0.001 and HR < 10 were screened. A total of 78 survival-
associated dmCpG sites were obtained, corresponding to 63
genes. The metascape (www.metascape.org) was applied for
Gene Ontology (GO) function enrichment analysis (22). LASSO
regression analysis was further performed to explore the key
dmCpG sites with glmnet R package. Finally, 25 dmCpG sites
were identified.

The Construction of CpG-Based
Prognostic Signature
With the identified 25 OS-associated dmCpG sites, stepwise
regression analysis was applied to optimize the model. Variables
with P < 0.01 in the stepwise analysis were included in a
multivariate Cox proportional hazards model. Under the optimal
situations, the dmCpG sites and corresponding coefficients were
presented, and the formula for calculating the prognostic index
(designated as risk score) based on methylation levels of dmCpG
sites was obtained.

The Relationship of Risk Score With
Clinical Characteristics
A total of 565 patients with complete clinical information
in TCGA dataset were included. The ggpubr R package and
t test were involved to explore the relationships between
the CpG-based risk score and clinical characteristics,
including age and TNM (tumor, node, metastasis). P <

0.05 indicates statistically significant. The results were provided
with boxplots.

Independent Prognostic Prediction
Analysis
Univariate and multivariate independent prognostic analyses
were applied with survival R package. The included clinical
variables were age, TNM (tumor, node, metastasis), and risk
score. The 565 patients with complete clinical information in
the TCGA dataset were included. The HR was calculated and
expressed with forest plot. The 5-, 7-, and 10-year receiver
operating characteristic (ROC) curves of risk score, age, and
TNM (tumor, node, metastasis) were plotted with survival ROC
R package. Area under the curve (AUC) of the ROC curve was
also provided.
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FIGURE 4 | Independent prognostic prediction analysis. Univariate (A) and multivariate (B) survival analyses. (C–E) The 5-, 7-, and 10-year ROC curves of risk score,

age, TNM (tumor, node, metastasis).

The Validation of dmCpG-Based Signature
The prognostic prediction efficacy of dmCpG-based signature
was validated in both TCGA and GEO datasets. The survival
analysis was performed on 715 patients in TCGA dataset
and 268 patients in GEO dataset, respectively, with survival
R package. The risk score was calculated based on the
methylation level of included dmCpG sites and corresponding
coefficients. The patients could be classified as high- and low-
risk groups, with the median risk score in TCGA dataset as
cutoff value. The survival analyses of patients in high- and
low-risk groups were performed with survival R package. The
5-, 7-, and 10-year ROC curves were plotted, and AUC of
the ROC curve was calculated. Further, the nomogram was
constructed for the patients in TCGA dataset with rms R
package, and the calibration curves were also plotted with
calibrate function.

Analysis of Included dmCpG Sites
The dmCpG sites were further investigated. First, the correlation
between dmCpG sites and located gene expression was explored.
The RNA-Seq expression profile (FPKM) of TCGA-BRCA was
downloaded from GDC Data Portal (https://portal.gdc.cancer.
gov). The Pearson correlation coefficient between β value of
dmCpG sites and FPKM value of located genes was calculated
with cor.test in R and visualized. Second, based on the
transcriptome data, the GSEA was performed to identify the
more active pathways in low-risk patients with GSEA 4.0.1
with 184 background gene sets in c2.cp.kegg.v6.2.symbols.gmt.

Finally, the DMRs were screened with ChAMP R package and
annotated with wANNOVAR (http://wannovar.wglab.org/) (23).
The KEGG pathway enrichment analysis was further performed
with ConsensusPathDB (http://cpdb.molgen.mpg.de/) (24).

RESULTS

The dmCpG Sites Identification
The study flowchart describing the process is shown in Scheme 1.
The datasets from TCGA and GEO databases were preprocessed
for further comparison, including filter, normalization, and batch
correction. Then the dmCpG sites were screened in TCGA
dataset with cutoff of |1β| > 0.2 and adjusted P < 0.05. The
proportions of dmCpG sites were screened (Figure 1A), and a
total of 10,088 dmCpG sites located in the promoter regions
(5′-UTR, TSS200, TSS1500, and 1stExon) were finally identified
(Figure 1B).

Second, the univariate Cox regression analysis was performed
to identify the candidate OS-associated dmCpG sites in
TCGA cohort. A total of 78 survival-associated dmCpG
sites with P < 0.001 were identified, corresponding to 63
genes (Table 1). The GO function enrichment of the 63
genes indicated several GO terms, including anterior/posterior
pattern specification, norepinephrine transport, intracellular
receptor signaling pathway, gland development, regulation of
autophagy, etc. (Figure 1C). LASSO regression analysis was
further performed to explore the key dmCpG sites. Finally, 25
sites were identified (Figure 2A).
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FIGURE 5 | Risk score in the TCGA cohorts. (A) The rank of calculated risk score. (B) The survival status of high- and low-risk patients. (C) Heatmap of methylation

level of 4 CpG sites. (D) Kaplan–Meier survival curve of the patients classified in high- and low-risk groups. (E) The 5-, 7-, and 10-year ROC curves of risk score.

The Construction of dmCpG-Based
Prognostic Signature
With the identified 25 survival-associated dmCpG sites, the
stepwise regression analysis was further applied to screen
the candidate dmCpG sites for constructing the prognostic
signature (Figure 2B). Ten candidate dmCpGs sites were
screened in the stepwise analysis (Supplementary Figure 1).
Further, four variables with P < 0.01 in the stepwise analysis
were included in a multivariate Cox proportional hazards
model. These four prognostic dmCpG sites were finally
included in the model for calculating the risk score. In
the optimal model, the AIC was 901.8, and concordance
index was 0.77. The HR and coefficient of each dmCpG
was provided (Figure 2C). The risk score was calculated with
the following formula: risk score = cg00822495 × 0.9960 +

cg03225817 × 2.3621 – cg06884401 × 2.2685 – cg09869811
× 2.1771.

The Relationship of Risk Score With
Clinical Characteristics
A total of 565 patients with complete clinical information
in TCGA dataset were included. The risk score was
significantly higher in patients with older than 65 years
(Figure 3A). Further, the risk score was significantly
higher for patients at T4 compared to that of other T

stages (Figure 3B). No differences were found in patients
with different lymph node statuses and distant metastases
(Figures 3C–D).

Independent Prognostic Prediction
Analysis
Univariate and multivariate survival analyses were performed to
evaluate whether the risk score was an independent prognostic
index irrespective of other clinical features. The clinical
information of 565 patients in TCGA dataset was included.
The univariate and multivariate analyses indicated that the
age, TNM (tumor, node, metastasis), and risk score were an
independent prognostic index (P < 0.05 for all, Figures 4A,B).
The AUC of 5-, 7-, and 10-year ROC curves indicated that
the risk score provided a higher value of AUC compared
to that of other clinical features (Figures 4C–E). The risk
score was verified as independent prognostic predictor. Further,
the integration of risk score and clinical features provided
similar AUC of 5-, 7-, and 10-year ROC curves compared to
that of individual risk score, indicating comparable prognostic
prediction efficacy.

Prognostic Prediction Analysis
The prognostic prediction analysis was performed in TCGA
and GEO cohorts, respectively. For patients in the TCGA
cohort, risk score was calculated according to the normalized
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FIGURE 6 | Risk score in the GEO cohorts. (A) The rank of calculated risk score. (B) The survival status of high- and low-risk patients. (C) Heatmap of methylation

level of 4 CpG sites. (D) Kaplan–Meier survival curve of the patients classified in high- and low-risk groups. (E) The 5-, 7-, and 10-year ROC curves of risk score.

methylation levels of four dmCpG sites. The median risk score
of 0.8775 was applied as the cutoff for dividing patients into
high- and low-risk groups (Figure 5A). The distribution of
survival status of all patients was also presented (Figure 5B).
The variation tendency of the methylation level of dmCpG sites
in heatmap was consistent with their coefficients in prognostic
signature (Figure 5C). Kaplan–Meier survival analysis of the
risk score indicated the survival probability of patients in high-
and low-risk groups (P < 0.001, Figure 5D). Further, 5-, 7-,
and 10-year ROC curves of risk score were plotted, with the
AUCs of 0.723, 0.789, and 0.707, respectively (Figure 5E). The
AUC value indicated good prognostic prediction efficacy. With
the risk score of 0.8775 as cutoff, the prognostic prediction
ability of risk score was also validated in the patients in
the GEO cohort; similar results can be obtained (Figure 6).
The 5-, 7-, and 10-year ROC curves of risk score were
plotted, with the AUCs of 0.684, 0.622, and 0.711, respectively
(Figure 6E).

The nomogram was plotted for the TCGA cohort to
calculate the risk score and predict 5-, 7-, and 10-year OS
of BC patients (Figure 7A). The calibration curves were also
provided (Figures 7B–D). The observed model presented
with black solid line seemed close to ideal prediction
model presented with blue dot and light gray line. The
dynamic nomogram was released online at the following
website: https://cpgsignature-survival-breastcancer.shinyapps.io/
cpgsignature-survival-breastcancer/.

Analysis of Included CpG Sites
The identified dmCpG sites were analyzed for further exploring
their function mechanism. First, the characteristics of involved
dmCpG sites were extracted, including located gene and
regions (Table 2). Second, RNA-Seq data were obtained in
711 samples from TCGA cohort. The correlations between
the four dmCpG sites in the signature and their target gene
expression were analyzed (Figure 8A). Positive association
was observed in cg00822495-OTX2 (r = 0.17, P = 0.000),
whereas negative association was observed between cg06884401-
FAM13A (r = −0.28, P = 0.000) and cg03225817-GRIA4
(r = −0.12, P = 0.000). No significant correlation was
observed in cg09869811-NUTF2 (r = −0.03, P = 0.49)
(Figure 8A). Third, GSEA was performed to identify the
more active pathways in low-risk patients. Thirteen pathways
were more obviously enriched, which were antigen processing
and presentation, apoptosis, B-cell receptor signaling, cell
adhesion molecules cams, chemokine signaling pathway,
cytokine-cytokine receptor interaction, FC gamma r–mediated
phagocytosis, hematopoietic cell lineage, JAK-STAT signaling
pathway, leukocyte transendothelial migration, natural killer
cell–mediated cytotoxicity, T-cell receptor signaling pathway,
and toll-like receptor signaling pathway (Figure 8B). Finally,
DMRs were explored to further understand the function
mechanism of methylation. A total of 1,555 screened DMRs
were annotated, and the KEGG pathway enrichment analysis
was performed. The 10 most enriched pathways were provided
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FIGURE 7 | Nomogram of the TCGA cohort. (A) The nomogram of 5-, 7-, and 10-year OS. (B–D) The calibration curves of 5-, 7-, and 10-year OS of TCGA cohort.

The blue dot and light gray line represent the ideal prediction model, and the black solid line represents the observed model.

TABLE 2 | The characteristics of dmCpG sites.

CpG ID Gene Feature Ccgi Feat.cgi

cg00822495 OTX2 5′-UTR island 5′-UTR-island

cg03225817 GRIA4 5′-UTR island 5′-UTR-island

cg06884401 FAM13A 1stExon opensea 1stExon-opensea

cg09869811 NUTF2 5′-UTR opensea 5′-UTR-opensea

(Figure 8C). In these pathways, PI3K-Akt signaling pathway
showed most involved DMRs and frequent interactions with
other terms.

DISCUSSION

The epigenetic aberrations have been observed during the
tumorigenesis and development of BC (25, 26). The DNA

methylation located at gene promoter would generally suppress
gene transcription, thus down-regulating the expression level
of target genes. One study investigated DNA methylation
with methylation quantitative trait loci of 30,477 CpG sites
in 122,977 BC patients and 105,974 controls of European
descent (16). They screened 199 CpG sites with significant
association with BC risk. Based on the methylation detection
tools and computational analysis, the relationship between DNA
methylation and gene expression can be well-demonstrated for
identifying new biomarkers for BC (16). Considering the benefit
of early and non-invasive diagnosis, blood sample–based DNA
methylation was developed. One comprehensive study identified
DNA methylation markers in blood for diagnosis or risk
evaluation of BC. Variations in DNA methylation profiles, both
at overall genomic level and specific loci, have been associated
with BC risk (17). Another large scale meta-analysis identified
genes consistently associated with prognosis, and their DNA
methylation could indicate prognosis and clinical stratification of
BC patients (27).
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FIGURE 8 | Function analysis of dmCpG-based prognostic signature. (A) Correlation between methylation level of dmCpG sites and corresponding gene expression.

X-axis indicates correlation of methylation, and Y-axis indicates gene expression. Correlation coefficients and hypothesis tests were obtained based on Pearson

correlation test. (B) GSEA enrichment for high- and low-risk patients classified with risk score. (C) KEGG enrichment of DMRs. Node indicates KEGG terms, and lines

indicate interactions. Node size indicates the number of involved genes; node color indicates P value, edge width indicates percentage of shared genes, and edge

color indicates the number of inputted genes.

Some experimental evidence explored and validated the
candidate DNA methylation sites. A fast and accurate
methylation marker–based automated cartridge system was
developed to detect BC in cells obtained by fine-needle
aspiration. The panel consisted of 10 highly methylated markers,
presenting an AUC over 0.9 in discriminating BC and benign
breast lesions (28). Methylation signatures involving 100 or
30 CpG probes were validated to discriminate patients with or
without recurrence (29). Accumulating evidences proved the
correlation between global DNA methylation and BC risk, which
could be modified by reproductive characteristics (15), oxidative
DNA damage (14), and chemotherapeutic agents (30).

In recent years, several prognostic prediction indexes have
been developed, based on the expression levels of mRNA,
lncRNAs, miRNAs, and so on. One study reported a seven-gene
signature for prognostic prediction and treatment guidance in
triple-negative BC (TNBC), in which recurrence risk score can
be calculated as follows: mRNA signature = 1.108 × TMEM101
– 0.213 × KRT5 – 0.315 × ACAN – 0.464 × LCA5 + 0.446 ×

RPP40 – 0.373 × LAGE3 – 0.257 × CDKL2 (31). More studies
reported that the integrated lncRNA–mRNA signature provided
better prognostic prediction efficacy. The developed response
score involved 1 lncRNA and 2 coding genes: response score
= 2.595 × BPESC1 – 1.09 × WDR72 – 1.428 × GADD45A
– 0.731 (32). Another integrated mRNA–lncRNA signature

was developed based on the mRNA species for FCGR1A,
RSAD2, CHRDL1, and the lncRNA species for HIF1A-AS2 and
AK124454, which may be applied to predict tumor recurrence
and the benefit of taxane chemotherapy in TNBC (33). A study
was performed to construct mRNA-only signature and integrated
mRNA–lncRNA signatures. Both signatures provided similar
results for prognostic prediction, while integrated signature had a
higher hazard of recurrence (34). Another systematic analysis of
lncRNA–miRNA–mRNA competing endogenous RNA network
identified four-lncRNA signature as a prognostic biomarker for
BC, which were ADAMTS9-AS1, LINC00536, AL391421.1, and
LINC00491 (35).

DNA methylation was investigated as novel epigenetic
biomarkers for prognostic prediction in BC, because they can
increase cancer risk through altering gene expression (36). A
mortality risk score based on 10 selected CpGs exhibited strong
association with all-cause mortality, cardiovascular diseases, and
cancer mortality in BC (37). In our study, based on the in
silico analysis, OS-associated promoter CpG sites signature was
constructed for prognostic prediction of BC, of which four
dmCpG sites were identified, including cg00822495 (OTX2),
cg03225817 (GRIA4), cg06884401 (FAM13A), and cg09869811
(NUTF2). In this signature, the higher methylation level
of cg00822495 (OTX2) and cg03225817 (GRIA4) indicated
higher risk of poor survival, while the higher methylation
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level of cg06884401 (FAM13A) and cg09869811 (NUTF2)
indicated lower risk. Some of the involved target genes
were previously reported. OTX2 has been considered as a
significantly hypermethylated gene in BC (38). GRIA4 was
a methylation-dependent gene involved in neural signaling
(39). It was known as an early event in colorectal cancer
carcinogenesis (40). One study has reported that rs1059122
(FAM13A) might result in BC susceptibility in Chinese
population (41). FAM13A was also reported as a hypoxia-
induced gene in non–small cell lung cancer, which was
overexpressed under hypoxia conditions (42). NUTF2 was
a novel methylation site for BC, which has not been
previously reported.

Although the CpG-based signature explored in our study has
a better performance than age and TNM stage, there were several
limitations to be considered. First, it was only an in silico and
retrospective study of publicly available data. The validation of
the prediction was performed in only one independent cohort.
Adequate validation in a larger population-based prospective
cohort should be further performed to strengthen the clinical
utility. Second, the integration of risk score with other previously
reported markers such as age and TNM might enable the
development of more reliable biomarkers. Further study would
be necessary. Third, the biological functions of some related
target genes should be explored and verified.

In recent years, with the rapid development of genome-
detecting technology, we are entering an era of precise treatment.
A lot of biomarkers based on gene expression profiles were
identified, but very few were learned from CpG dinucleotide
sites. The four-CpG signature and nomogram explored in our
study could guide clinicians to predict long-term survival of BC
patients, accurately identify high-risk patients, and take early
intervention in the treatment. It is a fact that the detection of
CpG sites is more complex and expensive than gene expression

detection now, but hundreds of thousands of CpG sites contain
promising diagnostic and prognostic value, which would be
explored with the development of detection technology in
the future.

CONCLUSIONS

This study explored a novel promoter CpG-based signature that
exhibited good prognostic prediction efficacy in the long-termOS
of BC patients.
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