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A hallmark of cancer cells is the ability to rewire their bioenergetics and metabolic

signaling circuits to fuel their uncontrolled proliferation and metastasis. Adenylate kinase

(AK) is the critical enzyme in the metabolic monitoring of cellular adenine nucleotide

homeostasis. It also directs AK→ AMP→ AMPK signaling controlling cell cycle and

proliferation, and ATP energy transfer from mitochondria to distribute energy among

cellular processes. The significance of AK isoform network in the regulation of a variety

of cellular processes, which include cell differentiation and motility, is rapidly growing.

Adenylate kinase 2 (AK2) isoform, localized in intermembrane and intra-cristae space, is

vital for mitochondria nucleotide exchange and ATP export. AK2 deficiency disrupts cell

energetics, causes severe human diseases, and is embryonically lethal in mice, signifying

the importance of catalyzed phosphotransfer in cellular energetics. Suppression of

AK phosphotransfer and AMP generation in cancer cells and consequently signaling

through AMPK could be an important factor in the initiation of cancerous transformation,

unleashing uncontrolled cell cycle and growth. Evidence also builds up that shift in AK

isoforms is used later by cancer cells for rewiring energy metabolism to support their

high proliferation activity and tumor progression. As cell motility is an energy-consuming

process, positioning of AK isoforms to increased energy consumption sites could be an

essential factor to incline cancer cells to metastases. In this review, we summarize recent

advances in studies of the significance of AK isoforms involved in cancer cell metabolism,

metabolic signaling, metastatic potential, and a therapeutic target.
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INTRODUCTION

The significance of metabolism and metabolic signaling in human diseases is rapidly growing.
New features and molecular players that are vital for cell homeostasis and function are being
uncovered. Well-organized high-energy phosphoryl transfer systems are required to mediate
intracellular communication between ATP-consuming and ATP-producing cellular compartments
and thus to maintain normal growth and development of the cell (1–5). The main components
of the cellular phosphotransfer system are AK, creatine kinase (CK), and glycolytic networks
(1, 2). The significance of organized phosphotransfer was demonstrated by genetic manipulations
in animal models, cellular systems, and alterations or mutations in separate phosphotransfer
enzymes, which are associated with human diseases (6–16). Studies on Drosophila and mice
model demonstrate that deletion of adenylate kinase 2 (AK2) is embryonically lethal, signifying
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the importance of AK phosphotransfer network in cell
homeostasis (13, 17–19). In humans, mutations in the
mitochondrial AK2 gene are associated with reticular dysgenesis
characterized by immunodeficiency and sensorineural deafness,
where processes of nucleotide signaling, cell differentiation,
and motility are affected (15, 16, 20). So far, nine isoforms of
adenylate kinase (AK1–AK9) and several subforms have been
found and well characterized in mammalian cells (21). AK, which
catalyzes reaction 2ADP↔AMP+ATP, is a recognized facilitator
of AMP metabolic signaling, optimizing intracellular energetic
communication, and local ATP supply (5, 22). Historically,
the function of AK has been ascribed to de novo adenine
nucleotide synthesis and cell energy economy through regulation
of nucleotide ratios in different intracellular compartments
and AMP-sensitive metabolic enzymes (14, 23, 24). The unique
properties of AK lie on its ability to deliver γ- and β-phosphoryl
groups of ATP, thereby doubling the ATP energetic potential.
Moreover, the AK network provides an efficient mechanism
for high-energy phosphoryl transport from mitochondria to
ATP utilization sites (2). Evolutionary AK isoforms have been
positioned to different subcellular compartments (21, 25). AK1,
AK7, and AK8 are solely found in the cytosol; AK2, AK3, and
AK4 are located in the mitochondria; and AK5 and AK9 can be
found in either the cytosol or nucleus. Only AK1 and AK6 are
known to be expressed in all tissues, whereas AK5 is expressed
only in the brain (21). In the cytosol, the main isoform is AK1,
which is predominantly expressed in high energy demand
tissues such as the brain, heart, and skeletal muscles. AK2 is
strategically located in the mitochondrial intermembrane and
cristae space to facilitate high-energy phosphoryl exchange
between mitochondria and cytosol (22). Two other AK isoforms,
AK3 and AK4, are located in the mitochondrial matrix and
are involved in the regulation of mitochondrial Krebs cycle
and oxidative phosphorylation (OXPHOS), whereas AK5 and
AK6 isoforms that are localized in the nucleus could serve to
fulfill the energy needs of nuclear processes. In general, distinct
intracellular localization and kinetic properties of AK isoforms
favor energy support of specific cellular processes ranging from
muscle contraction, electrical activity, cell motility, unfolded
protein response, and mitochondrial/nuclear energetics (22).
Importantly, reprogramming of energy metabolism has been
proposed as one of the hallmarks of cancer (26), which is required
to drive biosynthesis pathways necessary for rapid cell replication
and proliferation. Cancer cells are believed to have a greater
reliance on glycolytic phosphotransfer (27, 28). However, during
the last decade, it was found that some tumors contain numerous
mitochondria producing ATP predominantly via OXPHOS
(29–31). The observed shift in hexokinase (HK) isoforms,

Abbreviations: AK, adenylate kinase; CK, creatine kinase; CKmit, mitochondrial

creatine kinase; CKB, brain-type creatine kinase; MOM, mitochondrial outer

membrane; ANT, adenine nucleotide translocase; AMPK, AMP-activated protein

kinase; CSCs, cancer stem cells; NB, neuroblastoma; VDAC, voltage-dependent

anion channel; ABC, ATP-binding cassette; FADD, Fas-associated protein with

death domain; HIF, hypoxia-inducible factor; hCINAP, human coilin-interacting

nuclear ATPase protein; DUSP26, dual-specificity phosphatase 26; OXPHOS,

oxidative phosphorylation; AMPD, AMP-deaminase; 5′-NT, 5′-nucleotidase;

LDHA, lactate dehydrogenase A; HK, hexokinase.

upregulation of HK2 in cancer cells (32), indicates a closer
integration of mitochondria with glycolytic phosphotransfer
(see Figure 1). The association of HK2 with mitochondria
and expression of pyruvate kinase PKM2 could promote
effective yet uncontrolled energy distribution in cancer cells
(27, 33, 34). Phosphotransfer enzymes such as CK and AK have
been implicated in cancer cell proliferation (35, 36). However,
it is not clear whether the redistribution of phosphotransfer
enzymes, especially those which are localized in mitochondria,
occurs during cancer formation. In this review, we focus on the
significance of AK isoforms in the rewiring of cancer cell energy
metabolism and AMP signaling. Specifically, we will overview
how AK isoforms, localized in mitochondria (AK2 and AK4),
and their main communication partners cytosolic AK (AK1 and
AK6) are involved in cancer formation and metastasis.

ADENYLATE KINASE 2 AND
MITOCHONDRIAL CREATINE KINASE
INTERPLAY IN MALIGNANT
TRANSFORMATION

AK2 and mitochondrial CK (CKmit) are major phosphotransfer
enzymes located in the intermembrane/cristae space in
mitochondria (3, 14, 22). AK2 and CKmit provide nucleotide
exchange and metabolic signaling capacity, allowing
mitochondria to export ATP and reception of cytosolic
feedback signals such as ADP, AMP, and creatine (22, 23, 37).
Phosphotransfer enzymes CK and AK have been implicated
in cancer cell proliferation (35, 36). In general, CK is involved
in cancerous transformation, as CKB (brain-type CK) is
upregulated in a variety of cancers to support growing energy
needs (38). The elevation of creatine metabolites was noted
in drug-resistant cancer cells (39). However, in other cancer
types, the downregulation of CKB and rewiring of metabolism
may play an important role in colon cancer progression (40).
Moreover, several studies have demonstrated that in colorectal
cancer (41), breast cancer (42), neuroblastoma (35), prostate
cancer (43), and sarcoma (36, 44), the CKmit was downregulated.
The reduction of CKmit in cancer cells was associated with the
upregulation of adenylate kinase AK2 isoform in intermembrane
space (36, 41, 42, 45, 46) (see Table 1). There is evidence
that the expression of AK2 on the cell surface could facilitate
nucleotide signaling and metastatic potential (60). It was found
that Ak2 gene expression is upregulated in the metastatic
pancreatic endocrine neoplasms (60), indicating the significance
of nucleotide metabolic signaling in cancer invasion (61).
Moreover, increased expression of the Ak2 on the surface of the
metastatic F9DR murine terato-carcinoma cells compared with
the nonmetastatic F9B9 cell line has been demonstrated (53).
Furthermore, a recent study showed that AK2 has prognostic
and therapeutic potential in lung adenocarcinoma (55). The
knockdown of AK2 suppressed proliferation, migration, and
invasion, as well as induced apoptosis and autophagy in human
lung adenocarcinoma cells. In this regard, the AK2-FADD
(Fas-associated protein with death domain) mediated apoptosis
pathway was found to be defective in some tumor cells,
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FIGURE 1 | Overview of adenylate kinase (AK) isoform involvement in the rewiring of cancer cell metabolic signaling and energetic circuits. Increased competition for

cytosolic ADP downregulates AK-mediated AMP signaling, reducing control over cell cycle and proliferation. AK expression is downregulated in several tumors. AMP

can be consumed by AMPD and by 5′-NT, also overexpressed in some cancer cells. Augmented glycolytic metabolism, owing to higher affinity, scavenges cytosolic

ADP, and uses mitochondrial ATP to drive glucose conversion to lactate. Overexpression of glycolytic HK2, PKM2, and LDHA and mitochondrial ANT2, AK2, AK4, and

other genes in cancer cells promotes rewiring of energetic circuits resulting in unrestrained energy distribution. The result of these metabolic transformations is deficient

AMP signaling and AMPK-mediated control of cellular katabolic and anabolic processes. Red color indicates the augmented pathways and gene expression in cancer

cells. AMPD, AMP-deaminase; HK2, hexokinase 2; LDHA, lactate dehydrogenase A; ANT2, adenine nucleotide translocase 2; AMPK, AMP-activated protein kinase.

which may contribute to tumor development by preventing
apoptosis (62). A recent study indicates that AK2 and FADD
are crucial for caspase-10 activation upon metabolic stress,
and this activation is independent of death receptors and
extrinsic pathway of apoptosis (63). Moreover, the deletion
of the Ak2 gene or exit AK2 from mitochondria during
apoptosis disrupts nucleotide exchange between mitochondria
and cytosol, causing hyperpolarization of mitochondria and
reactive oxygen species (ROS) production (20). It was found
that the presence of AK2 in mitochondrial cristae nanochannels
is critical for ATP export (2, 22). There are evidence that the
AK2 upregulation could be used by cancer cells to support
energy supply to biosynthetic processes and cellular growth
(18, 64). These results, as well as studies on CK and AK
knockout mice, demonstrate remarkable plasticity of cellular
energetics and phosphotransfer systems, which could be
used in cancer cells to promote uncontrolled cell growth
(9, 17, 22, 65).

ADENYLATE KINASE MODULATE TUMOR
CELL RESPONSE TO SURVIVE UNDER
OXIDATIVE STRESS

The ability to conductmetabolic signaling and rewiremetabolism
is critical for cell survival. The AK4 isoform increased expression
has been associated with a poor clinical outcome marker for

lung cancer (56) as well as for glioma patients (57) (see Table 1).
It was found that AK4 expression is under tight control of
noncoding RNA. The AK4 is negatively regulated by micro-
RNAmiR-556-3p and positively by circular RNA of ATP-binding
cassette (ABC) subfamily B member 10, circ-ABCB10 (66).
In same study was demonstrated that downregulation of AK4
restrained lung cancer progression and sensitized lung cancer
cells to cisplatin (66). Moreover, new data indicate that AK4
was shown to be involved in the radioresistance of esophageal
cancer cells (67) and in chemoresistance of other cancers (68,
69). Previously, it was suggested that overexpression of AK4
could protect cells against oxidative stress (70). Other studies
on HeLa (68) and HEK293 cells (71) demonstrated that tumor
cells respond to a hypoxic condition by upregulating the AK4.
However, in HepG2 cells (71), it was found that under oxidative
stress, AK4 oppositely was downregulated. Although AK4 might
be downregulated, it can still regulate OXPHOS because it
retains the nucleotide-binding capability, and it can interact
with the mitochondrial adenine nucleotide translocase (ANT)
(70). It was found that knockout of AK4 increased cellular
ATP through raised OXPHOS activity as well as mitochondrial
number (68). Fujisawa and colleagues in 2016 have proposed
that there are two mechanisms how AK4 regulates mitochondrial
respiration in cancer cells (68). First, in cancer cells, AK4
interacts with ANT, which forms with voltage-dependent anion
channel (VDAC) and HK transmembrane complex AK4-ANT-
VADC-HK (see Figure 1). Under the hypoxic conditions, the
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TABLE 1 | Adenylate kinase isoforms in cancer.

Enzyme Type of

cancer

Status

in tumor

Localization Function/therapeutic target Experimental model References

AK Lung cancer ↓ - Negative regulator of cancer Tissue samples (47)

AK Hepatomas ↓ - Decreased during de-differentiation of

cancer cells

Rat liver and hepatomas (48)

AK Colon cancer ↑ - Metabolic regulator. Energy distribution shifts

from CK toward AK

Tissue samples (41, 49)

AK1 Transformed

embryonic

fibroblasts

↓ Cytosol Negative regulator of tumor malignant rasV12/E1A-transformed

primary mouse embryonic

fibroblasts

(50)

AK2 Breast cancer ↑ Mitochondria

intermembrane

space

Prognostic and therapeutic target Estrogen receptor-negative

breast cancer tissue

samples

(51)

AK2 Breast cancer ↑ Mitochondria

intermembrane

space

Oncotarget of the breast CSC Breast CSC (52)

AK2 Breast cancer

and

neuroblastoma

↑ Mitochondria

intermembrane

space

Oncotarget of the poorly differentiated

cancer cells

Tissue samples and cancer

cell lines

(46)

AK2 Embryonic

carcinoma

↑ Mitochondria

intermembrane

space

Metabolic regulator. Energy distribution shifts

from CK toward AK

Cell lines (36)

AK2 Teratocarcinoma ↑ Plasma

membrane

Overexpressed on the plasma membrane in

metastatic cells

Cell lines (53)

AK2 Breast cancer ↓ Nuclear Negative regulator of tumor cell growth via

DUSP26/FADD signaling

Breast cancer cell lines and

tissue samples

(54)

AK2 Lung cancer ↑ Mitochondria

intermembrane

space

Associated with poor survival of patients.

Prognostic and therapeutic potential

Tissue samples (55)

AK4 Lung cancer ↑ Mitochondrial

matrix

Associated with poor survival of patients.

Prognostic and therapeutic potential

Tissue samples and various

cell lines

(56)

AK4 Glioma ↑ Mitochondrial

matrix

A key regulator of intracellular ATP level.

Prognostic and therapeutic potential

Tissue samples and cancer

cell lines

(57)

AK6 Breast cancer

Colon cancer

↑ Nuclear Promote cancer cell growth. Prognostic and

therapeutic potential

Colon adenocarcinoma and

breast cancer tissues

(58)

AK6 Colon cancer ↑ Cytosol Glycolysis regulator via phosphorylation LDHA.

Modulator of CSC invasion and

metastasis activity

CSC from tissues (59)

complex supports the high glycolytic activity of cancer cells.
It allows efficient ADP recycling between mitochondrial ATP
synthesis and glucose phosphorylation by HK, which interacts
with the mitochondrial outer membrane (MOM) (68, 72). In
addition, in hepatoma cells (73), it was found that up to
50% of ATP is provided by intramembrane space located AK2
through VDAC binding to HK. Thus, AK2 may also be a
member of the metabolic circuit channeling ADP–ATP in and
out of mitochondria. The second mechanism is related to the
fact that AK4 and AK3 have highly homologous sequences;
therefore, they compete with each other for their substrates
(68). According to this mechanism, AK4 interferes with AK3
action in supplying of the GDP required for the conversion
of succinyl-CoA to succinate. That is why overexpression
of AK4 in HeLa cells induces a decrease in Krebs cycle
metabolites such as succinate, fumarate, and malate while
glutamine and glutamate are increased. In several tumors, it

was shown that the predominate substrate for mitochondria
is glutamine (74). However, further studies are needed to
confirm the role of AK4 in mitochondria and Krebs cycle
substrate metabolism.

ADENYLATE KINASE NETWORK ROLE IN
CANCER STEM CELLS

Traditional therapies against cancer, such as chemotherapy
and radiotherapy, have many limitations. The limitation is
due to systematic and local toxicity as well as drug resistance
of small populations of tumor cells that have self-renewal
properties. This small population of cells is called cancer stem
cells (CSCs) (75). Previously, studies on CSC have shown that
the cancer resistance for chemotherapy is related to increased
OXPHOS in CSC. That is why a new generation of cancer
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chemotherapy could be targeted against pathways that interact
with OXPHOS, such as the phosphotransfer system. Lamb
and colleagues have shown on the breast cancer model that
mitochondrial mass is a new biomarker of CSC, which have
increased AK2 expression level (see Table 1) (52). In our
previous study on neuroblastoma (NB) (46), which contains
numerous CSC (76), and embryonal carcinoma cells (36), we
also found that those cells have a high activity of AK2 (see
Table 1). Moreover, another feature of CSC is that mitochondria
are localized around the cell nucleus (77). There is evidence
that AK2 can play an important role in communication
between mitochondria and the nucleus (78). In another
study using proteomic analysis of mouse teratocarcinoma
cells (53), it was demonstrated that metastatic cancer cells
have increased AK2 levels than have nonmetastatic cancer
cells (see Table 1). As metastasis is related to cell motility,
positioning of phosphotransfer enzymes to sites of increased
energy consumption could be an important factor of tumor
formation (59). The AK4 has been identified as a biomarker
of metastasis in lung cancer (56, 79, 80). Overexpression of
AK4 promoted lung cancer metastasis by enhancing hypoxia-
inducible factor HIF-1 stability and epithelial-to-mesenchymal
transition under hypoxia (79). Moreover, it was found that
aferin-A could suppress AK4-HIF-1a signaling and may serve
as a novel anti-metastatic agent in lung cancer (79). The AK4
was also implicated in breast and bladder cancers, where it
promoted cell proliferation and invasion (81, 82). Furthermore,
it was demonstrated that another AK isoform AK6 could
affect colorectal cancer migration and invasion (59). Although
significant progress has been made, at this time, the complete
role of the AK system in cancer metastasis is still unclear.
Moreover, the other reason why CSCs are drug resistant relates
to the increased expression of ABC transporters in those
cells (83, 84). The model for ABC transporters was proposed
(85), which is based on 31P solid-state NMR spectroscopy,
suggesting that intrinsic ATPase is coupled with AK activity
where AK participates in ATP exchange. It is known that
cytosolic and membrane-associated AK can regulate the activity
of another ABC protein—K-ATP channel (86, 87). Nevertheless,
the exact role of AK in supporting adenylate charge and
function of ABC transporters in CSC remains unknown yet.
In this respect, the ABC transporters are not unique proteins
that possess both ATPase and AK activities; there are other
proteins like AK6 (58), also known as transcription factor
TAF9, human coilin interacting nuclear ATPase protein
(hCINAP), and highly conserved DNA repair complex
Rad50 (88).

PARADOXES REGARDING THE ROLE OF
ADENYLATE KINASE IN TUMOR
FORMATION

Cancer is a very complex and diverse phenomenon, including
tissue specificity and different phases. Enzymatic changes can
be different in the initial and advanced stages of tumor
growth (89, 90). There are some contradictory studies where

it was found that in lung cancer and hepatoma, AK was
downregulated compared with that in normal tissue (47, 48)
(see Table 1), whereas a recent study has shown that high
expression of AK2 correlates with a worse prognosis for
lung cancer patients (55) (see Table 1). In mouse embryonic
fibroblasts, it was demonstrated that during their transformation
into tumor cells, a significant reduction of AK1 expression
occurs (50). More recently, the existence of AK1 additional
gene product AK1β has been reported, and it is known
that the AK1β expression level is regulated by p53 (91). In
some cancers, p53 is mutated or suppressed. In this context,
experiments on mouse embryonic fibroblast (50) have shown
that during their transformation into tumor cells, augmentation
of AK1 might be related to the downregulation of AK1β
(see Table 1). Also, Kim et al. have postulated that AK2 is a
negative regulator of tumor growth (54) (see Table 1). They
demonstrated that in some cells, the AK2 localized not only
in mitochondria but also in the nucleus, where it interacted
with dual-specificity phosphatase 26 (DUSP26). This protein
complex can dephosphorylate FADD leading to suppressed cell
growth. They also suggested that AK2 downregulation was
associated with breast cancer formation. In contrast, Speers
and colleagues have found that AK2 is overexpressed in ER-
negative breast cancer (51) (see Table 1). They proposed that
AK2 should be a novel target for the treatment of ER-negative
breast cancer. Indeed, a diterpene lactone neoandrographolide
from extracts of the traditional medicinal herb Andrographis
paniculata has been suggested to inhibit AK2 and have strong
anticancer properties (92). Nevertheless, studies on human
breast cancer and colorectal cancer demonstrated another AK
isoform AK6 was overexpressed during cancer formation (58)
(see Table 1). These data correlate with our previous studies
on colorectal and breast cancers (41, 46) (see Table 1). It was
also shown, that in both colon and breast tissues, AK6 is
located not only in nuclear but also in the cytosol. However,
only in cytosolic compartmentalized AK6 did expression level
increase during tumorogenesis of breast and colorectal cancer
cells (58) (see Table 1). They have found that AK6’s main
function is to regulate ribosome assembly and, consequently,
protein expression and cancer cell growth. Recently, it was
demonstrated that hCINAP or AK6 is a potent modulator
of metabolic reprogramming by phosphorylating LDHA, a
key player in cancer glycolysis (59) (see Table 1). Thus, AK
isoform role can be different depending on cancer cell type and
development stage.

ADENYLATE KINASE-MEDIATED AMP
METABOLIC SIGNALING IN CANCER
CELLS

In recent years, AK-mediated AMP signaling is emerging as
one of the most versatile systems in the regulation of diverse
cellular processes (5, 22, 93). Particularly, AMP signaling to
AMP-activated protein kinase (AMPK) plays a critical role in
adjusting ATP-producing and ATP-consuming processes (90,
94) (Figure 1). In several cancers, it has been demonstrated
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that AMPK, a master regulator of cellular energy homeostasis,
possesses tumor suppressor function (95–97). In cells, AMPK
activation/suppression is regulated via changes in cellular AMP
levels. The principal activator of AMPK is the AK-catalyzed
pathway, where it monitors cellular ATP–ADP balance and
signals to AMPK by increased AMP cellular level. A recent
study indicates that AK and AMPK cooperate to maintain
cellular ATP levels (98). On the other end, AMP-deaminase
(AMPD) and 5′-nucleotidase (5′-NT) suppress AMPK via
decreasing AMP cellular levels (22, 99, 100). Moreover, the
product of AMPD and 5’-NT reactions is adenosine, an
immunosuppressive metabolite. At a high level in tumors,
adenosine can promote cell growth, invasion, metastasis of
cancer cells, and tumor immune evasion (101). Our previous
work has demonstrated that in NB and heart adenocarcinoma
cells HL-1, their mitochondrial permeability for AMP was
increased than in healthy cells (46). It is known that AK2,
which has unique localization in mitochondrial space, has a
high affinity for AMP among AMP metabolizing enzymes.
Therefore, it has been proposed that the AK2’s primary function
is to regulate intracellular AMP levels and to guard the
cellular adenine nucleotide pool (22). Our study also suggested
that cancer cells have a high level of AK2 (46) (Figure 1).
Altogether, in cancer cells, most cellular AMP transport occurs
via MOM where it is converted immediately to ADP and
channeled into, maintaining a low cytosolic AMP concentration.
Recent direct measurements of AK-mediated metabolic flux
indicate that cancer cells have suppressed ATP β-phosphoryl
energetics and AMP signaling, as indicated from 18O-labeling
experiments demonstrating that highly aggressive breast cancer
cells MDAMB231 have lower β-ATP[18O] turnover (AMP
phosphorylation) than have the control MCF10A cells (Klepinin
et al., in preparation). This could be due to the rewiring of
energy metabolism and glycolytic takeover. Activated glycolysis
usually suppresses AK metabolic flux apparently by scavenging
ADP (102) (Figure 1). Suppression of AK phosphotransfer,
AMP generation, and consequent signaling through AMPK
could be the biggest culprit of a cancerous transformation
of a cell (Figure 1). There is also evidence that other AMP
removal pathway enzymes like AMPD2 as well as 5′-NT are
upregulated in colorectal cancer (103, 104). In this regard,
the 5′-NT expression in breast cancer depends on tumor
estrogen receptor status, suggesting a coordinated network
(105). Our previous work has shown that in several tumors,
MOM permeability has also increased for ADP, which may be
related with keeping an intracellular ADP level low (41, 42,
49, 106) (see Figure 1). It was found that not only AMP but
also ADP can regulate the activity of AMPK (107). Further
studies are needed to elucidate detailed mechanisms: (1) how
increased MOM permeability for ADP and AMP and (2)
raised expression of AMP metabolizing enzymes can regulate
intracellular nucleotide levels and the activity of AMPK and
(3) what the significance is of AMP metabolic signaling in
cancer progression.

CONCLUSIONS

The present review is a snapshot from recent AK studies that
focused on the significance of AK network in energetics and
metabolic signaling in cancer cells. Of the nine AK isoforms
(AK1–AK9), four of them (AK1, AK2, AK4, and AK6) are
involved in the progression of malignant transformation.
Studies indicate that AK isoforms (AK1, AK2, AK4, and
AK6) have an important role in the regulation of cancer
cell metabolism, metabolic signaling, and cell migration and
invasion. Moreover, at the initial stage, suppression of AK
phosphotransfer and AMP generation and consequently
signaling through AMPK by a variety of factors could be
the biggest culprit of the cancerous transformation of a
cell. Downregulation of AK→ AMP→ AMPK signaling
can lead to the loss of control of cell cycle, growth, and
proliferation. In the later stages, as emerging data suggest,
cancer cells may use the shift in AK isoforms and other
phosphotransfer enzymes to rewire their energy supply
circuits to support proliferation and metastasis. Knockdown
of overexpressed AK2 in human lung adenocarcinoma cells
suppressed proliferation, migration, and invasion as well as
induced apoptosis and autophagy. In this regard, a diterpene
lactone neoandrographolide from extracts of the traditional
medicinal herb Andrographis paniculata has been suggested
to inhibit AK2 and has strong anticancer properties. Further
studies that involve all AK isoforms have the potential to bring
new understanding and novel therapeutic strategies targeting
the AK isoform network to suppress growth and metastasis of
cancer cells.
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