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We aimed to develop a nomogram integrating MRI-based tumor burden features
(MTBF), nodal necrosis, and some clinical factors to forecast the distant metastasis-free
survival (DMFS) of patients suffering from non-metastatic nasopharyngeal carcinoma
(NPC). A total of 1640 patients treated at Sun Yat-sen University Cancer Center
(Guangzhou, China) from 2011 to 2016 were enrolled, among which 1148 and 492
patients were randomized to a training cohort and an internal validation cohort,
respectively. Additionally, 200 and 257 patients were enrolled in the Foshan and
Dongguan validation cohorts, respectively, which served as independent external
validation cohorts. The MTBF were developed from the stepwise regression of six
multidimensional tumor burden variables, based on which we developed a nomogram
also integrating nodal necrosis and clinical features. This model divided the patients
into high- and low-risk groups by an optimal cutoff. Compared with those of patients
in the low-risk group, the DMFS [hazard ratio (HR): 4.76, 95% confidence interval (CI):
3.39–6.69; p < 0.0001], and progression-free survival (PFS; HR: 4.11, 95% CI: 3.13–
5.39; p < 0.0001) of patients in the high-risk group were relatively poor. Furthermore,
in the training cohort, the 3-year DMFS of high-risk patients who received induction
chemotherapy (ICT) combined with concurrent chemoradiotherapy (CCRT) was better
than that of those who were treated with CCRT alone (p = 0.0340), whereas low-risk
patients who received ICT + CCRT had a similar DMFS to those who only received
CCRT. The outcomes we obtained were all verified in the three validation cohorts. The
survival model can be used as a reliable prognostic tool for NPC patients and is helpful
to determine patients who will benefit from ICT.

Keywords: MRI-based tumor burden features, nodal necrosis, distant metastasis, treatment,
nasopharyngeal carcinoma

Frontiers in Oncology | www.frontiersin.org 1 September 2020 | Volume 10 | Article 537318

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2020.537318
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fonc.2020.537318
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2020.537318&domain=pdf&date_stamp=2020-09-11
https://www.frontiersin.org/articles/10.3389/fonc.2020.537318/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


fonc-10-537318 September 10, 2020 Time: 19:32 # 2

Chen et al. MTBF and Chemoradiotherapy in NPC

INTRODUCTION

Nasopharyngeal carcinoma (NPC) is a typical disease, of which
the incidence rate is the highest in Southeast Asia (1). In the early
stage, the tumor can be successfully controlled by radiotherapy
alone (2), and locoregionally advanced NPC is recommended
to be treated with concurrent chemotherapy (3, 4). It has been
reported that the 5-year overall survival (OS) has reached 85% (4,
5). However, NPC is prone to recurrence and/or metastasis after
certain treatments, which is the main cause of treatment failure
and the major cause of mortality of NPC patients (6–8).

In addition, patients in the same clinical stage receiving
similar treatments have different survival outcomes. Therefore,
it is necessary to build an effective prognostic model to identify
patients with a poor prognosis for whom intensive follow-up and
adjuvant chemotherapy may bring about more survival benefits.
Thus, many efforts have been made to identify risk factors
ranging from biomarkers, such as Epstein–Barr virus (EBV) DNA
and gene expression, to radiomics (9–13). Multiplanar magnetic
resonance imaging (MRI) is one of the methods most extensively
used for the precise mapping of the tumor and the accurate
evaluation of NPC. In addition to precisely mapping the tumor
and defining the T and N stages of NPC, attempts have been made
to include information from MRI into the prognostic analysis of
cancer (12, 14–17).

Although tumor volume and nodal volume are commonly
acknowledged prognostic tumor burden factors (18–20), NPC is
an irregular tumor that shows an expansive, infiltrating, or mixed
growth pattern. For the expansive growth pattern, tumor volume
is highly associated with T stage, while for the infiltrating growth
pattern, it is less associated. The nasopharynx is in the subjacent
skull base and has a complex anatomy; invasive NPC can
infiltrate the cranial nerves through structural channels such as
the pterygopalatine fossa, inferior orbital fissure, ethmoid sinus,
and foramen lacerum (21–23). NPC patients with small tumor
volumes but large extents of invasion might have poor prognosis.
In addition to tumor and nodal volume, more information is
needed to precisely reflect the tumor burden. Certain prognostic-
related structural information reflecting tumor burden, such as
the sectional area and vertical dimension, is not being fully
utilized. At the same time, induction chemotherapy (ICT) has
been shown to be efficient with low toxicity (24–26); however, not
all patients benefit from ICT. A more effective prediction model
is needed to identify low-risk patients to reduce overtreatment
when concurrent chemoradiotherapy (CCRT) would be enough.
As previous studies have revealed that nodal necrosis and
nodal level are important imaging features and are independent
negative prognostic factors for NPC (14, 27–29), we also collected
nodal necrosis and nodal level data from MRI. Therefore, in
this study, we established an MRI-based tumor burden feature
(MTBF) model and developed a nomogram based on MTBF
combined with nodal necrosis and some clinical factors to
predict distant metastasis in NPC patients. Furthermore, we
used this survival model to further explore the relationship
between patients with a high risk of poor outcomes and the
corresponding therapeutic schedule, which may help in making
clinical decisions for individual patients suffering from NPC.

MATERIALS AND METHODS

Study Design and Participants
In this retrospective study, 1640 patients with non-metastatic
NPC who were treated at Sun Yat-sen University Cancer
Center (Guangzhou, China) from 2011 to 2016 were enrolled.
For the inclusion and exclusion criteria of the participants,
see Supplementary Material p 1. A total of 1148 and 492
patients were randomized to a training cohort and an internal
validation cohort, respectively, by computer-generated random
numbers [random numbers from 1 to 1640 for each patient,
utilizing the function “sample” in R project (version 3.5.2) with
a pre-defined seed “250,” and the ratio of training cohort to
internal validation cohort size is 7 to 3]. To further validate the
generalizability of the model, we enrolled 200 and 257 patients
into two external validation cohorts, the Foshan and Dongguan
validation cohorts, respectively. The patients in these two external
validation cohorts were enrolled following the same criteria.
The tumor stage of the enrolled patients was determined in
accordance with the 8th edition of the American Joint Committee
on Cancer staging manual. This study was carried out with
approval of the ethical committees of the Chinese Clinical Trial
Registry (ChiECRCT20190127). We have uploaded all crucial
research data to the Research Data Deposit public platform
(RDDA2020001382).

Procedures
We utilized a Microsoft Excel form to collect sociodemographic
information (including age, sex, native place, weight, BMI, and
height) and baseline clinical data [EBV DNA before treatment,
EA-IgA, VCA-IgA, LYMPH, WBC, RBC, PLT, HGB, total protein
(TP), ALB, lactate dehydrogenase (LDH), C-reactive protein
(CRP), ABO blood type, RH blood type, T stage, N stage,
clinical stage, and therapeutic regimen]. All variables above
were categorized based on routine cutoff points in clinical
findings and applications. Nodal necrosis (positive vs negative)
and nodal level (above the caudal edge of cricoid cartilage vs
lower) were also recorded as categorical variables. Tumor burden
variables (volume, maximum cross-sectional area, and vertical
dimension of the primary tumor and regional lymph nodes,
of which the abbreviations are Tv and Lv, Ta and La, and Td
and Ld, respectively) were also recorded in the Excel form as
continuous variables.

Unenhanced and enhanced head and neck MRI of NPC
participants were assessed, and the execution details are
presented in Supplementary Material p 1. Based on enhanced
T1-weighted imaging (T1WI), three specialists in MRI contoured
the margin of the primary tumor and regional lymph nodes
by utilizing Medical Imaging Interaction Toolkit (MITK)
software (version MITK-2016.11.0; Supplementary Figure 1).
Any disagreements were resolved by a consensus. Detailed
information on the calculation of Tv, Lv, Ta, La, Td, and Ld is
presented in Supplementary Materials p 1–2

Treatment Methods
All patients underwent radiotherapy. Patients from our
center and those in the Foshan validation cohort received
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intensity-modulated radiation therapy (IMRT). A total of
2.3% (6 of 257) of the patients in the Dongguan validation
cohort received two-dimensional radiotherapy (2D-RT),
and 97.7% (251 of 257) of the patients received IMRT. The
cumulative radiation doses were 66 Gy or greater in 30–
35 fractions, and treatment was delivered once daily, over
5 fractions per week. All patients received platinum-based
chemotherapy, including concurrent chemotherapy and ICT.
ICT consisted of cisplatin with 5-fluorouracil, taxanes, or both
triweekly for two or three cycles. Concurrent chemotherapy
consisting of cisplatin was administered weekly or triweekly
during radiotherapy.

Follow-Up and Study Endpoints
Follow-up surveys were conducted every 3 months over the first
2 years after radical therapy, once semiannually in the third to
fifth years, and once yearly thereafter. The follow-up involved the
determination of plasma EBV DNA concentration and indirect
or direct nasopharyngoscopy, X-ray/plain and contrast-enhanced
CT imaging of the chest, sonography/plain and enhanced CT
of the abdomen, and plain and enhanced MRI of the head and
neck. In this study, the primary endpoint was distant metastasis-
free survival (DMFS), defined as the period from the first day of
treatment (radiotherapy or chemotherapy) to the first occurrence
of distant metastasis. The second endpoint was progression-
free survival (PFS), defined as the period of time from the first
diagnosis to locoregional failure, distant failure, or death from
any cause, whichever occurred first.

Statistical Analysis
We first carried out univariate analysis on the six tumor burden
variables (Tv, Lv, Ta, La, Td, and Ld), in which the p value
adopted for excluding variables with least significance was 0.1
(p > 0.1). Then, we conducted multivariate Cox regression
analysis with a stepwise step to screen out variables that can
be used to establish a prognostic model with the coefficients
weighted by the Cox model in the training cohort. Stepwise
regression introduces the independent variable one by one on
the condition that the independent variable is significant after
the F test, which is commonly used to eliminate multicollinearity
and select the “optimal” regression equation. In the Guangzhou
training cohort, the optimal threshold was determined by using
X-tile version 3.6.1, a software developed by Yale University,
which allows us to divide patients into high- and low-MTBF
groups. The thresholds were determined as the values that can
generate the maximum chi-square values in the Mantel–Cox
test (30).

To further estimate the effect of MTBF (high vs low),
nodal necrosis, and nodal level, we also developed three
clinical nomograms after univariate analysis. Considering the
overlapping information between N stage and nodal level,
we included nodal level into the backward multivariate Cox
regression with other clinical factors to generate nomogram
A. According to Akaike’s information criterion (AIC), sex, age,
N stage, clinical stage, and LDH were selected to generate
nomogram A to forecast DMFS in the training cohort. Since
relevant results show that plasma EBV DNA is a prospective

biomarker in NPC, we developed nomogram B by adding plasma
EBV DNA. After that, we developed nomogram C based on
nomogram B by integrating MTBF and nodal necrosis.

Then, calibration curves and the concordance index (C-index,
proposed by Harrell) were calculated to assess and compare
the prediction performance of the nomograms. To further
explore the sensitivity and specificity of the prognostic model,
we performed time-dependent receiver operating characteristic
(ROC) analysis and calculated the area under the curve (AUC).
To explore the association of nomogram C with DMFS, we
calculated the total risk score for NPC patients based on
nomogram C, and the patients were separated into high-risk and
low-risk groups according to a cutoff value. Risk stratification
was evaluated using Kaplan–Meier analysis, and the survival
curves of the high-risk and low-risk groups were compared using
the log-rank test. Differences in PFS between the two groups
were also assessed.

The univariate and multivariate analyses of DMFS were
carried out using the survival package in R (available online).
With the stopping rule of AIC, the likelihood ratio test was
carried out to apply backward stepwise selection. Then, the
nomograms were developed by using the rms package in R
(available online), including the coefficients in the multivariable
Cox regression model. In this study, R version 3.5.2 and SPSS
version 22.0 were adopted for statistical analyses, and a two-
sided p value < 0.05 was adopted to indicate differences with
statistical significance.

RESULTS

Patient Data and Follow-Up
In total, 2097 patients from three Chinese academic institutions
were enrolled. The study flow diagram is shown in Figure 1.
Among 1640 patients treated at Sun Yat-sen University
Cancer Center, 1148 and 492 patients were randomized to a
training cohort and an internal validation cohort, respectively.
Additionally, we enrolled 200 and 257 patients into two
independent external validation cohorts, the Foshan and
Dongguan validation cohorts, respectively. The median follow-
up of the combined Guangzhou cohort was 55.9 months (IQR
41.4–68.7 months), that of the Dongguan cohort was 49.2 months
(IQR 37.4–60.7 months), and that of the Foshan cohort was
42.4 months (IQR 37.3–46.0 months). Up to the last follow-up,
205 (12.5%) patients in the combined Guangzhou cohort, 31
(12.1%) in the Dongguan cohort, and 19 (9.5%) in the Foshan
cohort developed distant metastasis. For more information on
the patients’ demographic information and baseline clinical
characteristics, see Table 1.

Construction of the MTBF Model
In the Guangzhou training set, the first multivariate Cox
regression analysis with a stepwise step showed that five of the
six tumor burden variables, namely, Lv, Ta, La, Td, and Ld, were
related to DMFS. In addition, a formula was generated based
on the 5 tumor burden features weighted by their respective
regression coefficients (Supplementary Table 1) to calculate
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FIGURE 1 | Study flow diagram. Abbreviations: MTBF, MRI-based tumor
burden features.

the tumor burden score for these patients. The formula is
as follows:

MTBF = −0.0043× Lv + 0.1121× La + 0.0587

× Ld + 0.0528× Ta + 0.0917× Td

We generated an optimal threshold (3.2) via X-tile plots to assign
the patients in the training cohort into high- and low-MTBF
groups (Supplementary Figure 2). In this section, 882 (76.8%),
and 266 (23.2%) patients in the training cohort, 361 (73.4%), and
131 (26.6%) patients in the Guangzhou internal validation cohort,
204 (79.4%), and 53 (20.6%) patients in the Dongguan external
validation cohort, and 162 (81.0%) and 38 (19.0%) patients in the
Foshan external validation cohort were divided into the high- and
low-MTBF groups, respectively. The result of univariate analysis
of MTBF is listed in Table 2.

Development and Validation of
Nomograms to Predict Survival
All variables were assessed primarily through univariate analysis
for DMFS. The predictors included MTBF (high vs low), nodal
necrosis (positive vs negative), nodal level (above the caudal edge
of cricoid cartilage vs lower), sex, age, N stage, clinical stage,
LDH, and plasma EBV DNA (Supplementary Table 2). After
that, we performed multivariate analysis via a backward step
using nodal level, sex, age, N stage, clinical stage, and LDH to
predict the DMFS of patients in the training cohort. Sex, age,
N stage, clinical stage, and LDH were ultimately selected to
generate nomogram A [C-index 0.686, 95% confidence interval

(CI): 0.640–0.732] (Supplementary Table 3 and Supplementary
Figure 3A). Because relevant results showed that EBV DNA is a
prospective prognostic biomarker of NPC, we used sex, age, N
stage, clinical stage, LDH, and EBV DNA to develop nomogram
B (C-index 0.702, 95% CI: 0.658–0.746; Supplementary Table 3
and Supplementary Figure 3B). Then, we used the six clinical
factors, MTBF, and nodal necrosis to develop nomogram
C (C-index 0.741, 95% CI: 0.702–0.780; Figure 2A). The
calibration curves for 3-year DMFS also performed well in the
Guangzhou internal validation set (C-index 0.738, 95% CI: 0.676–
0.780), Dongguan external validation set (0.747, 0.678–0.816),
and Foshan validation set (0.757, 0.657–0.857; Figures 2B–E).
Then, we compared the sensitivity and specificity of the three
nomograms through ROC analysis and found that nomogram C
had a higher AUC value than the other two nomograms (Figure 3
and Supplementary Table 4). The ROC curve of nomogram
C vs nomogram B or A reached statistical significance in the
Guangzhou data set, but that of nomogram C vs B was not
statistically significant in the two external validation sets.

Nomogram C and Risk Stratification
According to the regression coefficients of nomogram C
(Supplementary Table 3), the patients’ risk scores were
calculated. The patients were divided into high- and low-risk
groups by the optimal cutoff value (4.1) determined by X-tile
software. The 3-year DMFS rates in the high- and low-risk
groups were 75.1% (95% CI: 69.5–81.0) and 93.4% (95% CI:
91.8–95.1), respectively, [hazard ratio (HR) 4.76, 95% CI: 3.39–
6.69; p < 0.0001; Figure 4A]. Compared with low-risk patients,
high-risk patients had shorter PFS (HR 4.11, 95% CI: 3.13–5.39;
p< 0.0001; Figure 4E). In the internal validation set, 381 (77.4%),
and 111 (22.6%) patients were divided into the low- and high-risk
groups, respectively. The 3-year DMFS (HR 4.22, 95% CI: 2.65–
6.70; p < 0.0001; Figure 4B) and PFS (HR 3.38, 95% CI: 2.32–
4.92; p < 0.0001; Figure 4F) of the high- and low-risk groups
were significantly different. In the Dongguan validation cohort,
214 (83.3%), and 43 (16.7%) patients were divided into the low-
and high-risk groups, respectively, of which the differences in
DMFS (HR 2.16, 95% CI: 0.97–4.84; p = 0.0550; Figure 4C) and
PFS (HR 3.16, 95% CI: 1.77–5.65; p < 0.0001; Figure 4G) were
significant. In the Foshan validation cohort, 173 (86.5%) and
27 (13.5%) of the 200 patients were assigned to the low- and
high-risk groups, respectively, and significant differences were
also observed. Compared with the low-risk group, the high-risk
group had worse DMFS (HR 4.40, 95% CI: 1.73–11.2; p = 0.0007;
Figure 4D) and PFS (HR 5.60, 2.69–11.7; p< 0.0001; Figure 4H).
The numbers of events for the different risk groups in the four
cohorts are listed in Supplementary Table 5.

Nomogram C and Treatment Direction
In the Guangzhou training cohort, 486 and 439 patients in the
low-risk group and 87 and 136 patients in the high-risk group
received CCRT and ICT + CCRT, respectively. In the high-risk
group, the DMFS of patients treated with ICT + CCRT was
longer than that of those treated with CCRT alone (HR 0.60, 95%
CI: 0.37–0.97, p = 0.0340; Figure 5A). However, the treatment
effects of ICT + CCRT and CCRT were similar in the low-risk
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TABLE 1 | Baseline characteristics.

Variable Guangzhou
training set

(n = 1148), n (%)

Guangzhou
validation set

(n = 492), n (%)

Dongguan
validation set

(n = 257), n (%)

Foshan validation
set (n = 200), n

(%)

Age (years)

<45 541 (47.1) 250 (50.8) 104 (40.5) 82 (41.0)

≥45 607 (52.9) 242 (49.2) 153 (59.5) 118 (59.0)

Sex

Female 280 (24.4) 112 (22.8) 62 (24.1) 42 (21.0)

Male 868 (75.6) 380 (77.2) 195 (75.9) 158 (79.0)

Tumor stage

T1 125 (10.9) 62 (12.6) 6 (2.3) 13 (6.5)

T2 210 (18.3) 91 (10.6) 94 (36.6) 33 (16.5)

T3 620 (54.0) 250 (50.8) 120 (46.7) 97 (48.5)

T4 193 (16.8) 89 (18.1) 37 (14.4) 57 (28.5)

Node stage

N0 178 (15.5) 96 (19.5) 27 (10.5) 42 (21.0)

N1 553 (48.2) 215 (43.7) 68 (26.5) 99 (49.5)

N2 244 (21.3) 104 (21.1) 115 (44.7) 43 (21.5)

N3 173 (15.1) 77 (15.7) 47 (18.3) 16 (8.0)

Clinical stage

II 204 (17.8) 91 (18.5) 36 (14) 29 (14.5)

III 595 (51.8) 243 (49.4) 140 (54.5) 100 (50.0)

IV 349 (30.4) 158 (32.1) 81 (31.5) 71 (35.5)

HGB (g/L)

<120 68 (5.9) 17 (3.5) 49 (19.1) 24 (12.0)

≥120 1080 (94.1) 475 (96.5) 208 (80.9) 176 (0.88)

LDH(U/L)

<245 1061 (92.4) 458 (93.1) 242 (94.2) 186 (93.0)

≥245 87 (7.6) 34 (6.9) 15 (5.8) 14 (7.0)

EBVDNA level (copies/ml)

<4000 713 (62.1) 317 (64.4) 163 (63.4) 129 (64.5)

≥4000 435 (37.9) 175 (35.6) 94 (36.6) 71 (35.5)

Nodal level

Above the caudal edge of cricoid cartilage 979 (85.3) 420 (85.4) 212 (82.5) 180 (90.0)

Lower 169 (14.7) 72 (14.6) 45 (17.5) 20 (10.0)

Nodal necrosis

Negative 1001 (87.2) 430 (87.4) 223 (86.8) 179 (89.5)

Positive 147 (12.8) 62 (12.6) 34 (13.2) 21 (10.5)

Tv (cm3)

Median (IQR) 45.1 (30.5–73.6) 46.6 (30.6–75.4) 46.6 (32.7–83.0) 40.9 (28.7–63.5)

Lv (cm3)

Median (IQR) 32.2 (5.3–76.2) 31.1 (4.0–71.2) 33.4 (12.4–69.7) 12.8 (0.3–50.3)

Ta (cm2)

Median (IQR) 9.8 (7.1–14.6) 10.2 (7.3–14.8) 10.1 (7.3–15.0) 9.6 (6.7–13.6)

La (cm2)

Median (IQR) 4.9 (1.2–9.2) 4.7 (1.0–8.5) 4.9 (2.5–8.3) 2.9 (0.6–7.5)

Td (cm)

Median (IQR) 8.5 (6.6–9.9) 8.8 (7.3–9.9) 8.9 (7.3–10.5) 8.6 (7.4–10.5)

Ld (cm)

Median (IQR) 12.1 (6.6–17.6) 12.1 (5.7–17.6) 13.0 (7.5–17.2) 9.1 (3.2–13.3)

Treatment

CCRT 573 (49.9) 235 (47.8) 120 (46.7) 68 (34.0)

IC + CCRT 575 (50.1) 257 (52.2) 137 (53.3) 132 (66.0)

HGB, hemoglobin; LDH, lactate dehydrogenase; EBV DNA, Epstein–Barr virus DNA; Tv, volume of the primary tumor; Lv, volume of the regional lymph nodes; Ta,
maximum cross-sectional area of the primary tumor; La, maximum cross-sectional area of the regional lymph nodes; Td, vertical dimension of the primary tumor; and Ld,
vertical dimension of the reginal lymph nodes.
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TABLE 2 | Univariate analysis of MTBF.

DMFS PFS

HR 95% CI p value HR 95% CI p value

Guangzhou training cohort 4.52 3.21–6.37 <0.0001 4.22 3.22–5.54 <0.0001

Guangzhou internal validation cohort 4.77 2.98–7.65 <0.0001 3.83 2.63–5.58 <0.0001

Dongguan external validation cohort 3.13 1.52–6.46 0.0020 3.37 1.93–5.88 <0.0001

Foshan external validation cohort 5.59 2.27–13.80 0.0002 7.12 3.45–14.70 <0.0001

MTBF, MRI-based tumor burden features; DMFS, distant metastasis-free survival; PFS, progression-free survival; HR, hazard ratio; and CI = confidence interval.

group (Figure 5D). This finding was validated in the internal and
combined external validation sets (Figures 5B,C,E,F). Compared
with patients not receiving ICT, among all the cohorts, treatment
with ICT was also related to an improvement of PFS in patients
with high-risk scores but not in those with low-risk scores
(Supplementary Figure 4).

DISCUSSION

In this retrospective multicenter cohort study, we extracted
six multidimensional tumor burden-related variables, including
the volume, section area, and vertical dimension of the
primary tumor and regional lymph nodes, based on which
we developed the MTBF model. Compared to nomogram A
(based on routine clinical features) and nomogram B (nomogram
A + EBV DNA), nomogram C incorporating MTBF and nodal
necrosis to nomogram B had the highest C-index (0.741,
95% CI: 0.702–0.780) and AUC value (0.761, 95% CI: 0.719–
0.802). Compared with those of patients in the low-risk group
stratified by nomogram C, the DMFS (HR: 4.76, 95% CI:
3.39–6.69; p < 0.0001), and PFS (HR: 4.11, 95% CI: 3.13–
5.39; p < 0.0001) of patients in the high-risk group were
relatively poor. Moreover, compared with patients with low risk,
treatment with ICT + CCRT tended to have better effects among
those with high risk.

Tumor load heterogeneity in the same T and N classification
could cause much difficulty for predicting prognosis. Though the
volume of the primary tumor is now a commonly acknowledged
tumor burden factor for prognosis prediction (18–20), the
mining of other information reflecting tumor burden remains
insufficient. Our findings, which extracted tumor burden profiles
such as the volume, section area, and vertical dimension of the
primary tumor and regional lymph nodes based on pretreatment
MRI, showed that MTBF is a promising risk factor (HR 4.52, 95%
CI: 3.21–6.37; p < 0.0001; Supplementary Table 2). Intriguingly,
Tv was removed from the construction of the MTBF model
during the stepwise regression, whereas the other five tumor
burden variables were retained. These results also reflect that
the maximum cross-sectional area and vertical dimension could
complement the effect of volume on prognosis, which offers
more detailed prognostic information. In addition, compared
with nomogram A (including sex, age, N stage, clinical stage, and
LDH) and nomogram B (including the variables in nomogram
A + EBV DNA), the proposed nomogram C (including MTBF,
nodal necrosis, and the six variables in nomogram B) achieved

much better performance in terms of the C-index and ROC
analysis. Compared with low-risk patients, high-risk patients
stratified by nomogram C had poor DMFS (HR: 4.76, 95%
CI: 3.39–6.69; p < 0.0001) and PFS (HR: 4.11, 95% CI: 3.13–
5.39; p < 0.0001). With the integration of tumor burden
information, nodal necrosis, and other clinical characteristics,
MTBF and nodal necrosis were promising supplementary factors
to TNM stage and EBV DNA, yielding better performance in
predicting survival. As seen in Figure 2A and the coefficients
in Supplementary Table 3, MTBF played the most important
role in predicting DMFS, and nodal necrosis was also a crucial
variable. These results might mainly be associated with two
major reasons. First, a high MTBF score and positive nodal
necrosis indicate that NPC patients had unfavorable massive
primary tumors or regional lymph nodes, which have a greater
propensity for occult metastasis (20, 31). Second, massive tumors
and positive nodal necrosis have been found to be related to
the biological aggressiveness of cancer clones, inadequate blood
supply, and other adverse factors, including tumor hypoxia (32,
33), which is strongly associated with radioresistance and thus
relapse and metastasis.

Over 70% of NPC patients are diagnosed with an
advanced stage of disease (34, 35). According to the National
Comprehensive Cancer Network guidelines, locoregionally
advanced NPC patients are at high risk for disease progression,
for whom ICT + CCRT is recommended as level 2A evidence
and CCRT alone as level 2B evidence. However, not all of
these patients benefit from ICT (36). In our investigation, our
proposed nomogram model C (including MTBF and nodal
necrosis) performed well in predicting survival and succeeded
in stratifying high- and low-risk patients who benefited from
ICT + CCRT and CCRT, respectively. In the high-risk group, the
DMFS of patients treated with ICT + CCRT was longer than that
of patients treated with CCRT alone (HR 0.60, 95% CI: 0.37–0.97,
p = 0.0340; Figure 5A). However, in the low-risk group, the
treatment effects of ICT + CCRT and CCRT were similar.
This finding might be explained by the fact that ICT not only
attenuates tumor load within a brief period to ameliorate tumor
hypoxia but also has a systemic cytotoxic effect to eradicate
distant micrometastases (37, 38). It is well recognized that the
improvement in PFS is mainly due to the reduction in distant
metastases. In our study, compared with patients who did not
receive ICT, patients with high-risk scores treated with ICT
showed an improvement in PFS.

Magnetic resonance imaging is now extensively used for
the accurate evaluation of NPC to define the TNM stage and

Frontiers in Oncology | www.frontiersin.org 6 September 2020 | Volume 10 | Article 537318

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


fonc-10-537318 September 10, 2020 Time: 19:32 # 7

Chen et al. MTBF and Chemoradiotherapy in NPC

FIGURE 2 | Nomogram C for predicting DMFS. (A) Nomogram C to predict DMFS. Calibration curves of the nomogram to predict DMFS at 3 years in (B) the
Guangzhou training cohort, (C) the Guangzhou internal validation cohort, (D) the Dongguan external validation cohort, and (E) the Foshan external validation cohort.
Abbreviations: LDH, lactate dehydrogenase; EBV DNA, Epstein–Barr virus DNA; MTBF, MRI-based tumor burden features; and DMFS, distant metastasis-free
survival.

follow-up, and the majority of NPC patients undergo MRI
before treatment. Our prognostic model utilized the information
obtained from pretreatment MRI without increasing the physical

or financial burden. One main challenge in our study lies in
the fact that three specialists in MRI are required to contour
the margin of the primary tumor and regional lymph nodes,
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FIGURE 3 | ROC analysis of nomograms (A–C) to compare their ability to predict DMFS. (A) ROC analysis in the Guangzhou training cohort. (B) ROC analysis in the
Guangzhou internal validation cohort. (C) ROC analysis in the Dongguan external validation cohort. (D) ROC analysis in the Foshan external validation cohort.
Abbreviations: ROC, receiver operating characteristic; DMFS, distant metastasis-free survival; AUC, area under the curve; and CI; confidence interval.

which might take time and effort. Fortunately, with the rise
of artificial intelligence, deep learning has been widely applied
in radiology and pathology for image processing and lesion
recognition (39–42). Automatically recognizing the scope and
characteristics of neoplasms will help make our proposed model
a more user-friendly prognostic tool. With regard to the result
of ROC analysis that the ROC curve of nomogram C vs B
was not statistically significant in the two external validation
sets, we think the reason lies in the different population
distributions and the small sample size. Longer follow-ups and

prospective multicenter clinical studies should be carried out
to validate our MTBF model and nomogram. Additionally,
radiomics has achieved valuable performance in many prediction
tasks, including NPC (16, 43). In addition to structural tumor
burden features, nodal level, and necrosis, further investigation
incorporating other radiomics data will be our next research
interest. In conclusion, the survival model based on MTBF,
nodal necrosis, and clinical factors is a promising prognostic
tool for NPC and is helpful for identifying patients who might
benefit from ICT.
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FIGURE 4 | Kaplan–Meier survival curves of DMFS and PFS for risk group stratification with the MTBF. (A) DMFS in the Guangzhou training cohort, (B) DMFS in the
Guangzhou internal validation cohort, (C) DMFS in the Dongguan external validation cohort, (D) DMFS in the Foshan external validation cohort, (E) PFS in the
Guangzhou training cohort, (F) PFS in the Guangzhou internal validation cohort, (G) PFS in the Dongguan external validation cohort, and (H) PFS in the Foshan
external validation cohort. P values were calculated using the unadjusted log-rank test and hazard ratios with a univariate Cox regression analysis. Abbreviations:
DMFS, distant metastasis-free survival; MTBF, MRI-based tumor burden features; and HR, hazard ratio.

FIGURE 5 | Kaplan–Meier survival curves of DMFS of CCRT alone and ICT + CCRT. (A) High-risk group in the Guangzhou training cohort, (B) high-risk group in the
Guangzhou internal validation cohort, (C) high-risk group in the combined external validation cohort, (D) low-risk group in the Guangzhou training cohort, (E) low-risk
group in the Guangzhou internal validation cohort, and (F) low-risk group in the combined external validation cohort. Abbreviations: DMFS, distant metastasis-free
survival; CCRT, concurrent chemoradiotherapy; and ICT, induction chemotherapy.
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