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MRI in combination with genomic markers are critical in the management of gliomas.

Radiomics and radiogenomics analysis facilitate the quantitative assessment of tumor

properties which can be used to model both molecular subtype and predict disease

progression. In this work, we report on the Drosophila gene capicua (CIC) mutation

biomarker effects alongside radiomics features on the predictive ability of CIC mutation

status in lower-grade gliomas (LGG). Genomic data of lower grade glioma (LGG) patients

from The Cancer Genome Atlas (TCGA) (n = 509) and corresponding MR images

from TCIA (n = 120) were utilized. Following tumor segmentation, radiomics features

were extracted from T1, T2, T2 Flair, and T1 contrast enhanced (CE) images. Lasso

feature reduction was used to obtain the most important MR image features and then

logistic regression used to predict CIC mutation status. In our study, CIC mutation rarely

occurred in Astrocytoma but has a high probability of occurrence in Oligodendroglioma.

The presence of CIC mutation was found to be associated with better survival of

glioma patients (p < 1e−4, HR: 0.2445), even with co-occurrence of IDH mutation

and 1p/19q co-deletion (p = 0.0362, HR: 0.3674). An eleven-feature model achieved

glioma prediction accuracy of 94.2% (95% CI, 94.03–94.38%), a six-feature model

achieved oligodendroglioma prediction accuracy of 92.3% (95% CI, 91.70–92.92%).

MR imaging and its derived image of gliomas with CIC mutation appears more complex

and non-uniform but are associated with lower malignancy. Our study identified CIC as

a potential prognostic factor in glioma which has close associations with survival. MRI

radiomic features could predict CIC mutation, and reflect less malignant manifestations

such as milder necrosis and larger tumor volume in MRI and its derived images that could

help clinical judgment.
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INTRODUCTION

Glioma is the most common primary tumor in the adult central nervous system (CNS). High-grade
gliomas (grade IV) have poor median survival [∼14 months (1)] compared with grade II and
III (2). In 2016, the World Health Organization (3) updated its glioma classification scheme to
incorporate genomic information including IDH (Isocitrate dehydrogenase) mutation and 1p/19q
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codeletion (4). In addition to facilitating the diagnosis of gliomas,
genomic information is also used in guiding the extent of surgical
tumor resection and therapeutic strategy. In patients with IDH
mutation, gross total resection (GTR) has been found to result
in longer survival times compared to non-GTR (5, 6). Although
confirming the genetic status of glioma is instructive for surgery
and post-surgical treatment, it is still subject to methodological
limitations. Neurosurgical biopsies during craniotomy are the
current standard used to obtain genomic information about
glioma. However, a single biopsy is unlikely to represent the full
set of mutations present in the cancer due to high tumor genomic
and histological heterogeneity (7–9). Therefore, there is a need
to develop a method that can reflect the global characteristics
of gliomas which is robust to regional variation and provides
clinically actionable conclusions.

The homolog of the Drosophila gene capicua (CIC) gene is
a member of the high mobility group (HMG)-box superfamily
of transcriptional repressors on chromosome 19q. The role of
CIC mutations in human disease is still unclear. It has been
reported that CIC mutation promotes glioma cell proliferation,
differentiation, and aggression and results in a poor outcome
(10–12). However, Jiao et al. (13) found that patients with IDH
mutations combined with either 1p19q loss, FUBP1 mutations,
or CIC mutations will have longer overall survival than patients
with IDH mutations combined with ATRX mutation. However,
because CIC mutation is closely related to IDH mutation and
1p/19q co-deletion, whether CIC mutation is an independent
prognostic factor remains to be clarified. In addition, CIC
mutation tends to occur in oligodendroglioma but not in the
astrocytoma (14, 15). But associated studies are mainly based on
the 2007 WHO classification; whether these findings will remain
when employing the latest 2016 WHO classification still needs to
be explored.

Because of the heterogeneity of gliomas, genomic and
histological data obtained from biopsies can fail at representing
the entire glioma heterogeneity. Magnetic resonance imaging
(MRI) provides a possibility to break this limitation, since
information about the entire glioma can be obtained. VASARI
(Visually AcceSAble Rembrandt Images) MRI features (16) and
radiomics features (17) are two common methods to extract
features from MR images. Radiomics is a process that converts
digital medical images into mineable high-dimension data
(18). It provides high-dimensional quantitative information and
comprehensive information regarding tumor heterogeneity (18)
that may fail to be appreciated by the naked eye of radiologists.
Radiogenomics is an emerging field that explores the associations
between radiomics and genomics (19). IDHmutation and 1p/19q
codeletion have been predicted accurately by radiomics features
(20–23), but there has been no reports using radiomics features
to predict CIC mutation. Another obstacle of radiomics features
is that they are difficult to understand and cannot be related to
tumor physiological changes (24).

In this study we aim to identify the value of CIC
mutations in gliomas by analyzing the relationship between
CIC mutations and the clinical characteristics, key molecular
markers, and patient survival. Then, by extracting radiomics
features from lower-grade glioma MRI, a robust CIC mutation

prediction model is established. The relationship between key
features and glioma structural changes in MRI is analyzed to
explore the possible physiological changes of gliomas behind
structural changes.

MATERIALS AND METHODS

Data Sources
A total of 516 lower-grade glioma (LGG) patients’ genomic
data and clinical data were downloaded from the TCGA data
portal [https://portal.gdc.cancer.gov/]. Among these 516 TCGA
patients, 199 patients have MR images stored in the Cancer
Imaging Archive (TCIA) (25). Additional genomic and clinical
metadata of TCGA was obtained through cBioPortal (26, 27).
In addition, the genomics dataset of glioblastoma was also
obtained from cBioPortal. All TCGA related data were previously
anonymized and are publicly available.

Genomics Data
All genomic data were downloaded from the TCGA dataset.
Single nucleotide polymorphism (SNP) data was used to identify
gene mutations, including CIC and IDH. Missense, frameshift,
and nonsense mutations were included in the definition. Copy
number variation (CNV) data was used to identify 1p/19q co-
deletion status. A segment mean value < −0.2 was considered as
deletion in the corresponding region (28). Because TCGA CNV
probes didn’t cover the whole chromosome, 1p/19q codeletion
status was derived using copy number data as shown in (29).

Histological Type
There are two different WHO CNS tumor classifications,
namely from 2007 and 2016. The 2007 classification used
in the TCGA defines the histological types as Astrocytoma,
Oligodendroglioma, and Oligoastrocytoma. The 2016
classification incorporated molecular biomarkers in their
classification scheme, mainly IDH mutation and 1p/19q co-
deletion. Oligodendroglioma is defined as Glioma with IDH
mutation and 1p/19q co-deletion, and Diffuse Astrocytoma
is defined as glioma with IDH mutation but without 1p/19q
co-deletion or IDH wild-type (3) (Figure S1).

Image Pre-processing
Quality control (QC) was done manually by reviewing images on
a local instance of the Digital Slide Archive (DSA) (30), which
allows the rapid review of DICOM files. MRIcron (31) was then
used to convert all images from DICOM format to NIFTI format
for subsequent analysis.

Image Masking
The FSL image viewer (FSLeyes 0.10.1) (32) was used to
draw regions of interest (ROIs) slice-by-slice. A total of 120
T1-weighted (T1W), T1 contrast-enhanced (T1CE), and T2-
weighted (T2W) image ROI masks, and FLAIR image ROI masks
were generated. All radiomic features were extracted using the
T1W image ROI mask.
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FIGURE 1 | MRI preprocessing pipeline.

FIGURE 2 | Data screening process.

Image Processing Pipeline
The image processing pipeline is illustrated in (Figure 1). First,
we used the FSL Brain Extraction Tool (BET) to remove the skull,
eyes, and other non-brain tissue within T1W images (33). We
found that the quality of lower-grade glioma images from the
TCIA is variable, oftentimes resulting in poor brain extraction
using BET. To address this limitation, we manually corrected
the BET extraction results to be consistent between images. This
approach allowed us to obtain good quality brain tissue masks
while speeding up the process in comparison to completely
manual brainmask delineation.We used the T1Wbrain region as
a mask to get T1CE, T2, and FLAIR images’ brain tissue after we
registered T1CE, T2W, and FLAIR to T1W images. FSL FLIRT
was used for image registration. In order to make all patients’
images comparable, we registered all images and masks to the

1mm MNI152 atlas. Registered images were bias corrected by
FSL FAST. White-stripe normalization (34) was conducted to
normalize image intensities.

Feature Extraction
Radiomics features were extracted using the Python package
PyRadiomics V2.0.0 (35). PyRadiomics can perform various
transformations on the original input image prior to extracting
features. The transformations we used include: Original,Wavelet,
Square, Square Root, Logarithm, Exponential, Gradient, Local
Binary Pattern 2D (2D-LBP), and Local Binary Pattern 3D (3D-
LBP). After image transformations, 105 radiomics features can
be extracted from each transformed image using PyRadiomics,
these features are summarized in Table S1. In 3D-LBP images,
a rotational invariant operator using spherical harmonics was
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utilized. Three different radii for the spherical harmonics were
used, with radius similar to those used in 2D-LBP images,
resulting in three different 3D-LBP images. The information
stored in the transformed images of different radii in 3D-LBP is
different. In wavelet transformed images, each dimension in the
3D image was divided into high frequency components (H) and
low frequency components (L). Combining the H and L of three
different dimensions of the 3D image can produce eight different
combinations: LLL, LLH, LHL, LHH, HLH, HHL, HLL, HHH.

Feature Selection
LassoCV in the scikit-learn Python package was used for
radiomics feature selection (36). It combines cross-validation
(CV) and Lasso regression. The advantage of LassoCV is that it
does not need to manually set regularization coefficient (λ). It

can try the default series of λ through CV iteration, and then
automatically select the best model (Figure S2). In LassoCV, to
avoid selection bias due to the low proportion of CIC mutations,
we used stratified sampling. Both 10-fold CV and 5-fold CV
are common (37) but limited by the number of CIC mutation
samples, the variance of the 10-fold CV will be great (38), so we
choose 5-fold CV. “StratifiedKFold” in the scikit-learn Python
package was used. Before the CV splitter splits the samples, all
samples are shuffled.

Because of 5-fold CV and data shuffle, only 80% of
the total samples were used to train the Lasso model, and
these samples should be different each time the Lasso model
is built (Figure S2). In addition, for some highly relevant
features, Lasso will randomly select one and exclude the
others. This results in the features selected by LassoCV

FIGURE 3 | CIC mutation has a high occurrence rate and association with survival in LGG. (A) CIC mutation rate in gliomas. GBM, GBM dataset from cBioPortal

(TCGA Cell 2103); LGG (509), TCGA LGG dataset; LGG (120), from TCIA. (B) Gene mutations in the TCGA dataset (n = 509), 15 gene mutation rates are >5%.

(C) Gene mutations in the TCIA image dataset (n = 120), 12 gene mutation rates are >5%. (D) Multivariate Cox regression result of gene mutations in the genomic

dataset, age was included as covariate. Only seven gene mutations are significant.
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TABLE 1 | Associations between CIC mutation presence and clinical

characteristics.

Clinical

characteristic

Subgroup CIC

mutation

CIC

wild-type

P-valuea

Age <50 years old 68 278 0.01398

≥50 years old 48 115

Gender Female 58 169 0.1828

Male 58 224

Grade G2 67 180 0.02356

G3 49 213

KPSb <90 17 75 0.3212

≥90 48 155

Cancer status With tumor 53 216 0.1629

Tumor free 45 133

Tumor location Frontal 81 217 0.003967

Temporal 19 126

Parietal 11 35

Laterality Left 55 191 0.6083

Right 61 190

Seizures Yes 73 224 0.3592

No 37 140

Headaches Yes 27 142 0.0119

No 76 215

Mental status

changes

Yes 21 92 0.2295

No 82 259

Visual changes Yes 9 56 0.06461

No 94 294

Sensory

changes

Yes 10 62 0.05633

No 91 286

Motor

movement

changes

Yes 29 81 0.304

No 74 268

First symptom Seizures 57 188 0.5352

Headaches 18 87

Mental status

changes

8 31

Visual changes 3 9

Sensory

changes

3 15

Motor

movement

changes

12 26

aChi-square test p-value.
bKPS, Karnofsky Performance Score: an assessment tool for functional impairment.

not being the same every time. But the probability of
important features being selected is always large, so we
repeated LassoCV 100 times (Figure S3). The selected features
and its coefficient each time were recorded. The features
whose sum of the coefficients unequal to zero are included.
Features are sorted according to the number of times
selected, and the top 2

√
n (n: sample size) (39) features

are selected, so, 11( 2
√
120) and 6( 2

√
35) radiomics features

were used to predict the CIC mutation in glioma and
oligodendroglioma, respectively.

In order to detect the collinearity between the radiomics
features, we performed a Pearson product moment correlation
coefficient analysis between the radiomics features, then clustered
the correlation coefficients between the features, and then used
the clustermap to visualize.

Texture-Based CIC Prediction
A logistic regression model, defined by the function below, was
created in Python utilizing the SciKit-Learn package:

hθ (χ) =
1

1+ e−z

In the model, hθ (χ) is the estimated probability of CIC mutation
status. CIC mutation presence is defined as one, and absence is
defined as zero. z represents ordinary linear regression:

z = θ0 + θ1χ1 + θ2χ2 + θ3χ3 ...+ θnχn

z is the dependent variable. n represents the number of
features. (χ1,χ2,χ3...χn) is independent variables. (θ1,θ2,θ3...θn)
is features’ partial regression coefficient. θ0is the intercept of the
linear model.

Because the CIC mutation in our dataset is unbalanced, the
weight of two classes are corrected by: n_samples / [n_classes
∗ n_label (CIC mutant or CIC wild-type)]. All features were
z-scored before being placed in the model. Because the unit
differences between features are eliminated, the coefficients of
each feature in the prediction model represent the importance
of the feature in the model.

Statistics
Univariate Cox regression was used to find associations between
gene mutation and survival. To analyze the classification, clinical
characteristics, and other known molecular markers of gliomas
and the relationship between CIC mutations, we used the
two-sided Chi-square test. To analyze the prognostic value of
CIC mutations as molecular markers, we used Log-rank test,
Kaplan-Meier survival analysis, and multivariate COX regression
analysis. We used the Log-rank test to analyze the relationship
between IDH mutation, 1p/19q co-deletion and CIC mutation
and overall survival, and Kaplan-Meier survival analysis curve
to visualize. To identify whether the CIC mutation is an
independent prognostic factor, multivariate Cox tests were used,
including age, gender, grade, histological type, IDH mutation,
1p/19q codeletion, and FUBP1 mutation as covariates. The
differences were considered significant if the p-value was <

0.05. The image dataset was stratified random sampling into
training and testing sets (80% train, 20% test). Training set was
used to train the logistic model and the test set was used to
test model performance. Because of the stratified random split
of the dataset, there will be differences between the training
set and the test set each time, resulting in different trained
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logistic regression models and prediction results, so we repeat
the above process 1,000 times (Figure S4). Then we will obtain
1,000 logistic regression models trained by different training sets
and the corresponding prediction results. So we sum coefficients
of each feature of these 1,000 models as the importance of
features. The mean AUC, prediction accuracy, sensitivity, and
specificity of model were calculated for the testing set. Receiver
operating characteristic (ROC) curve and Precision-recall (PR)
curve analysis was conducted to evaluate the models. The
coordinate points of the ROC curve and PR curve of 1,000
prediction models are averaged to obtain the average ROC
curve and PR curve. The optimal cutoff value in the ROC
curve and PR curve is the coordinate point closest to the
upper left corner (0,1.0) and the upper right corner (1.0,1.0),
respectively (40).

Image Analysis
In order to evaluate the importance of radiomics features and its
correlation with CIC mutations, we used the Mann-Whitney U-
test to test features in the logistic model. U-test was performed
on the features value of CIC mutation and wild-type samples.
Significance was defined as p < 0.05. The radiomics features that
are significant in U-test and ranked in top 1/3 by importance
were used for further analysis. So 3 (11/3) radiomics features
from the CIC mutation prediction model in glioma and 2 (6/3)
radiomics features from the CIC mutation prediction model
in oligodendroglioma will be selected. Images corresponding
to the maximum and minimum values of the most significant
features were selected. Because some radiomics features were
extracted from transformed image, for these features, we show
the transformed image but not the original input image. The

FIGURE 4 | CIC mutation rate is unequal in different glioma classifications and genotypes. (A) CIC mutation in two different WHO CNS tumor classifications. (B) CIC

mutation in different genotype glioma. IDH+, IDH mutation; 1p/19q+, 1p/19q codeletion; 1p/19q-, 1p/19q intact. The value above the bar is the ratio of CIC mutation.

Chi-square test, ****P < 0.0001.

Frontiers in Oncology | www.frontiersin.org 6 June 2020 | Volume 10 | Article 937

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Zhang et al. Radiomics Predict CIC in LGG

probability estimates of each sample in the test set results of
above mentioned 1,000 logistic regression models are summed,
and then the average probability estimates of each sample are

obtained. The samples with the largest and smallest average
probability estimates are selected. The original T1W, T1CE, T2,
and FLAIR images but not transformed images of these two

FIGURE 5 | Kaplan Meier curve and Log-Rank test of IDH, 1p/19q, and CIC. (A) IDH mutation Kaplan-Meier curve shows that patients with IDH mutation have a

significantly better prognosis than IDH wild type. (B) CIC mutation Kaplan-Meier curve shows that patients with CIC mutation have significantly longer OS than those

whose CIC is wild type. (C) Patients with 1p/19q codeletion have significantly longer OS than those without 1p/19q codeletion. (D) Patients with IDH and CIC mutation

have longer OS than patients have IDH mutation only. (E) There is no significant difference in OS between CIC mutation and CIC wild-type of patients with 1p/19q

codeletion. (F) 2016 classification Oligodendroglioma. In the Log-Rank test, there is no significant survival difference between patients with and without CIC mutation.

TABLE 2 | Survival analysis results.

Status OS (median)a Patients Logrank_pb Cox_pc HRd

IDH Mutant 2,907 414 <1e-4 <1e-4 0.3173

Wild-type 648 95

CIC Mutant 4,445 116 <1e-4 <1e-4 0.2445

Wild-type 1,933 393

1p/19q Codeletion 4,084 164 1e-4 0.3246 0.3322

Intact 2,000 345

IDH mutant 1p/19q codeletion 4,084 164 0.1646 0.7011 0.8639

1p/19q intact 2,660 345

IDH mutant CIC mutant 4,084 116 0.035 0.0287 0.4178

CIC wild-type 2,660 393

aOS (median), the median overall survival time of the Kaplan Meier curve.
bLogrank_p, p-value of Log-Rank test.
cCox_p, p-value of the Multivariate Cox test, including age, gender, grade, histological type, IDH mutation, 1p/19q codeletion, CIC mutation.
dHR, hazard ratio from the Multivariate Cox test.
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TABLE 3 | Associations between CIC mutation and OS of patients with

Oligodendroglioma.

Classification Subgroup OS (median) Logrank_pb Cox_pc HRd

Oligodendrogliomaa CIC mutant 4,695 0.2992 0.0362 0.3674

CIC wild-type

aOligodendroglioma, 2016 WHO CNS tumor classification.
bLogrank_p, p-value of Log-Rank test.
cCox_p, p-value of the Multivariate Cox test, including age, gender, grade, histological

type, IDH mutation, 1p/19q codeletion, CIC mutation e.
dHR, hazard ratio from the Multivariate Cox test.

samples were shown. Because the radiomics feature represents
the information of the entire glioma, but the 3D image is not
conducive to display, so we choose the one with the largest ROI
area in the transverse plane slice to represent the entire glioma.

RESULTS

Data Summary
Of the lower-grade gliomas cases downloaded from TCGA, 509
cases had CNV data, SNP data, and clinical data. This 509
cohort was used as our genomics dataset. One hundred ninety-
nine MRI cases were downloaded from TCIA, 78 of which were
removed due to the lack of at least one of T1W, T1CE, T2W,
and FLAIR MRI, and one sample was removed due to the lack
of corresponding genomic data in TCGA. A total of 120 cases
remained and was used as the image dataset (Figure 2, Table S2).
The two cohorts used in this work (TCGA LGG cohort and TCIA
imaging cohort) did not differ significantly, with the exception of
patient age (42.9 vs. 45.9; p= 0.0356) (Table S2).

Identification of Mutation Frequency in the
LGG Cohort
The cBioPortal was used to obtain information on multiple
glioblastoma databases. Through the glioblastoma dataset in
cBioPortal, we found that the incidence of CIC mutations in
glioblastoma is low (0.3%). Our genomic dataset had a higher
incidence of CIC mutations (22.8%), similar to the incidence of
CICmutations found in the imaging dataset (18.3%) (Figure S5).
SNP was downloaded from the TCGA data portal for LGG
patients, which identifies 14,014 unique SNPs. Among these,
only 15 occurred in > 5% of patients (25 of 509 total patients)
(Figure 3A). Six of these SNPs were significantly associated with
overall patient survival. Among these six, EGFR (HR: 5.04,
95%CI: 3.16–8.02), NF1 (HR: 2.84, 95%CI: 1.64–4.91), and FLG
(HR: 2.07, 95% CI: 1.13–3.78) mutation were associated with
poor survival. IDH (HR: 0.17, 95% CI: 0.12–0.24), CIC (HR:
0.30, 95% CI: 0.17–0.55), and ARID1A (HR: 0.11, 95% CI: 0.02–
0.80) mutation were found to improve survival (Figure 3B). We
focused on genes that were present in at least 5% or more LGG
cases for the genomic dataset. But on the imaging dataset, since
the number of samples is smaller, we looked for genes present in
at least 10% of the cases. Similarly, we also adjusted the p-value of
survival regression to 0.1. In the imaging dataset, there are a total
of seven gene mutations with an incidence rate >10%, namely

IDH, TP53, ATRX, CIC, FUBP1, TTN, and PIK3CA mutation
(Figure 3C). However, when considering only the samples in
the imaging dataset, only IDH mutations (p = 0.0023, HR =
0.3166) and CIC mutations (p = 0.0831, HR = 0.3387) were
significantly associated with survival (Figure 3D). Since IDH
mutation has been the focus of previous studies (20, 41, 42), with
high accuracy prediction results reported, we chose to focus on
CIC mutation for our analysis. In conclusion, CIC mutation is
the only molecular marker other than IDHmutation that satisfies
the sufficiently large incidence, prognostic value, and conditions
of radiomics prediction.

Association Between CIC Mutations and
Clinical Data
We analyzed the association between CIC mutations and
clinical data in the genomics dataset. CIC mutations have close
association with age, the probability of patients 50 years or older
having CIC mutations is significantly greater than those <50
years old (p= 0.0140). The probability of grade 2 patients having
CIC mutation is significantly greater than grade 3 patients (p =
0.0236). CICmutation also have close association with the glioma
location (p = 0.003967), the probability of CIC mutations in the
temporal lobe is significantly lower than that in the frontal lobe
(p = 0.0009) and the temporal lobe (p = 0.0792), but there is
no significant difference between the frontal lobe and parietal
lobe (p = 0.6411). CIC mutations are also related to clinical
symptoms, the probability of samples without headache having
CIC mutations is significantly greater than the probability of
samples with headache (p = 0.0119), and there is a possible
trend that the probability of CIC mutation in samples without
visual change is greater than samples with visual changes (p =
0.0646), there is also a strong tendency that the probability of
CIC mutation in samples without sensory change is greater than
samples with sensory change (p= 0.0563) (Table 1).

The TCGA classification for the glioma cohort is given
using the 2007 WHO classification criteria. We reclassified
all cases in our cohorts using the 2016 WHO classification
criteria. CICmutation was found in 65.9% of oligodendrogliomas
and 2.32% of diffuse astrocytoma. The probability of CIC
mutation occurring in oligodendroglioma is significantly greater
than that in diffuse astrocytoma (p < 1e−4) (Figure 4A,
Table S3).

Associations Between CIC Mutation and
Genomic Data
We analyzed the association between CIC mutations and
genomic data in the genomics dataset. CIC mutations are also
closely related to some important molecular markers. IDH wild-
type and CIC mutation is mutually exclusive. IDH mutation
is found in nearly all patients with CIC mutation (99.1%) but
only 1.1% IDH wild-type patients have CIC mutation. Similarly,
almost all patients with CIC mutations have 1p/19q co-deletion
(93.1%) but the proportion of CIC mutations in 1p/19q intact
patients was only 2.32%, the probability of CIC mutations in
1p/19q co-deletion samples was significantly greater than 1p/19q
intact samples (p < 1e−4). 78% of FUBP1 mutation patients
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FIGURE 6 | Cluster map of correlation between image features. (A) Cluster map of correlation of 6,676 image features. (B) Cluster map of correlation of 11 features

used in glioma CIC mutation prediction model. (C) Cluster map of correlation of six features used in oligodendroglioma CIC mutation prediction model. (D) Cluster

map of correlation between 15 image features from (B) and (C).
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TABLE 4 | Eleven features used to predict CIC mutation in gliomas.

No. Features Importancea P-valueb

1 T2-wavelet-LHL_glszm_SizeZoneNonUniformityNormalized 2011.95 <10e-4

2 T1post-wavelet-LHH_ngtdm_Busyness 1842.85 0.0047

3 T1post-square_gldm_GrayLevelNonUniformity 1505.67 0.1402

4 FLAIR-wavelet-HLH_firstorder_Median 1046.31 0.0162

5 T2-square_glszm_LargeAreaLowGrayLevelEmphasis 1029.85 0.2475

6 T1pre-lbp-3D-m1_glcm_Correlation 935.72 0.0006

7 FLAIR-logarithm_ngtdm_Strength 758.25 0.5041

8 T1pre-wavelet-LLH_glszm_LargeAreaLowGrayLevelEmphasis 407.44 0.4334

9 T1post-lbp-2D_glcm_Imc2 −374.89 0.0013

10 T1pre-exponential_glszm_HighGrayLevelZoneEmphasis 270.67 0.0313

11 T1pre-lbp-3D-m1_gldm_DependenceNonUniformityNormalized 203.2 0.0009

a Importance, Sum of coefficients of features in 1,000 prediction models.
bP-value: Mann-Whitney U-test p-value.

had CIC mutation but the proportion of CIC mutations in
FUBP1 wild-type patients was only 16.78%, the probability of
CIC mutation in FUBP1 mutant samples is significantly greater
than that of FUBP1 wild-type samples (p < 1e−4). Among the
patients with CIC mutation, 93.1% had IDH mutation combined
with 1p/19q co-deletion. 68.35% patients with IDH mutation
combined with 1p/19q co-deletion had CIC mutation, but 2.28%
other patients had CIC mutations. Patients with IDH mutation
combined with 1p/19q co-deletion had a significantly higher
probability of having CIC mutations than other samples (p <

1e−4) (Figure 4B, Table S3).

Associations Between Overall Survival and
CIC Mutation
In genomic dataset, IDH mutation patients have longer overall
survival (OS) than IDHwild-type patients (p< 1e−4,Median OS
(days): 2,907 vs. 648) (Figure 5A), CIC mutation patients have
longer OS than CIC wild-type patients (p < 1e−4, Median OS
(days): 4,445 vs. 1,933) (Figure 5B), 1p/19q codeletion patients
have longer OS than 1p/19q intact patients (p = 1e−4, Median
OS (days): 4,084 vs. 2,000) (Figure 5C, Table 2). Patients with
IDH mutation combined CIC mutation have longer OS than
those with IDH mutation only (p = 0.035, Median OS (days):
4,084 vs. 2,660) (Figure 5D), and there is also no significant
difference between 1p/19q co-deletion patients with and without
CIC mutation in our study (p = 0.3) (Figure 5E). Multivariate
cox analysis including age, gender, grade, histological type, IDH
mutation, 1p/19q codeletion and CIC mutation showed that
IDH mutation and CIC mutation are both associated with better
prognosis (p < 1e−4, HR = 0.3173; p < 1e−4, HR = 0.2445),
and 1p/19q codeletion is not an independent prognostic factor (p
= 0.3246, HR = 0.3322). Patients with IDH mutation combined
1p/19q codeletion don’t have significant differences in OS with
those with IDH mutation only (p = 0.1646, Median OS: 4,084
vs. 2,660) (Table 2). In log-rank test, CIC mutation doesn’t show
a significant association with OS in oligodendroglioma (p =
0.2992) (Figure 5F), but the multivariate cox analysis shows CIC
mutation improves survival (p= 0.0362, HR= 0.3674) (Table 3).

Image Feature Extraction and CIC
Mutation Prediction
A total of 1,669 features were extracted from each image
(Table S1) and a total of 6,676 imaging features from T1W,
T1CE, T2W, and FLAIR for each patient. The cluster map of
the correlation of 6,676 features shows that there is collinearity
between these features, but the collinearity is not very strong.
Features can be clustered into some modules, but the size of
modules are relatively small (Figure 6A). There is only one large
module in the top-left (Figure 6A), but none of features in this
module were selected to build the model.

For the prediction of CIC mutation in glioma, a total of 11
features were selected via Lasso regularization to build a logistic
regression model (Table 4). The cluster map of the correlation
of 11 features shows that the collinearity between features is
weak (Figure 6B). Themean accuracy of the 1,000 repetition data
split was 94.2% (95%CI, 94.03–94.38%), significantly higher than
the no-information rate (81.7%). The mean AUC of the ROC
curve was 0.985 (95% CI, 0.9841–0.9857) (Figure 7). The optimal
cutoff value (0.0606) of the ROC curve exhibited a sensitivity,
specificity, and accuracy of 94.83, 93.94, and 94.10%, respectively.
The mean AUC of the Precision Recall (PR) curve is 0.923 (95%
CI, 0.9183–0.9275). The optimal cutoff value (0.8485) of the
PR curve exhibited sensitivity, precision, and accuracy of 84.85,
89.51, and 95.4%, respectively.

For the prediction of CIC mutation in Oligodendroglioma, a
total of six features from 35 Oligodendroglioma patients were
selected via Lasso regularization to build a logistic regression
model (Table 5). The cluster map of the correlation of six
features shows that the collinearity between features is weak
(Figure 6C). There are two features that overlap with the 11
features set above. The cluster map of the correlation of 15
features shows that the collinearity between features is weak
except T2-square_glszm_LargeAreaLowGrayLevelEmphasis and
T2-square_gldm_GrayLevelNonUniformity (Figure 6D). The
mean accuracy of the 1,000 repetition data split was 92.3% (95%
CI, 91.70–92.92%), significantly higher than the no-information
rate (62.9%). The mean AUC of the ROC curve is 0.967 (95% CI,

Frontiers in Oncology | www.frontiersin.org 10 June 2020 | Volume 10 | Article 937

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Zhang et al. Radiomics Predict CIC in LGG

FIGURE 7 | CIC mutation has a potential diagnosis value in glioma. (A) Receiver operating characteristic (ROC) curve of glioma CIC mutation prediction model.

(B) Precision-recall (PR) curve of glioma CIC mutation prediction model. (C) Receiver operating characteristic (ROC) curve of oligodendroglioma CIC mutation

prediction model. (D) Precision-recall (PR) curve of oligodendroglioma CIC mutation prediction model. The optimal cutoff value in ROC curve is the point (red dot) that

has the smallest distance to (0,1), or (1,1) in PR curve.

0.9643–0.9687) (Figure 7). The optimal cutoff value (0.1010) of
the ROC curve exhibited a sensitivity, specificity, and accuracy
of 94.26, 89.90, and 92.64%, respectively. The mean AUC of the
PR curve is 0.9705 (95% CI, 0.9684–0.9726). The optimal cutoff
value (0.9596) of the PR curve exhibited sensitivity, precision,
and accuracy of 95.96, 93.51, and 93.27%, respectively.

Image Feature Analysis
Among the 11 features of the logistic regression model
of CIC mutation prediction in gliomas, seven features
were found significant (Mann-Whitney U-test, alpha
= 0.05). To help illustrate some of these imaging
characteristics, we extracted 2D image slices that maximize

or minimize the top 3 selected features (Figure 8). T2-
wavelet-LHL_glszm_SizeZoneNonUniformityNormalized,
T1post-wavelet-LHH_ngtdm_Busyness, and FLAIR-wavelet-
HLH_firstorder_Median are the top 3 significant features.
Among the six features of the logistic regression model
of CIC mutation prediction in Oligodendrogliomas
(Table S4, Figure 9), three features were found to
be significant (Mann-Whitney U-test, alpha = 0.05).
T1post-wavelet-LHH_ngtdm_Busyness and T1pre-lbp-3D-
m1_gldm_DependenceNonUniformityNormalized were the top
2 significant features. Images corresponding to the highest and
lowest probability of CIC mutation (based on logistic regression)
were selected (Figure 10).
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TABLE 5 | Six features used to predict CIC mutation in oligodendrogliomas.

No. Features Importancea P-valueb

1 T1pre-lbp-3D-m2_glszm_SmallAreaLowGrayLevelEmphasis 2022.39 0.2209

2 T1post-wavelet-LHH_ngtdm_Busyness 1527.58 0.0047

3 T2-square_gldm_GrayLevelNonUniformity 1140.3 0.2108

4 T1pre-lbp-3D-m1_gldm_DependenceNonUniformityNormalized 696.76 0.0009

5 T1pre-gradient_firstorder_Minimum −694.92 0.6766

6 FLAIR-gradient_firstorder_Kurtosis 81.75 0.0096

a Importance, Sum of coefficients of features in 1,000 prediction models.
bP-value, Mann-Whitney U-test p-value.

FIGURE 8 | The appearance of the MR image corresponding to the top 3 radiomic features in glioma. The region encircled in red represents the lesion boundary.

(A) Images corresponding to the maximum and minimum of T2-wavelet-LHL_glszm_SizeZoneNonUniformityNormalized. (B) First column images are the Wavelet

images corresponding to the maximum and minimum value of T1post-wavelet_LHH_ngtdm_Busyness, second column images are original images of wavelet images.

(C) Images corresponding to the maximum and minimum value of FLAIR-wavelet-HLH_firstorder_Median.
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FIGURE 9 | The appearance of the MR image corresponds to top 2 radiomics features in Oligodendroglioma. The region encircled in red represents the legion

boundary. (A) wavelet images and corresponding original images of the maximum and minimum value of T1post-wavelet_LHH_ngtdm_Busyness. (B) LBP images

and corresponding original images of the maximum and minimum value of T1pre-lbp-3D-m1_gldm_DependenceNonUniformityNormalized. LBP image only included

mask region in PyRadiomics (35).

DISCUSSION

In our study, we utilized TCGA and TCIA to explore the potential
to predict genomics based on MR images. We found that CIC
mutation has excellent diagnostic value in LGG, and that CIC
mutation is mutually exclusive with glioblastoma (Figure 3),
so we excluded the TCGA GBM cohort from further study.
CIC mutation mainly occurs in IDH mutation and 1p/19q co-
deletion patients and is mutually exclusive with IDHwild-type or
1p/19q intact patients (Figure 4). CICmutation is also associated
with clinical characteristics as described in (Table 1). We can
speculate IDHmutation, 1p/19q codeletion, and histological type
information from CIC mutation status. Grade 2 patients and
elder patients aremore likely to have CICmutation. Interestingly,
patients without clinical symptoms (headache, visual changes,
sensory changes) have higher probability of having CIC
mutation. This is probably seen because CIC mutations occur
primarily in grade 2 gliomas and oligodendrogliomas. These
grades of gliomas have a lower degree of malignancy, slower
disease progression, and clinical symptoms occur later and are
not obvious, leading to patients being diagnosed at an older age.

In our study, CIC mutation is present in 65.9% of 1p/19q
codeletion patients, but rarely in 1p/19q intact patients (2.3%).
In order to find out whether the significant correlation between
CIC mutations and OS comes from the 1p/19q codeletion, we
performed multivariate cox regression analysis. In the result
of multivariate cox regression analysis, which included IDH
mutation, 1p/19q codeletion, CIC mutation, age, gender, grade,
and histological type, CIC mutation is significant (p < 1e−4),
but 1p/19q codeletion is not significant (p = 0.3246) (Table 2).
We also found that CIC mutation in IDH mutation patients
is associated with a better prognosis (p = 0.0287, HR =
0.4178), but there is no significant difference between 1p/19q
codeletion and prognosis (p = 0.7011) (Table 2). In addition,
in oligodendroglioma (IDH mutation and 1p/19q codeletion)
patients, CIC mutation is associated with a better prognosis
(p = 0.0362). It was reported that almost every glioma with
a CIC or FUBP1 mutation exhibited an IDH gene mutation
(13). Thus, we also analyzed FUBP1 status in our study. There
are 50 FUBP1 mutation patients, almost all FUBP1 patients
exhibited an IDH mutation, and most FUBP1 mutation patients
combined CIC mutation. But not all CIC mutation patients have
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FIGURE 10 | MRI of model-based CIC mutation prediction patients. Image with the (A) high probability of being CIC mutation and (B) low probability of being CIC

mutation. The region inside the red line represents glioma region.

FUBP1 mutation. We did multivariate cox analysis including
FUBP1 mutation and found no significant association between
FUBP1mutation and survival (p= 0.2959) (Table S4). Therefore,
CIC mutation was an independent good prognostic factor in
our study.

As reported, gliomas with different genotypes have
different MRI appearances (43–46). In our study we
focused on 11 extracted radiomics features. The top
2 of these 11 radiomic features were T2-wavelet-LHL
_glszm_SizeZoneNonUniformityNormalized (SZNN) and
T1post-wavelet-LHH_ngtdm_Busyness (Busyness). Both
features are extracted from wavelet transform images which
reflect fine details of the original images. SZNN measures the
variability of size zone volumes throughout the image, with
a lower value indicating more homogeneity among zone size
volumes in the image (35). Busyness is a measure of the change

from a pixel to its neighbor. A high Busyness indicates rapid
changes in intensity (35). In other words, both Busyness and
SZNN are measures of image heterogeneity and non-uniformity.
SZNN minimal value corresponding image is flat but the tumor
region appears as obvious protruding ridges and depressed
trenches in the maximum value (Figure 8).

CIC mutation mainly occurs in Oligodendroglioma but not
all. To identify the difference between Oligodendrogliomas
with and without CIC mutations, six features were selected
after the Lasso process. Top 2 features are T1post-wavelet-
LHH_ngtdm_Busyness (Busyness) and T1pre-lbp-3D-
m1_gldm_ DependenceNonUniformityNormalized (DNN).
DNN measures the similarity of dependence defined as the
number of connected voxels within distance δ that are dependent
on the center voxel, a lower value indicating more homogeneity
among dependencies in the image (35) (Figure 9). The DNN
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max value corresponding image is extremely complex and
heterogeneous but the tumor region appears smaller and
simpler in the minimum value. From the images, we find
that the appearance of Oligodendrogliomas with or without
CIC mutation are similar, not as obvious as the difference
between all types of gliomas with or without CIC mutation.
Both Oligodendrogliomas with or without CIC mutation are
heterogeneous and non-uniform. But according to the meaning
of image features, we still speculate that Oligodendroglioma with
CIC mutation still appears more heterogeneous and complex.

As discussed above, CIC mutation suggests a better prognosis
in patients with IDHmutation and 1p/19q codeletion. Therefore,
we concluded that patients with CIC mutation have the best
prognosis and longest survival. In our study, most CIC mutation
gliomas have a relatively larger tumor region, more obvious
mass effect, greater non-uniformity, heterogeneity, and scattered
areas of intratumorally necrosis with or without corresponding
areas of contrast enhancement. The special appearance may be
due to the low malignancy of glioma with CIC mutation. The
relatively weak proliferative, invasive and migration ability leads
to CICmutation gliomas growing slowly, resulting in not obvious
clinical symptoms and larger tumor volume. This is consistent
with published results that show CIC mutation is more likely
to occur in patients of older age, grade 2 glioma, and without
clinical symptoms. The cause for scattered areas of weak contrast
enhancementmay be that the tumor is lessmalignant, resulting in
slow tumor growth, less ischemia and hypoxia, and less damage
to the blood brain barrier (BBB) which prevents media from
leaking through the BBB. On the other hand, gliomas which
have a small tumor region but severe necrosis, obvious contrast
enhancement, and obvious peritumoral edema (reflects rapid
growth) which indicated strong invasion and severe BBB damage
have a lower probability of CIC mutation.

Although radiomic features perform well, there are some
limitations to our study analysis. First, all data is from public
datasets (TCGA and TCIA), which displays large variance in
quality of images that may influence predictive analysis. Second,
data was imbalanced because of the low incidence of CIC
mutation. Third, only structural MRIs were included. Functional
and diffusion-weighted MR images are an area of interest that

could be included in similar analysis in future work. Lastly, in
this study, all images were obtained from one cohort (TCIA).
Future work could benefit from using a second independent
cohort for testing, which would provide a better measure of
model generalizability / reliability.

In conclusion, our results support CIC mutation status
as a valuable diagnostic and prognostic biomarker of lower-
grade glioma. We showed that CIC mutation could be
accurately predicted by MRI radiomic features. MRI of CIC
mutation gliomas were found to display visually less malignant
manifestations, such as milder necrosis and larger tumor volume.
Radiomics plays an important role in the accurate diagnosis
and personalized treatment of gliomas. The exploration of its
association with medical imaging appearance and its clinical
application are worth further efforts.
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