AUTHOR=Morand Grégoire B. , Broglie Martina A. , Schumann Paul , Huellner Martin W. , Rupp Niels J. TITLE=Histometabolic Tumor Imaging of Hypoxia in Oral Cancer: Clinicopathological Correlation for Prediction of an Aggressive Phenotype JOURNAL=Frontiers in Oncology VOLUME=10 YEAR=2020 URL=https://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2020.01670 DOI=10.3389/fonc.2020.01670 ISSN=2234-943X ABSTRACT=Introduction

Fluorodeoxyglucose-positron emission tomography (FDG-PET) is a widely used imaging tool for oral squamous cell carcinoma (OSCC). Preliminary studies indicate that quantification of tumor metabolic uptake may correlate with tumor hypoxia and aggressive phenotypes.

Methods

Retrospective review of a consecutive cohort of OSCC (n = 98) with available pretherapeutic FDG-PET/CT, treated at the University Hospital Zurich. Clinico-pathologico-radiological correlation between maximum standard uptake value (SUVmax) of the primary tumor, immunohistochemical staining for hypoxia-related proteins glucose transporter 1 (GLUT1) and hypoxia-inducible factor 1-alpha (HIF1a), depth of invasion (DOI), lymph node metastasis, and outcome was examined.

Results

Positive staining for GLUT1 and HIF1a on immunohistopathological analysis correlated with increased SUVmax on pretherapeutic imaging and with increased DOI (Kruskal–Wallis, P = 0.037, and P = 0.008, respectively). SUVmax and DOI showed a strong positive correlation (Spearman Rho, correlation coefficient = 0.451, P = 0.0003). An increase in SUVmax predicted nodal metastasis (Kruskal–Wallis, P = 0.017) and poor local control (log rank, P = 0.047).

Conclusion

In OSCC, FDG-PET-derived metabolic tumor parameter SUVmax serves as a surrogate marker for hypoxia and can be used to predict tumor aggressiveness, with more invasive phenotypes and poorer local control.