AUTHOR=Granata Vincenza , Grassi Roberta , Fusco Roberta , Setola Sergio Venanzio , Palaia Raffaele , Belli Andrea , Miele Vittorio , Brunese Luca , Grassi Roberto , Petrillo Antonella , Izzo Francesco TITLE=Assessment of Ablation Therapy in Pancreatic Cancer: The Radiologist’s Challenge JOURNAL=Frontiers in Oncology VOLUME=10 YEAR=2020 URL=https://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2020.560952 DOI=10.3389/fonc.2020.560952 ISSN=2234-943X ABSTRACT=

This article provides an overview of imaging assessment of ablated pancreatic cancer. Only studies reporting radiological assessment on pancreatic ablated cancer were retained. We found 16 clinical studies that satisfied the inclusion criteria. Radiofrequency ablation and irreversible electroporation have become established treatment modalities because of their efficacy, low complication rates, and availability. Microwave Ablation (MWA) has several advantages over radiofrequency ablation (RFA), which may make it more attractive to treat pancreatic cancer. Electrochemotherapy (ECT) is a very interesting emerging technique, characterized by low complication rate and safety profile. According to the literature, the assessment of the effectiveness of ablative therapies is difficult by means of the Response Evaluation Criteria in Solid Tumors (RECIST) criteria that are not suitable to evaluate the treatment response considering that are related to technique used, the timing of reassessment, and the imaging procedure being used to evaluate the efficacy. RFA causes various appearances on imaging in the ablated zone, correlating to the different effects, such as interstitial edema, hemorrhage, carbonization, necrosis, and fibrosis. Irreversible electroporation (IRE) causes the creation of pores within the cell membrane causing cell death. Experimental studies showed that Diffusion Weigthed Imaging (DWI) extracted parameters could be used to detect therapy effects. No data about functional assessment post MWA is available in literature. Morphologic data extracted by Computed Tomography (CT) or Magnetic Resonance Imaging (MRI) do not allow to differentiate partial, complete, or incomplete response after ECT conversely to functional parameters, obtained with Position Emission Tomography (PET), MRI, and CT.