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Objective: Shear-wave elastography (SWE) can improve the diagnostic specificity of
the B-model ultrasonography (US) in breast cancer. However, whether deep learning-
based radiomics signatures based on the B-mode US (B-US-RS) or SWE (SWE-RS)
could further improve the diagnostic performance remains to be investigated. We aimed
to develop the B-US-RS and SWE-RS and determine their performances in classifying
breast masses.

Materials and Methods: This retrospective study included 291 women (mean
age ± standard deviation, 40.9 ± 12.3 years) from two centers who had US-visible solid
breast masses and underwent biopsy and/or surgical resection between June 2015 and
July 2017. B-mode US and SWE images of the 198 masses in 198 patients (training
cohort) from center 1 were segmented, respectively, to construct B-US-RS and SWE-
RS using the least absolute shrinkage and selection operator regression and tested in
an independent validation cohort of 65 masses in 65 patients from center 1 and in an
external validation cohort of 28 masses in 28 patients from center 2. The performances
of B-US-RS and SWE-RS were assessed using receiver operating characteristic (ROC)
analysis and compared with that of radiologist assessment [Breast Imaging Reporting
and Data System (BI-RADS)] and quantitative SWE parameters [maximum elasticity
(Emax), mean elasticity (Emean), elasticity ratio (Eratio), and elastic modulus standard
deviation (ESD)] by using the McNemar test.

Results: The single best-performing quantitative SWE parameter, Emax, had a higher
specificity than BI-RADS assessment in the training and independent validation cohorts
(P < 0.001 for both). The areas under the ROC curves (AUCs) of B-US-RS and SWE-RS
both were 0.99 (95% CI = 0.99–1.00) in the training cohort, 1.00 (95% CI = 1.00–
1.00) in the independent validation cohort, and 1.00 (95% CI = 1.00–1.00) in the
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external validation cohort. The specificities of B-US-RS and SWE-RS were higher than
that of Emax in the training (P < 0.001 for both) and independent validation cohorts
(P = 0.02 for both).

Conclusion: The B-US-RS and SWE-RS outperformed the quantitative SWE
parameters and BI-RADS assessment for classifying breast masses. The integration
of the deep learning-based radiomics approach would help improve the classification
ability of B-mode US and SWE for breast masses.

Keywords: deep learning, radiomics, ultrasonography, shear-wave elastography, breast neoplasms

INTRODUCTION

Breast ultrasonography (US), avoiding the ionizing radiation
and the requirement for breast compression, is a valuable
supplemental screening tool in women, in particular those with
dense breasts and negative mammogram results (1, 2). The
Breast Imaging Reporting and Data System (BI-RADS) provides a
standardized terminology to make an assessment and subsequent
recommendation for lesions detected by US (3). For a lesion
with BI-RADS category 3 (probably benign, ≤2% likelihood
of malignancy), a short-interval follow-up was recommended
instant of immediate biopsy (4). In contrast, for a lesion with
BI-RADS category 4a (low suspicion of malignancy, >2%, but
≤10% likelihood of malignancy) or higher, further biopsy would
be recommended (4). Improved classification of breast lesions
might allow some benign lesions to be downgraded from BI-
RADS category 4a to 3, where surveillance with safe follow-
up would be an alternative to biopsy. US is very sensitive
for breast lesion detection. However, the low specificity (high
false-negative) in the differentiation of benign from malignant
breast masses remains a major limitation of B-mode US (2, 5),
which might lead to more benign lesions undergoing unnecessary
biopsy. Elastographic US, including strain and shear-wave
elastography (SWE), both of which are based on tissue stiffness,
has the potential to improve the diagnostic specificity of B-mode
breast US (6, 7). Strain elastography is based on the relative
displacement of the tissue by freehand external compression.
It has the shortcoming of being operator-dependent, and
substantial varying degrees of interobserver variability may occur
during data acquisition and interpretation on some vendors (8).
Although the semiquantitative parameters (i.e., elastographic-to-
B-mode length ratio and strain ratio) for strain are available
(9), the exact elasticity value cannot be quantified (10–12).
SWE can provide quantitative elasticity parameters and display
a visual color overlay of elastic information during real-time
imaging via the usage of acoustic radiation force induced by
the fixed ultrasound push pulse generated from the transducer
(10, 11). Several studies have shown that quantitative SWE
parameters are reproducible for assessing elastographic features
of breast masses and can improve the diagnostic specificity of
B-mode US without loss of sensitivity (5, 7, 13). However, the
specificity remains limited up to 86% when the quantitative SWE
parameters were used (14). Therefore, a method to improve
the diagnostic performance, especially to further improve the

specificity of B-mode US or SWE, for the classification of breast
lesions is needed.

Radiomics can extract high-throughput quantitative data
from the medical image and objectively evaluate the inter- and
intra-neoplastic heterogeneity through the spatial distribution
of voxel intensity, which cannot be directly detected by the
unaided eye (15, 16). Deep learning radiomics is one of the
methods which can extract a large number of quantitative
features from radiologic images by supervised learning (16).
It is different from the traditional radiomics method in that,
instead of extracting features in a hand-designed approach,
deep learning only needs minor preprocessing of the data, if
necessary, and then extracts informative representations in a self-
learning manner (17). Although deep learning-based radiomic
features are difficult to interpret, deep learning techniques have
shown promising capabilities for the extraction of correlative
quantitative representation in several medical applications (17,
18). Recently, deep learning based on the convolutional neural
network has been considered as a stable, effective approach for
the feature extraction, classification, detection, and segmentation
tasks of radiologic images (17–20). It has been shown that a deep
learning-based radiomics signature based on US and SWE could
serve as a reliable and powerful tool for the prediction of axillary
lymph node status in early-stage breast cancer (21). However,
whether a deep learning-based radiomics signature can be used
to improve the diagnostic performance of B-mode US and SWE
for the classification of breast lesions remains unknown.

We hypothesized that deep learning-based radiomics
signatures derived from B-mode US images (B-US-RS) and
SWE images (SWE-RS) have better diagnostic performance than
those of quantitative SWE parameters and radiologist assessment
in classifying breast masses. The purpose of this study was to
develop B-US-RS and SWE-RS and determine their diagnostic
performances in classifying breast masses as compared with
quantitative SWE parameters and radiologist assessment.

MATERIALS AND METHODS

Patients and Lesions
This retrospective study was reviewed and approved by the ethics
committee of center 1 (Sun Yat-sen Memorial Hospital, Sun Yat-
sen University, Guangzhou, China) and center 2 (Guangdong
Provincial Traditional Chinese Medicine Hospital, Guangzhou,
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FIGURE 1 | The flowchart shows the enrollment pathway in this study and the distribution of patients in the training and validation cohorts. US, ultrasonography;
SWE, shear-wave elastography.

FIGURE 2 | Images show a grade 3 invasive ductal carcinoma in a 67-year-old woman. A standardized rectangular region of interest (ROI) was set for shear-wave
elastography (SWE) image acquisition, and stiffness was displayed as a color map in the rectangular ROI (A,B). Quantitative SWE parameters including Emax

(286.9 kPa), Emean (210.0 kPa), and Eratio (19.85) were measured by using two 2-mm2 round ROIs. One was placed within or adjacent to the mass to encompass
the maximum stiffness area, and the other one placed at the normal fatty tissue outside the lesion, but within the square ROI (A). Another round ROI adjusted to the
mass contour to encompass the maximum area of mass was used to measure ESD (41.4 kPa; (B)).

China). Patient informed consent was waived because of the
retrospective nature of this study. Between June 2015 and July
2017, 340 consecutive women who underwent breast B-mode US
and SWE examinations and had US-visible solid breast masses

were identified (Figure 1). The inclusion criteria were women
who had US-visible solid breast masses and who underwent
biopsy and/or surgical resection. The exclusion criteria were as
follows: (1) radiotherapy, chemotherapy, or breast biopsy before
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FIGURE 3 | Images show a fibroadenoma in a 41-year-old woman. Top left: The shear-wave elastography (SWE) image shows a homogeneous mass, the region of
interest encompassing the whole mass, and the contour line located in the border of the mass. Bottom left: B-mode ultrasonography (US) image shows an irregular
hypoechoic mass considered to be a Breast Imaging Reporting and Data System category 3 lesion, and the region of interest encompassed the hypoechoic region
which represented the tumor. The segmented SWE image (top right in black box) and B-mode US image (bottom right in black box) were used for further deep
learning-based radiomic feature extraction.

B-mode US and SWE examinations; (2) a history of ipsilateral
breast surgery; (3) breast implant; (4) non-mass-type lesion; (5)
large breast masses (>4 cm) beyond the maximum range of SWE
detection; and (6) insufficient follow-up duration (<2 years of
follow-up for lesions with benign core biopsy findings).

Finally, 263 women (mean age = 40.9± 12.3 years, range = 18–
77 years) with 263 breast masses (mean size = 1.3 ± 0.6 cm,
range = 0.4–4.2 cm) from center 1 and 28 women (mean
age = 40.8 ± 12.1 years, range = 24–68 years) with 28 breast
masses (mean size = 1.3 ± 0.6 cm, range = 0.5–3.4 cm)
from center 2 were included for analysis. These 263 patients
from center 1 were divided 3:1 into the training cohort and
independent validation cohort. Among them, 198 patients (mean
age = 40.7 ± 12.1 years, range = 18–77 years) with 198 masses
(mean size = 1.3 ± 0.6 cm, range = 0.4–3.4 cm) between June
2015 and December 2016 were identified to comprise the training
cohort, which was used for radiomics signature construction,
and 65 patients (mean age = 41.5 ± 13.2 years, range = 19–
70 years) with 65 masses (mean size = 1.3± 0.6 cm, range = 0.4–
3.4 cm) between January 2017 and May 2017 were identified

as an independent validation cohort. Then, 28 patients with
28 masses between January 2017 and July 2017 from center 2
were identified as an external validation cohort. The 65 lesions
in the independent validation cohort and the 28 masses in the
external validation cohort were not used for radiomics signature
development. There were no significant differences in the age
(P = 0.90) and mass size (P = 0.96) between the training and the
two validation cohorts.

In the training and validation cohorts, all masses were
pathologically confirmed through US-guided core needle biopsy
after breast B-mode US and SWE examination. The mass was
resected in any malignant, atypical, or high-risk core biopsy
result (i.e., lobular carcinoma in situ, atypical ductal hyperplasia,
radial scar, and papillary lesion) and the diagnosis was confirmed
by surgical pathology. Surgical excision was performed for 102
masses (51.5%) in the training cohort, 21 masses (32.3%) in
the independent validation cohort, and 14 masses (50%) in
the external validation cohort. For benign masses not treated
by surgical resection, the diagnosis was further confirmed by
follow-up US. The mean duration of follow-up with the US was
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FIGURE 4 | Images show a grade 3 invasive ductal carcinoma in a 58-year-old woman. Top left: The shear-wave elastography (SWE) image shows a
non-homogeneous mass, the region of interest encompassing the whole mass and adjacent breast tissue, and the contour line located in the border of light blue
and green. Bottom left: B-mode ultrasonography (US) image shows an irregular hypoechoic mass considered to be a Breast Imaging Reporting and Data System
category 4c lesion, and the region of interest encompassed the hypoechoic region which represented the tumor. The segmented SWE image (top right in black box)
and B-mode US image (bottom right in black box) were used for further deep learning-based radiomic feature extraction.

31 months (range = 24–42 months), and lesion stability was
confirmed in all patients.

B-Mode US and SWE Acquisition
The B-mode US and SWE acquisition were performed by one of
the two radiologists (BO and ML) in center 1 and one radiologist
(Shulian Zhuang) in center 2 by using the US system (Aixplorer,
SuperSonic Imagine, Aix-en-Provence, France) equipped with a
multifrequency linear transducer (SL15–4, SuperSonic Imagine,
Aix-en-Provence, France) operating at 4–15 MHz, according
to the American Institute of Ultrasound in Medicine practice
guidelines (3). The three radiologists had 15, 5, and 5 years of
breast US experience, respectively, and at least 4 years (at least
150 patients per year) of experience of breast SWE. Clinical
and mammographic findings (if any) of patients were available
before B-mode US and SWE acquisition. After the B-mode US,
the SWE image was acquired at a plane that showed the largest
diameter of the breast mass. During SWE image acquisition, the

scanning pressure applied by the operator was as low as possible
to reduce artifactual stiffness, and the probe was kept still with
no pressure being applied to the mass for a few seconds until
the stable image was build up; meanwhile, patients were asked
to hold their breath. A rectangular region of interest (ROI) was
set for SWE acquisition. The size and location of the ROI were
standardized, as previously reported (22). The stiffness in the ROI
was displayed as a color map. This color-coded map represents
quantitative values for the Young elastic modulus (in kilopascals)
at each pixel, on which very soft tissues were coded in dark blue
and areas of increasing stiffness were coded in light blue, green,
orange, and red (22).

Radiologist Assessment and SWE
Quantitative Analysis
In center 1, the radiologist assessment of the BI-RADS categories
was recorded by one of two radiologists (B.O. or M.L.) after
B-mode US imaging acquisition according to the American

Frontiers in Oncology | www.frontiersin.org 5 August 2020 | Volume 10 | Article 1621

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


fonc-10-01621 August 27, 2020 Time: 18:41 # 6

Zhang et al. Deep Learning for Breast Mass Classification

FIGURE 5 | Major steps for the image acquisition, segmentation, and deep learning-based radiomic feature extraction method. SWE, shear-wave elastography; US,
ultrasonography; and Conv, convolutional layer.

Institute of Ultrasound in Medicine practice guidelines (3). The
other radiologist reviewed the assessment result, and in the
case of a disagreement, a consensus was reached. In center
2, the radiologist assessment of the BI-RADS categories was
recorded by the radiologist (S.L.Z.). The expected malignancy
rates of the BI-RADS categories (23) are as follows: category
3 (probably benign, ≤2% likelihood of malignancy); category
4a (low suspicion of malignancy, >2%, but ≤10% likelihood of
malignancy); category 4b (intermediate suspicion of malignancy,
>10%, but ≤50% likelihood of malignancy); category 4c
(moderate suspicion of malignancy, >50%, but <95% likelihood
of malignancy); and category 5 (highly suggestive of malignancy,
≥95% likelihood of malignancy).

The quantitative SWE parameters were independently
measured by one of the radiologists (B.O. or M.L.) in center 1
and the radiologist (S.L.Z.) in center 2 who had performed the
B-mode US and SWE imaging. Quantitative SWE parameters
were measured by using two 2-mm2 round ROIs. The method of
ROI placement is shown in Figure 2. One round ROI was placed
within or adjacent to the mass to encompass the maximum
stiffness area, but not including the tissue outside the lesion
displayed on the B-mode image, and the other round ROI was
placed at the normal fatty tissue outside the lesion, but within
the rectangular ROI which was set for SWE acquisition (7, 13).
Quantitative SWE parameters, including maximum elasticity
(Emax), mean elasticity (Emean), and elasticity ratio (Eratio), were
automatically calculated and visualized by the US system. Eratio
is the ratio of the Emean in the maximum stiffness area of the

mass to the Emean in the ROI in the normal fatty tissue outside
the lesion. Then, a round ROI adjusted to the mass contour to
encompass the maximum area of mass was placed on the B-mode
image, and the elastic modulus standard deviation (ESD) was
automatically calculated. For each patient, these four quantitative
SWE parameters were measured three times, and the maximum
of Emax and the median of Emean, Eratio, and ESD were selected
for analysis. The same view of B-mode US and SWE images
displaying the maximal diameter of the lesion was used for
further imaging segmentation. Quantitative SWE parameters
were not used for the assessment of the BI-RADS category.

Lesion Segmentation
The recorded B-mode US and SWE images were manually
segmented using an open-source imaging platform (ITK-SNAP,
version 3.6.0; www.itksnap.org) by one investigator (investigator
1: M.L., with 5 years of experience in breast US, and 4 years of
experience in breast SWE) who was blinded to the pathologic
results of breast lesions. For the segmentation of the B-mode
US images, a two-dimensional ROI was drawn on the B-mode
grayscale US image, encompassing the hypoechoic region, which
represents the mass. For the segmentation of the SWE image,
the B-mode US image was used as a reference, and a two-
dimensional ROI was drawn on the SWE color-coded image
within the regions of square ROI embedded. Homogeneous
masses (often soft masses and dark blue or light blue on SWE)
are less likely to be malignant lesions, while non-homogeneous
masses (often stiff masses and orange or red on SWE) are more
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likely to be malignant lesions on SWE images (7). Thus, the
ROI encompassed the whole mass, and the contour line was
placed along the border of the mass on the B-mode US image
for homogeneous masses (Figure 3). The ROI covered the whole
mass and adjacent breast tissue for non-homogeneous masses
(Figure 4) as the maximum area of stiffness in malignant lesions
is always found in the peritumoral region rather than in the lesion
itself (24).

Among the 198 masses in the training cohort, 50 masses
were randomly selected, and the same segmentation procedure
was repeated by the other investigator (investigator 2: JW, with
8 years of experience in breast US and 3 years of experience in
breast SWE imaging) who was blinded to the pathologic result
and then repeated by investigator 1 one month later. The intra-
and inter-rater reproducibility of breast lesion segmentation was
performed by using the Dice similarity coefficient (25). The intra-
and inter-rater reproducibility of deep learning-based radiomic
feature extraction was also assessed, and the intra- and interclass
correlation coefficients (ICC) were calculated. A Dice similarity
coefficient ranging from 0.75 to 1.00 was defined as an excellent
agreement, from 0.50 to 0.74 as a good agreement, from 0.25
to 0.49 as a moderate agreement, and less than 0.25 as a poor
agreement (26). An ICC ranging from 0.81 to 1.00 was defined
as an almost perfect agreement, from 0.61 to 0.80 as a substantial
agreement, from 0.41 to 0.60 as a moderate agreement, from
0.21 to 0.40 as a fair agreement, and from 0 to 0.20 as weak
or no agreement (27). An ICC greater than 0.6 is considered a
satisfactory agreement for deep learning-based radiomic feature
extraction (28).

Radiomic Feature Extraction
Radiomic features can be extracted through deep learning
approaches (29). The extracted deep learning-based radiomic
features could be adaptively learned from images and better
correlated with the specific image datasets. Thus, the deep
learning-based radiomic features of masses were, respectively,
extracted from B-mode US and SWE images by using
an open-source platform (Tensorflow, version 1.7.0; https://
www.tensorflow.org). To extract deep learning-based radiomic
features, a convolutional neural network, which mainly contains
two blocks of convolution and pool layers followed by three fully
connected layers, was used (Figure 5). The bounding box of
ROIs was, respectively, extracted from the segmented B-mode US
and SWE images and resized to the dimension of 430 × 302 as
the input. Two convolutional layers with a kernel size of 3 × 3
and depths of 32 and 64 were utilized, and the “rectified linear
unit (ReLU)” operator was used as the activation function. Each
convolutional layer was followed by a max pooling layer (kernel
size, 2 × 2) to refine the features and reduce computational
complexity. After the second convolutional layer, the flattened
feature map was connected with a fully connected layer with
nodes of 512, a dropout layer with the rate of 0.5, and two more
fully connected layers with nodes of 256 and 2, respectively. The
diagnosis of each case as benign or malignant was used as the
training label. To train and fine-tune the network, the original
training set was further divided into a training and an internal
validation set at the ratio of 8:2. On-the-fly data augmentations
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such as horizontal and vertical image flipping and rescaling were
performed during the training to improve training data variety.
The network was trained by 80 epochs using a stochastic gradient
descent optimizer with a learning rate of 0.01 and category cross-
entropy as the loss function. The best model was selected based
on performance evaluated on the internal validation set. After the
network is well trained, the output feature maps of the second
and third to the last fully connected layers were defined as the
deep learning-based radiomic features, which have a dimension
of 768. The source code and the trained model supporting the
finding of this study are available at https://github.com/biototem/
ultrasound_image_classification.

Feature Selection, Development, and
Validation of Radiomics Signature
A three-step procedure was performed for dimensionality
reduction, robust deep learning-based radiomic feature selection,
and radiomics signature construction. Firstly, the deep learning-
based radiomic features with both intra-rater (reader 1 for twice
assessment) and inter-rater (reader 1 and reader 2) ICC > 0.6
were selected (28). Secondly, the deep learning-based radiomic
features were reduced by using the least absolute shrinkage
and selection operator (LASSO) regression method, which is
available for the regression of high-dimensional data (30). The
LASSO regression method was used to select the breast mass
classification-related features with non-zero coefficients from
the training cohort. Lastly, the radiomics score (rad-score) was
computed for each patient through the LASSO regression with
a combination of selected features weighted by their respective
coefficients. Both feature selection and the subsequent radiomics
signature development were performed in the training cohort.
The performance of the obtained radiomics signature was,
respectively, evaluated using an independent validation cohort
and an external validation cohort, which was not used for
model development.

Statistical Analysis
All numerical data were presented as the mean ± standard
deviation, unless otherwise indicated. Continuous variables,
including the age and maximum diameter of the lesion
between the benign and malignant groups in the training and
validation cohorts, were compared by using Student’s t test or
Mann–Whitney U test, when appropriate. Categorical variables,
including clinical symptoms, side of the lesion, and family history
of breast cancer, were compared by using the χ2 test. LASSO
regression was used to select the deep learning-based radiomic
features by using the in-house package, including “matrix,”
“foreach,” “pROC,” and “glmnet,” of R software (version 3.0.1;
R Foundation for Statistical Computing, 2013). The sensitivity,
specificity, and likelihood ratio were calculated, and the Youden
index was used to determine the optimal threshold. The
sensitivity and specificity of the SWE-RS, B-US-RS, quantitative
SWE parameters, and the BI-RADS category were compared by
using the McNemar test. The areas under the receiver operating
characteristic curves (AUCs) were compared by using the method
proposed by DeLong (31). The interpretation of the likelihood
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FIGURE 6 | Scatter plots of the radiomics score between benign and malignant lesions in the training, independent validation, and external validation cohorts. The
dots represent the distribution of the radiomics score; the dots at the top and bottom represent the maximum and minimum values of the radiomics score,
respectively. The long horizontal line in the middle represents the median; the top and bottom of the whiskers represent the 75th and 25th percentiles, respectively.
B-US-RS, deep learning-based radiomics signature of B-mode ultrasonography; SWE-RS, deep learning-based radiomics signature of shear-wave elastography.

ratio was based on the guide proposed by Jaeschke et al. (32), in
which likelihood ratios greater than 10 or less than 0.1 generate
large and often conclusive changes in the posttest probability,
likelihood ratios between 5 and 10 or 0.1 and 0.2 generate
moderate shifts in posttest probability, and likelihood ratios less
than 5 or greater than 0.2 generate small changes in probability.
Statistical analysis was performed using SPSS (version 22.0; IBM,
2013; continuous and categorical variables, ICC, and sensitivity
and specificity calculation and comparison) and R software
[receiver operating characteristic (ROC), comparison of AUCs,
and LASSO regression]. A two-sided P value less than 0.05 was
considered to indicate statistical significance. The P value for

statistical significance was corrected by Bonferroni correction
when multiple testing was used.

RESULTS

Clinicopathologic Characteristics of
Breast Lesions
The clinicopathologic characteristics of 291 patients are shown in
Table 1. The BI-RADS categories are shown in Table 2. There
were 291 masses assessed. Among the 291 masses, 87 (29.9%)
were malignant and 204 (70.1%) were benign. The age of the
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TABLE 3 | Diagnostic performances of B-US-RS, SWE-RS, quantitative SWE parameters, and BI-RADS assessment in the training cohort.

Parameter Threshold Sensitivity
(%)*

Specificity
(%)*

AUC* Positive
likelihood

ratio

Negative
likelihood

ratio

B-US-RS −1.28 100 (92–100)
[58/58]

99 (96–100)
[139/140]

0.99
(0.99–1.00)

140
(19.86–986.92)

0 (0–0)

SWE-RS −0.24 98 (99–100)
[57/58]

100 (97–100)
[140/140]

0.99
(0.99–1.00)

∞ 0.02
(0.0025–0.12)

Quantitative SWE parameter

Emax (kPa) >46.45 83 (70–91)
[48/58]

88 (81–93)
[123/140]

0.92
(0.88–0.96)

6.82
(4.30–10.80)

0.20
(0.11–0.34)

Emean (kPa) >35.35 83 (70–91)
[48/58]

91 (85–95)
[128/140]

0.91
(0.86–0.96)

9.66
(5.55–16.80)

0.19
(0.11–0.33)

Eratio (kPa) >4.15 76 (63–86)
[44/58]

89 (82–93)
[124/140]

0.86
(0.79–0.92)

6.64
(4.09–10.8)

0.27
(0.17–0.43)

ESD (kPa) >10.35 76 (63–86)
[44/58]

94 (88–97)
[131/140]

0.92
(0.88–0.96)

11.8
(6.17–22.57)

0.26
(0.16–0.41)

Combined quantitative SWE parameters −0.87 83 (70–91)
[48/58]

93 (87–96)
[130/140]

0.92
(0.88–0.97)

11.59
(6.30–21.30)

0.18
(0.10–0.33)

BI-RADS category at US >3 95 (85–99)
[55/58]

54 (46–63)
[76/140]

0.94
(0.89–0.98)

2.07
(1.71–2.51)

0.09
(0.03–0.29)

Data in parentheses are 95% confidence intervals and data in brackets are raw data. US, ultrasonography; RS, radiomics signature; SWE, shear-wave elastography;
BI-RADS, Breast Imaging Reporting and Data System; and AUC, area under the curve. *P values for statistical significance are corrected to 0.008 for multiple testing
using Bonferroni correction.

patients with malignant masses was greater than the patients
with benign ones in the training and the two validation cohorts
(P < 0.001 for all). Among all 291 women, 153 (52.6%) had
clinical symptoms, including a palpable breast mass (n = 142)
and nipple discharge (n = 11), and the remaining 138 (47.4%)
women were asymptomatic. One hundred and thirty-seven
(47.1%) women had right breast lesions and 154 (52.9%) women
had left breast masses. Overall, the maximum diameter of the
malignant masses was larger than that of the benign lesions
either in the training cohort (mean size = 1.6 ± 0.7 cm vs.
1.2 ± 0.5 cm; P < 0.001) or the independent validation cohort
(mean size = 1.7± 0.7 cm vs. 1.2± 0.5 cm; P = 0.002).

Feature Selection
The intra-rater Dice similarity coefficient calculated based on
reader 1’s twice segmentation ranged from 0.82 to 0.97 on the
B-mode US image and from 0.81 to 0.93 on the SWE image,
and the inter-rater Dice similarity coefficient calculated based on
reader 1’s first-extracted features and those of reader 2 ranged
from 0.78 to 0.97 on the B-mode US image and from 0.76 to
0.91 on the SWE image, indicating an excellent intra- and inter-
rater consistency for lesion segmentation. The intra-rater ICC
ranged from 0.47 to 0.98 on the B-mode US image and from
0.51 to 0.97 on the SWE image, and the inter-rater ICC ranged
from 0.41 to 0.95 on the B-mode US image and from 0.61 to
0.91 on the SWE image, indicating a satisfactory intra- and inter-
rater reproducibility for deep learning-based radiomic feature
extraction. Among the 768 deep learning-based radiomic features
from the B-mode US and 768 deep learning-based radiomic
features from SWE, 472 features with ICC > 0.6 from B-mode
US and 577 features with ICC > 0.6 from SWE were selected,
respectively. Between the selected features for reader 1 twice as

well as reader 1 and reader 2, no statistically significant difference
was found either in the 472 features from B-mode US (P values
ranged from 0.55 to 0.88) or the 577 features from SWE (P
values ranged from 0.46 to 0.81). Therefore, further analysis
regarding the radiomics signature construction was based on
the deep learning-based radiomic features extracted by reader
1. According to the results of the LASSO regression, seven
deep learning-based radiomic features of B-mode US and four
deep learning-based radiomic features of SWE were, respectively,
selected for the development of B-US-RS and SWE-RS. The
radiomics signature of B-mode US and SWE was, respectively,
constructed, with the rad-score calculated, by using the following
formulas: rad-score for B-US = 3.6044336-0.3351454 × US 747-
0.5255682 × US 637-0.2029134 × US 535-0.8266571 × US
719-0.7043252 × US 518-0.7884457 × US 565-0.9791398 × US
532. The rad-score for SWE = 2.496014-0.3666784 × SWE 518-
1.4319200× SWE 532-0.4749501× SWE 565-0.2671713× SWE
719. The rad-scores between the benign and malignant lesions
in the training, independent validation, and external validation
cohorts are shown in Figure 6 and Supplementary Table S1.

Diagnostic Performances of B-US-RS,
SWE-RS, Quantitative SWE Parameters,
and BI-RADS Assessment in the Training
Cohort
The training cohort included 198 masses, of which 140
(70.7%) were benign and 58 (29.3%) were malignant. The
diagnostic performances of B-US-RS, SWE-RS, quantitative SWE
parameters, and BI-RADS assessment in the training cohort
are shown in Table 3. The quantitative SWE parameters,
including Emax, Emean, Eratio, and ESD, were significantly higher
in malignant lesions than in benign lesions (P < 0.001
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FIGURE 7 | Box-and-whisker plots of Emax, Emean, Eratio, and ESD in malignant and benign lesions in the training cohort. The top and bottom of each box represent
the 75th and 25th percentiles, respectively. The horizontal line in each box represents the median; the top and bottom of the whiskers represent the minimum and
maximum values, respectively. Emax, Emean, Eratio, and ESD were significantly higher in malignant lesions than in benign lesions (P < 0.001 for all).

for all; Figure 7). Among these SWE parameters, Emax
achieved the highest AUC [0.92; 95% confidence interval
(CI) = 0.88–0.96] and was chosen for further comparative
analysis, though there were no significant differences in
the AUCs between Emax and Emean (P = 0.45) as well
as Emax and ESD (P = 0.91). Moreover, no significant
difference was found in the AUCs between Emax and the four
quantitative SWE parameters combined (0.92; 95% CI = 0.88–
0.97, P = 0.81). The AUCs were not significantly different
between Emax and BI-RADS assessment (0.94; 95% CI = 0.89–
0.98, P = 0.36). The specificity of Emax was higher (P < 0.001)

while its sensitivity was lower (P = 0.04) than that of BI-
RADS assessment.

The AUCs of B-US-RS and SWE-RS both were 0.99 (95%
CI = 0.99–1.00), which were higher than those of Emax (P < 0.001
for both) and BI-RADS assessment (P = 0.008 and 0.009,
respectively; Figure 8). There was no significant difference in the
AUCs between B-US-RS and SWE-RS (P = 0.37). The sensitivity
and specificity of B-US-RS and SWE-RS were higher than their
counterparts of Emax (P = 0.001 and < 0.001, respectively, for
B-US-RS; P = 0.04 and < 0.001, respectively, for SWE-RS).
Among B-US-RS, SWE-RS, Emax, and BI-RADS assessment, only
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FIGURE 8 | Receiver operating characteristic curves show the diagnostic performance of the Breast Imaging Reporting and Data System (BI-RADS) assessment
(A), Emax (B), deep learning-based radiomics signature of B-mode ultrasonography (B-US-RS; C), and deep learning-based radiomics signature of shear-wave
elastography (SWE-RS; D) in the training cohort. The area under the receiver operating characteristic curves (AUCs) of B-US-RS (AUC = 0.99) and SWE-RS
(AUC = 0.99) were both higher than that of Emax (AUC = 0.92, P < 0.001 for both), while there was no significant difference in the AUCs between B-US-RS and
SWE-RS (P = 0.37), as well as between Emax and BI-RADS assessment (P = 0.36).

B-US-RS and SWE-RS achieved a positive likelihood ratio greater
than 10 and a negative likelihood ratio less than 0.1.

Diagnostic Performances of B-US-RS,
SWE-RS, Quantitative SWE Parameters,
and BI-RADS Assessment in the
Independent Validation Cohort
The independent validation cohort included 65 masses, of
which 46 (70.8%) were benign and 19 (29.2%) were malignant.
The diagnostic performances of B-US-RS, SWE-RS, quantitative

SWE parameters, and BI-RADS assessment in the validation
cohort are shown in Table 4. The quantitative SWE parameters,
including Emax, Emean, Eratio, and ESD, were significantly higher
in malignant lesions than in benign lesions (P < 0.001 for
all; Supplementary Figure S1). There were no significant
differences in the AUCs among these four quantitative SWE
parameters (P = 0.22–0.70) and between Emax (0.93; 95%
CI = 0.85–1.00) and the quantitative SWE parameters combined
(0.94; 95% CI = 0.88–1.00, P = 0.67), as well as between
Emax and BI-RADS assessment (0.99; 95% CI = 0.97–1.00,
P = 0.18). Emax had a higher specificity than BI-RADS
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TABLE 4 | Diagnostic performances of B-US-RS, SWE-RS, quantitative SWE parameters, and BI-RADS assessment in the independent validation cohort.

Parameter Threshold Sensitivity
(%)*

Specificity
(%)*

AUC* Positive
likelihood

ratio

Negative
likelihood

ratio

B-US-RS −1.28 100 (79–100)
[19/19]

100 (90–100)
[46/46]

1.00
(1.00–1.00)

∞ 0

SWE-RS −0.24 100 (79–100)
[19/19]

100 (90–100)
[46/46]

1.00
(1.00–1.00)

∞ 0

Quantitative SWE parameter

Emax (kPa) >46.45 84 (60–96)
[16/19]

89 (76–96)
[41/46]

0.93
(0.85–1.00)

7.75
(3.31–18.1)

0.18
(0.06–0.50)

Emean (kPa) >35.35 84 (60–96)
[16/19]

96 (84–99)
[44/46]

0.91
(0.80–1.00)

19.37
(4.92–76.17)

0.16
(0.06–0.47)

Eratio (kPa) >4.15 89 (66–98)
[17/19]

87 (73–95)
[40/46]

0.90
(0.80–1.00)

6.86
(3.20–14.70)

0.12
(0.03–0.45)

ESD (kPa) >10.35 90 (66–98)
[17/19]

96 (84–99)
[44/46]

0.95
(0.89–1.00)

20.58
(5.26–80.52)

0.11
(0.03–0.41)

Combined quantitative SWE parameters −0.87 84 (60–96)
[16/19]

96 (84–99)
[44/46]

0.94
(0.88–1.00)

19.37
(4.92–76.17)

0.16
(0.06–0.47)

BI-RADS category at US >3 100 (79–100)
[19/19]

54 (39–69)
[25/46]

0.99
(0.97–1.00)

2.19
(1.59–3.00)

0 (0–0)

Data in parentheses are 95% confidence intervals and data in brackets are raw data. US, ultrasonography; RS, radiomics signature; SWE, shear-wave elastography;
BI-RADS, Breast Imaging Reporting and Data System; and AUC, area under the curve. *P values for statistical significance are corrected to 0.008 for multiple testing
using Bonferroni correction.

assessment (P < 0.001), and they had similar sensitivity
(P = 0.07).

The AUCs of B-US-RS and SWE-RS both were 1.00 (95%
CI = 1.00–1.00). There was no significant difference between
B-US-RS and SWE-RS (P > 0.99). The AUCs of B-US-RS and
SWE-RS were not significantly different from those of Emax
(P = 0.12 for both) and BI-RADS assessment (P = 0.18 for
both; Supplementary Figure S2). The specificities of B-US-RS
and SWE-RS were both higher than that of Emax (P = 0.02
for both), while the sensitivity was not significantly different
(P = 0.07 for both). Among B-US-RS, SWE-RS, Emax, and
BI-RADS assessment, only B-US-RS and SWE-RS achieved a
positive likelihood ratio greater than 10 and a negative likelihood
ratio less than 0.1.

Diagnostic Performances of B-US-RS,
SWE-RS, Quantitative SWE Parameters,
and BI-RADS Assessment in the External
Validation Cohort
The external validation cohort included 28 masses, of which
18 (64.3%) were benign and 10 (35.7%) were malignant. The
diagnostic performances of B-US-RS, SWE-RS, quantitative SWE
parameters, and BI-RADS assessment in the validation cohort are
shown in Table 5. The quantitative SWE parameters, including
Emax (P = 0.001), Emean (P = 0.002), and Eratio (P = 0.01), were
significantly higher in malignant lesions than in benign lesions,
while there was no significant difference between malignant and
benign lesions in ESD (P = 0.28; Supplementary Figure S3).
There were no significant differences in the AUCs among these
four quantitative SWE parameters (P = 0.26–0.96) and between
Emax (0.90; 95% CI = 0.77–1.00) and the quantitative SWE
parameters combined (0.88; 95% CI = 0.73–1.00, P = 0.72),

as well as between Emax and BI-RADS assessment (0.87; 95%
CI = 0.70–1.00, P = 0.55). Emax and BI-RADS assessment had
similar specificity (P = 0.05) and sensitivity (P = 0.26).

The AUCs of B-US-RS and SWE-RS both were 1.00 (95%
CI = 1.00–1.00). There was no significant difference between
B-US-RS and SWE-RS (P > 0.99). The AUCs of B-US-RS and
SWE-RS were not significantly different from those of Emax
(P = 0.13 for both) and BI-RADS assessment (P = 0.14 for both;
Supplementary Figure S4). The specificity and sensitivity of
B-US-RS and SWE-RS were similar to those of Emax (P = 0.13 for
both and P = 0.06 for both, respectively). Among B-US-RS, SWE-
RS, Emax, and BI-RADS assessment, only B-US-RS and SWE-RS
achieved a positive likelihood ratio greater than 10 and a negative
likelihood ratio less than 0.1.

DISCUSSION

Our study showed that the deep learning-based radiomics
signatures developed either from the B-mode US or the SWE
images had a robust and superior diagnostic performance
in classifying breast masses. The specificities of both were
higher than those of the quantitative SWE parameters and BI-
RADS assessment.

B-mode US and SWE are frequently used in the workup of
patients with breast lesions. The classification of breast lesions
on the B-mode US is primarily based on the morphological
features with a resultant BI-RADS category. This approach has
high sensitivities ranging from 95 to 97%, but low specificities
ranging from 55 to 68%, in the differentiation between benign
and malignant breast masses (33). Quantitative SWE parameters
have been reported to be able to classify breast lesions with a
specificity of 86% and a sensitivity of 84% (14). Among the
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TABLE 5 | Diagnostic performances of B-US-RS, SWE-RS, quantitative SWE parameters, and BI-RADS assessment in the external validation cohort.

Parameter Threshold Sensitivity (%)* Specificity (%)* AUC* Positive
likelihood

ratio

Negative
likelihood

ratio

B-US-RS −1.28 100 (79–100)
[10/10]

100 (90–100)
[18/18]

1.00
(1.00–1.00)

∞ 0

SWE-RS −0.24 100 (79–100)
[10/10]

100 (90–100)
[18/18]

1.00
(1.00,1.00)

∞ 0

Quantitative SWE parameter

Emax (kPa) >46.45 70 (35–92)
[7/10]

89 (64–98)
[16/18]

0.90
(0.77–1.00)

6.30
(1.60–24.75)

0.34
(0.13–0.88)

Emean (kPa) >35.35 70 (35–92)
[7/10]

94 (71–100)
[17/18]

0.86
(0.69–1.00)

12.6
(1.80–88.34)

0.32
(0.12–0.82)

Eratio (kPa) >4.15 70 (35–92)
[7/10]

89 (64–98)
[16/18]

0.86
(0.69–1.00)

6.30
(1.60–24.75)

0.34
(0.13–0.88)

ESD (kPa) >10.35 80 (44–96)
[8/10]

89 (64–98)
[16/18]

0.89
(0.75–1.00)

7.20
(1.88–27.58)

0.22
(0.06–0.79)

Combined quantitative SWE parameters −0.87 70 (35–92)
[7/10]

94 (71–100)
[17/18]

0.88
(0.73–1.00)

12.6
(1.80–88.34)

0.32
(0.12–0.82)

BI-RADS category at US >3 90 (54–100)
[9/10]

39 (18–64)
[7/18]

0.87
(0.70–1.00)

1.47
(0.96–2.25)

0.26
(0.03–1.96)

Data in parentheses are 95% confidence intervals and data in brackets are raw data. US, ultrasonography; RS, radiomics signature; SWE, shear-wave elastography;
BI-RADS, Breast Imaging Reporting and Data System; and AUC, area under the curve. *P values for statistical significance are corrected to 0.008 for multiple testing
using Bonferroni correction.

quantitative SWE parameters, Emax, Emean, Eratio, and ESD are the
most commonly used indexes for the differential diagnosis (7, 22).
It has been demonstrated that quantitative SWE measurement,
such as Emax, has better diagnostic performance than radiologist
interpretation of BI-RADS on B-mode US in differentiating
malignant breast tumors from benign ones (7, 13). In our
study, among the four quantitative SWE parameters, Emax had
the highest AUC in the training cohort and was the best-
performing quantitative SWE parameter in classifying breast
lesions. The specificity of Emax was higher than that of the
BI-RADS assessment both in the training cohort and in the
independent validation cohort, which was in agreement with
other studies (7, 13). Moreover, our results showed that the
combination of all four quantitative SWE parameters did not
achieve better performance than Emax either in the training
cohort or validation cohort, which was consistent with the finding
of the BE1 Multinational Study (7). Taken together, the diagnostic
performances of Emax and BI-RADS assessment are comparable,
and the addition of Emax can improve the specificity without loss
of sensitivity for classifying breast lesions.

Recently, radiomics analysis based on US images has been
shown to be able to improve the diagnostic accuracy for
breast tumor classification with an AUC up to 0.922 (34).
A convolutional neural network-based radiomics model has been
proposed to automatically extract features from SWE data for
classifying malignant and benign breast tumors, reaching an
accuracy of 95.8%, a sensitivity of 96.2%, and a specificity of
95.7% (35). Besides, a deep learning model has been developed to
automatically extract features from the SWE image and classify
breast tumors, reaching an accuracy of 93.4%, a sensitivity of
88.6%, a specificity of 97.1%, and an AUC of 0.947 (36). However,
in these two deep learning studies, the B-mode US data were

not used for analysis. The performances of two deep learning
models were not compared with the quantitative SWE parameters
and BI-RADS assessment. In our study, deep learning-based
radiomics analysis was applied to SWE images as well as
B-mode US images. The radiomics signatures developed from
B-mode US and the SWE images showed comparable, superior
performance for the classification of breast masses in the training
(AUC = 0.99 for both), independent validation (AUC = 1.00
for both), and external validation cohorts (AUC = 1.00 for
both). Comparatively, the SWE-RS in our study had a higher
diagnostic performance than that reported previously (35, 36).
Moreover, our study showed that the diagnostic performances
of B-US-RS and SWE-RS were both higher than those of the
quantitative SWE parameters and BI-RADS assessment. These
results suggest that either the SWE-based or B-mode US-based
radiomics signature with a deep learning approach can be
applied to further improve the classification ability for breast
masses. Based on these radiomics signatures, a patient with a
malignant breast tumor would be correctly selected for prompt
interventional procedure, while a patient with a benign breast
tumor would safely receive follow-up or continued surveillance
rather than an invasive biopsy. The integration of deep learning-
based radiomics signatures into B-mode US or SWE would
be favorable for clinical decision making in patients with
breast masses.

Our study has several limitations. Firstly, this study was a
bicenter study, and images were obtained on the equipment from
the same vender. Considering the superior performance, these
radiomics signatures are worthy of further validation in future
large-scale, multicenter, and multi-vendor studies. Secondly, only
the two-dimensional, but not three-dimensional, SWE images
were used for deep learning-based radiomic feature extraction
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and radiomics signature development. The three-dimensional
SWE was not readily available in clinics, and it was considered
that the diagnostic performance of the three-dimensional SWE
image is similar to that of the two-dimensional SWE or even
inferior to the two-dimensional SWE after adding to B-mode
US (37, 38). Thirdly, image segmentation of breast lesions was
performed manually in our study, which was a time-consuming
task for a large database. Future automatic segmentation methods
could be expected with the development of a deep learning-based
radiomic feature extraction algorithm.

In conclusion, two robust deep learning-based radiomics
signatures developed from B-mode US images and SWE images
have been described. Both of them outperformed the quantitative
SWE parameters and BI-RADS assessment for classifying breast
masses. The integration of this deep learning-based radiomics
approach to B-mode US and SWE would help improve the
classification ability of the US for breast lesions.
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