AUTHOR=Yuan Taoyang , Ying Jianyou , Zuo Zhentao , Jin Lu , Gui Songbai , Gao Zhixian , Li Guilin , Wang Rui , Zhang Yazhuo , Li Chuzhong TITLE=Contrahemispheric Cortex Predicts Survival and Molecular Markers in Patients With Unilateral High-Grade Gliomas JOURNAL=Frontiers in Oncology VOLUME=10 YEAR=2020 URL=https://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2020.00953 DOI=10.3389/fonc.2020.00953 ISSN=2234-943X ABSTRACT=

Background: Malignant high-grade gliomas are characterized by infiltration and destruction of surrounding brain tissue. Alterations in the contrahemispheric brain structure and their roles that may offer prognostically valuable information have not been investigated in high-grade gliomas.

Methods: In total, 153 patients with unilateral glioma (low-grade, n = 77; high-grade, n = 76) and 115 healthy controls (HCs) were recruited and scanned with 3-D T1 imaging. The gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) volume in the contrahemisphere were examined. Partial correlation, logistic regression, and multivariate Cox's regression analyses were performed.

Results: The contrahemispheric GM volume (CHGMV) in the high-grade glioma patients was significantly decreased compared to that in the HCs/low-grade gliomas (one-way ANOVA, Bonferroni corrected, p < 0.05). The CHGMV is significantly correlated with the WHO grade (r = −0.22, p < 0.05) and contrast-enhanced volume (r = −0.33, p < 0.01). In the high-grade gliomas, the binary logistic regression revealed that the CHGMV can independently predict isocitrate dehydrogenase 1 (IDH1) and P53 mutations. The survival curves revealed that the patients with a low CHGMV had a shorter overall survival (OS) than the patients with a high CHGMV (p = 0.001). The multivariate Cox's regression analysis showed that a low CHGMV can independently predict unfavorable OS with a hazard ratio of 2.883 (p = 0.035).

Conclusions: Volume of the contrahemispheric cortex can be potentially used in clinical practice as an imaging biomarker to predict survival and molecular markers in patients with unilateral high-grade gliomas.