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Epstein–Barr virus (EBV) infection is correlated with several lymphoproliferative disorders,

including Hodgkin disease, Burkitt lymphoma, diffuse large B-cell lymphoma (DLBCL),

and post-transplant lymphoproliferative disorder (PTLD). The oncogenic EBV is present

in 80% of PTLD. EBV infection influences immune response and has a causative role

in the oncogenic transformation of lymphocytes. The development of PTLD is the

consequence of an imbalance between immunosurveillance and immunosuppression.

Different approaches have been proposed to treat this disorder, including suppression of

the EBV viral load, reduction of immune suppression, and malignant clone destruction.

In some cases, upfront chemotherapy offers better and durable clinical responses. In

this work, we elucidate the clinicopathological and molecular-genetic characteristics of

PTLD to clarify the biological differences of EBV(+) and EBV(–) PTLD. Gene expression

profiling, next-generation sequencing, and microRNA profiles have recently provided

many data that explore PTLD pathogenic mechanisms and identify potential therapeutic

targets. This article aims to explore new insights into clinical behavior and pathogenesis

of EBV(–)/(+) PTLD with the hope to support future therapeutic studies.

Keywords: post-transplant lymphoproliferative disorders, Epstein–Barr virus, next-generation sequencing,

microRNA, gene expression profile, tumor microenvironment

INTRODUCTION

The World Health Organization (WHO) classification of lymphoid malignancies considers four
major diagnostic post-transplant lymphoproliferative disorder (PTLD) categories: early lesions,
polymorphic PTLD that could be either polyclonal or monoclonal, Hodgkin lymphoma (HL), and
monomorphic PTLD of which diffuse large B-cell lymphoma is most common (1).

PTLD can occur in 20% of hematopoietic stem cell (HSC) and solid organ transplant
(SOT) recipients.

PTLD is associated with Epstein–Barr virus (EBV) infection in 60–80% of cases. In EBV
infection in immunocompetent (IC) hosts, the virus forms an episome in latently infected
B cells (2, 3). In post-transplant patients, immunosuppression causes T-cell inhibition with a
consequent lack of T-cell modulation on B-cell proliferation. In particular, when an EBV(–) patient
receives an EBV(+) transplant graft, immunosuppression causes uncontrolled proliferation of
EBV-transformed B cells, which contributes to the development of PTLD (2, 4, 5).
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The pathogenesis of EBV-PTLD is currently unclear;
different hypotheses have been suggested as possible pathogenic
mechanisms of these EBV-PTLD, such as chronic immune
triggering by the graft, hit-and-run EBV infection (EBV induces
chromosomal aberrations in cell genome and might be lost
during malignant cell division), and other infectious agents [e.g.,
human herpesvirus 5, 6, or 8; (6–11)]. However, there is limited
evidence supporting these hypotheses (Table 1).

Clinically, there are differences between EBV(–) and EBV(+)
PTLD. In particular, it has been described that EBV(–) PTLD
arises later, after years of transplantation, whereas EBV(+) cases
arise earlier, generally after months. Furthermore, EBV RNA is
detected in early and polymorphic lesions, typical lesions early
after transplantation.

In the literature, contradictory data are described regarding
the diversity of prognosis between the EBV(+) and EBV(–) cases;
in particular, the international multicenter prospective phase 2
PTLD-1 trial found no association with overall survival and EBV
status [(22, 23); Table 2].

From a therapeutic point of view, EBV(+) and EBV(–) PTLD
have the same therapy; the only difference is regarding the EBV-
specific adoptive immunotherapy.

Many studies have tried to investigate the genomic differences
between the IC-DLBCL, EBV(+), and EBV(–) PTLD. What
emerged was that EBV(–) PTLD has a genomic profile very
similar to that of IC-DLBCL and a much greater biological
complexity than EBV(+) PTLD (26–29).

Furthermore, it has been shown that EBV(+) PTLD, in
addition to having a different genomic profile, has different
genetic and tumor microenvironment alterations compared with
those of EBV(–) PTLD (30–32).

Furthermore, EBV infection may alter the microRNA
expression in B lymphocytes. MicroRNA is an important
transcriptional and post-transcriptional regulator of
gene expression.

In PTLD, EBV(+), B-cell lymphoma revealed different
microRNA profiles, compared with normal B cells or EBV
lymphoblastoid cell lines generated in vitro (33, 34).

These considerations seem to suggest that the pathogenesis
of EBV(–) PTLD is to be considered much more similar to
that of IC-DLBCL and that it is less influenced by post-
transplantation factors. However, despite these differences, the
fact that some EBV(–) PTLD respond well to reduction of
immunosuppression similarly to EBV(+) PTLD remains to be
clarified (35). Certainly, these studies seem to offer theoretical
support for future therapeutic studies in EBV(+) and EBV(–)
PTLD that appear to have a different pathogenesis.

THE GENOMIC LANDSCAPE OF
EPSTEIN–BARR VIRUS POSITIVE AND
NEGATIVE POST-TRANSPLANT
LYMPHOPROLIFERATIVE DISORDERS

In this work, we want to illustrate the genomic complexity
of EBV(+) and EBV(–) PTLD through the integration of
different genomic approaches that have significantly improved

our understanding of the genetic landscape of these disorders
(Table 3).

MOLECULAR CHARACTERIZATION
THROUGH A GENOMIC APPROACH

Poirel et al. (36) studied PTLD cases with comparative genomic
hybridization (CGH) and fluorescence in situ hybridization
(FISH). The overall incidence of chromosomal imbalances was
described in half of PTLD cases, even in the polymorphic
category. Latent EBV infection was found in the lesions of
three quarters of cases. Non-random losses were 17p13; 1p36,
4q; and 17q23q25, Xp. The gains of 8q24, 3q27, 2p24p25, 5p,
9q22q34, 11, 12q22q24, 14q32, 17q, and 18q21 were the most
frequent. Three amplifications −4p16, 9p22p24, and 18q21q23–
were detected. FISH has confirmed the involvement of Bcl2
in this latter imbalance. Chromosomal imbalances tended to
be more complex in EBV(–) cases than in EBV(+) cases. The
identification of chromosomal regions non-randomly involved
in lymphomagenesis supports the role of candidate genes to
be identified by a combined approach using gene expression
profiling (GEP) and CGH array.

In order to improve PTLD pathogenesis understanding,
Rinaldi et al. studied recurrent lesions revealed by whole-genome
profiling analysis (26). The most common gains in IC-DLBCL
were chromosome 3q, 7q, 12, and 18q and in PTLD were
chromosomes 5p and 11p. The most common losses in IC-
DLBCL were chromosome 12p and in PTLD were 6q, 17p,
1p, and 9p. DNA loss did not always match with loss of
heterozygosity (LOH), and uniparental disomy seems to target
chromosome 10 in PTLD. They found small deletions and gains
involving BCL2 and PAX5 and ZDHHC14 (known gene). These
data show that PTLD, at a lower frequency, shares common
genetic aspects with IC-DLBCL. 9p13 amplification supports
the importance of PAX5 in PTLD pathogenesis. Different DNA
copy number and LOH patterns support the hypothesis that
uniparental disomy can have a role in lymphomagenesis.

High-density genome-wide single-nucleotide polymorphism
(SNP)-based arrays were used by Rinaldi et al. (27) to compare
PTLD with IC-DLBCL and to compare EBV(+) with EBV(–)
PTLD. In PTLD, the more frequently deleted loci were small
interstitial deletions targeting FRA1B, FRA2E, and FRA3B fragile
sites. PTLD presents typical and different aberrations than does
IC-DLBCL: the deletions at 2p16.1 (FRA2E), lack of del(13q14.3)
(MIR15/MIR16), and copy neutral LOH affecting 6p MHC.
EBV(+) PTLD presented less recurrent lesions than did EBV(–)
PTLD, including a gain of 7p, del(4q25–q35), and gains of
7q, 11q24–q25.

Menter et al. (29) investigated PTLD through next-generation
sequencing (NGS) using the Ion Torrent platform. Nuclear
factor-κB pathway-related genes had fewer mutations in EBV(+)
PTLD compared with IC-DLBCL.Moreover, in PTLD, compared
with IC-DLBCL, TP53 was more frequently mutated, whereas
ATM and B2M mutations were absent. TP53 mutations were
more frequent in EBV(–) PTLD. Mutations in DNA damage
control and immune-surveillance genes are different in PTLD
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TABLE 1 | Major risk factors in the development of PTLD.

Risk factors for PTLD

Infectious etiologies EBV, especially when EBV(–) recipients received a transplant graft from EBV(+) donor.

Mismatch for CMV, HCV, and HHV-8, especially when they coincided with EBV infection.

(5, 12)

Age and race Ages <10 and >60 years.

Race: White transplant patients > Blacks.

(13, 14)

Immunosuppressive therapy The degree, duration, and type of immunosuppression (in particular, anti-thymocyte globulin,

calcineurin inhibitors, anti-CD3, tacrolimus, and cyclosporine)

(15, 16)

HSCT/SOT-related factor SOT types (multi-organ and intestinal transplants have an increasing risk than have lung

transplants > heart transplants > liver transplants > pancreatic transplants > kidney

transplants).

HLA mismatch in HSCT (haploidentical transplants have an increasing risk than have unrelated

donor > umbilical cord transplant > HLA-identical related).

Type of GVHD prophylaxis, T-cell depletion has the highest risk.

Severity of GVHD transplant.

(16–19)

Genetic factors Polymorphisms in cytokine genes.

Recipient HLA, donor polymorphisms.

(20, 21)

EBV, Epstein–Barr virus; CMV, cytomegalovirus; HCV, hepatitis C; HHV, human herpesvirus; HSCT, hematopoietic stem cell transplant; HLA, human leukocyte antigen; GVHD,

graft-vs.-host disease; SOT, solid organ transplant.

TABLE 2 | Clinical aspects of EBV(+)/(–) PTLD.

Clinical aspects EBV(+)/(–) PTLD References

Incidence 55–65% of PTLD is associated with EBV infection. (21, 24)

Clinical

presentation

EBV(–) occur later (years) than does EBV(+) PTLD (months).

EBV(–) present more often as monomorphic PTLD.

(25)

Prognosis Controversial results in literature about the different prognoses of EBV(+)/(–) PTLD. (22)

Therapy and

prospective

EBV(+) and EBV(–) PTLD have the same therapy.

Specific immunotherapies for EBV(+) PTLD have been proposed, for example,

adoptive T-cell transfer, immune checkpoint inhibitors, and antiviral therapy.

(23, 25)

EBV, Epstein–Barr virus; PTLD, post-transplant lymphoproliferative disorder.

with respect to IC-DLBCL. EBV seems to have a role in the
different mutational pattern.

MOLECULAR CHARACTERIZATION
THROUGH A TRANSCRIPTIONAL
APPROACH

Through gene expression analysis, Morscio et al. (38) and
Craig et al. (30) showed that EBV(+) and EBV(–) PTLD
have different microenvironment and gene expression profiles.
They also demonstrated that EBV(–) PTLD and IC-DLBCL are
biologically similar.

Through array comparative genome hybridization
(aCGH) analysis, Ferreiro et al. (31) studied at genomic
and transcriptomic levels EBV(+) PTLD, EBV(–) PTLD,
and IC-DLBCL.

EBV(+) PTLD had a different CNA pattern as compared with
EBV(–) PTLD and a lower genomic imbalance.

Moreover, EBV(+) PTLD showed distinct aCGH profiles
with only one recurrent imbalance with EBV(–) PTLD. On
the other hand, EBV(–) PTLD displayed similar recurrent
aberrations (gain of 3/3q and 18q and loss of 6q23/TNFAIP3
and 9p21/CDKN2A) as compared with IC-DLBCL. These

findings support the concept of a biological relationship between
both conditions.

9p24.1 gain/amplification was the most frequent aberration in
EBV(+) PTLD targeting PDCD1LG2/PDL2. These genes encode
immunomodulatory programmed cell death ligands (39).

In lymphoproliferative disorder, particularly in primary

mediastinal B-cell lymphoma, classical HL, and primary central

nervous system lymphoma, 9p24.1 is a common copy number
gain. The consequence of this alteration is an increase of PDL1
and PDL2 and their induction by JAK2 (40–43).

An upregulation of PDL1 was described in the majority

of EBV(+) lymphomas, including PTLD (44–46). PDL1/2

signal regulates immune defenses against pathogens and T-cell

tolerance/T-cell activation through the PD-1 receptor (47).
Green et al. (44) demonstrated an alternative activation

mechanism of PDL1 in classical HL and EBV(+) lymphoma,

in which EBV latent membrane protein 1 (LMP1) is involved
in PDL1 upregulation. These results were also supported by

Chen et al. (45), who demonstrated how EBV(+) lymphomas,

including PTLD, express detectable PDL1. In lymphomas,
genomic amplification or EBV infection causes the PD-1/PDL

signaling pathway activation with the immune surveillance

escape (Figure 1).
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TABLE 3 | Genomic characterization of EBV(+) and EBV(–) PTLDs through different technologies approaches.

Genomic

approach

EBV(+)/EBV(–) PTLD References

CGH

FISH

WGP

SNP

NGS

The most common copy number aberration in EBV(+) PTLD is the gain/amplification of 9p24,

whereas in EBV(–) PTLD, it includes gain of 3/3q and 18q, loss of 6q23/TNFAIP3, and loss of

9p21/CDKN2A

TP53 mutations were more frequent in EBV(–) PTLD than EBV(+) PTLD and IC-DLBC.

Compared with EBV(+) PTLD, EBV(–) PTLD and IC-DLBC have more frequent gene mutations

associated with the NF-κB pathway.

EBV(+) PTLD has a constitutive activation of the PI3K/Akt/mTOR pathway.

(36)

(26)

(27)

(31)

(29)

(37)

TRANSCRIPTIONAL APPROACH

GEP

MicroRNA expression

EBV(–) and EBV(+) PTLD demonstrated different GFP especially gene involved in inflammation

and immune response pathway profile.

EBV(+) PTLD has a suppressed expression of microRNA-194.

(38)

(30)

(31)

(33)

CGH, comparative genomic hybridization; FISH, fluorescence in situ hybridization; WGP, whole-genome prediction; SNP, single-nucleotide polymorphism; NGS, next-generation

sequencing; IC-DLBC, immunocompetent diffuse large B cell; GEP, gene expression profiling; NF-κB, nuclear factor-κB.

FIGURE 1 | PD-1/PD-L1 pathways in EBV(+) PTDL.

The distinctive copy number alteration in EBV(+) PTLD
was identified as a gain of 9p21 with respect to EBV(–) PTLD.
Gain of 9p21 caused different CDKN2A expression. CDKN2A
codes for cyclin-dependent kinase inhibitor 2A (p16INKA), an
important regulator of the cell cycle; in particular, it decelerated
cell progression through the G1 phase (48). In EBV(+) PTLD,
immunohistochemistry (IHC) demonstrated that a gain of 9p21
was associated with exclusively cytoplasmic expression of the
p16INKA protein. The p16INKA seems to be implicated in
alternative oncogenic pathways and not as a tumor suppressor
in EBV(+) PTLD (48, 49).

A gain of chromosome 3/3q was found in EBV(–) PTLD,
and it was absent in EBV(+) PTLD. This alteration caused
increased expression of FOXP1 in EBV(–) PTLD; these data
were confirmed by QRT-PCR and IHC. FOXP1 encodes
a transcriptional regulator implicated in different biological
processes and in B-cell lymphomas pathogenesis; and it seems to
play a critical role in the pathogenesis of EBV(–) PTLD. However,
the connection between EBV infection and FOXP1 is uncertain
because EBV downregulates FOXP1 in normal B cells (50–54).

IC-DLBCL has many points in common with EBV(–) PTLD.
EBV(–) and EBV(+) PTLD demonstrated different genomic
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and gene expression profiles. In particular, GEP differences in
EBV(+) and EBV(–) PTLD involve inflammation and immune
response pathways (31), supporting the hypothesis that the
EBV infection has a major impact on the gene expression and
alterations in EBV(+) PTLD. On the other hand, the EBV(–)
PTLD appears to be more similar to de novo lymphomas arising
in transplanted patients.

Many studies support the role of cytokines in the pathogenesis
of EBV(+) PTLD (55). This hypothesis is supported by
the detection of IL-10 transcripts in PTLD biopsies. B-cell
lymphomas isolated from EBV(+) PTLD produce IL-10 in a
constitutive way and use it as an autocrine growth factor (56).
For this reason, serum IL-10 has been proposed as an early
marker of PTLD (57–60). It is unclear why IL-10 is altered in
EBV(+) PTLD.

EBV infection modifies microRNA expression. Gene arrays
demonstrate different microRNA profiles in EBV(+) B-cell
lymphoma lines from patients with PTLD, as compared
with in vitro generated EBV(+) lymphoblastoid cell lines
or normal B cells. In particular, microRNA-194 (33) was
found to be suppressed in EBV(+) PTLD. MicroRNA-
194 overexpression increases apoptosis of EBV(+) B-cell
lymphoma lines and attenuates IL-10 production. EBV seems to
suppress microRNA-194 in order to increase IL-10 expression.
Therefore, microRNA-194 may constitute a new approach
to inhibiting proliferation of EBV(+) B-cell lymphomas
in PTLD.

CONCLUSIONS AND PROSPECTIVE

In recent years, increasing understanding of the biologic and
molecular PTLD pathogenesis has resulted in new therapeutic
approaches and improved outcomes for these patients. Although
the prognosis of EBV(+) in comparison with EBV(–) PTLD is
not clear, frontline therapy in EBV(+) and EBV(–) PTLD is
currently the same.

In this work, we reported much evidence that EBV(+)
and EBV(–) PTLD have distinct genomic and transcriptomic
landscape, although at the moment, clinical data do not
completely support this hypothesis. EBV(–) PTLD and IC-
DLBCL seem to be similar biological entities; for this reason,
EBV(–) PTLD might be considered as a type of lymphoma
that develops coincidentally in transplant recipients. Moreover,
EBV(+) PTLD and EBV(+) DLBCL present many similarities,
indicating that EBV both infection and reactivation have
important consequence on their pathogenesis (30–32, 38).

PTLD therapy is a combination of reduction of
immunosuppressive therapy, immunotherapy, and
chemotherapy (23, 25). In this review, we summarize the
clinical and biological differences of EBV(+) and EBV(–) PTLD,
and we support a new therapeutic approach based on EBV status
to improve outcomes of these patients.

The expression of viral antigens makes EBV(+) PTLD an
attractive candidate for specific therapy. Unfortunately, latent
EBV-infected B cells do not express EBV-thymidine kinase
transcript/protein; and for this reason, they are unaffected by

antiviral agents as purine nucleoside analog. Similarly, EBV-
related lymphoproliferative disorders do not express viral protein
kinase, and so monotherapy with nucleoside analogs failed to
induce responses in EBV(+) PTLD. However, pharmacological
induction of viral thymidine kinase by the administration of
the histone deacetylase inhibitor arginine butyrate, followed by
antiviral therapy, has shown promising results with an acceptable
toxicity profile (61).

More recently, several studies demonstrated how
immunomodulatory drugs such as lenalidomide or proteasome
inhibitors, in particular bortezomib, can induce EBV lytic
activation (62, 63).

The search for new antivirals is ongoing; in particular, a
new antiviral agent hexadecyloxypropyl-cidofovir (HDP-CDV)
exhibits a remarkable increase in antiviral activity in vitro against
different double-stranded DNA viruses including EBV (64).

Constitutive activation of the PI3K/Akt/mTOR pathway was
shown in in vitro EBV(+) PTLD cell lines. Inhibition of
either Akt or PI3K, with specific inhibitors CAL-101 or MK-
2206, respectively, suppresses EBV(+) PTLD cell growth; and
the combination of rapamycin had a synergistic effect. The
combination therapy with an Akt inhibitor, or a PI3K inhibitor,
and rapamycin can be an efficacious treatment for EBV(+)
PTLD (37).

Most results presented are based on in vitro data; further
evaluation and prospective clinical trials are necessary before
such agents can be used as a treatment for PTLD patients.

The upfront treatment of EBV(+) and EBV(–) PTLD
is the same, except for the use of EBV-specific adoptive
immunotherapy. Immune-based therapies are an effective
approach because of EBV antigen expression. In particular,
adoptive therapy is based on the high efficacy of unselected
donor lymphocyte infusions in HSC transplantation PTLD
(65). Attempts were made to isolate EBV-specific cytotoxic
lymphocytes (CTLs) aiming to induce a strong EBV-specific
cellular immune response without the risk of graft-vs.-host
disease (GVHD). Both autologous and allogeneic [isolated from
the donor itself or a partial human leukocyte antigen (HLA)-
matched donor] CTLs, targeting specific immunogenic EBV
antigens, can be used (66). In a large multicentric study, HSCT
patients were treated with EBV-CTLs, either prophylactically
or therapeutically (67). A Chinese prospective study in HSCT
recipients demonstrated an increase in complete remission rates
in patients treated with sequential administration of rituximab
and EBV-CTLs (68).

Moreover, checkpoint inhibition seems to be a potential
treatment option in EBV(+) PTLD. EBV infection/reactivation
causes a cytotoxic T-cell dysfunction in lymphomas as PTLD
and classical HL. EBV causes an upregulation of immune
checkpoint markers. In classical HL, immune checkpoint
inhibitors have demonstrated efficacy; and therefore, there has
been an increasing interest in PTLD (69). Antigen-presenting
cells express PD-L1 that bind the PD-1 receptor on T cells,
thus inhibiting T-cell receptor functions. EBV plays a role in
increasing PD-L1; these data support the role of checkpoint
inhibition in PTLD (44). Kinch et al. demonstrated than PDL-1,
PDL-2, and PD-1 were positive in more than half of PTLD cases

Frontiers in Oncology | www.frontiersin.org 5 May 2020 | Volume 10 | Article 506

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Ferla et al. EBV and Post-transplant Lymphoproliferative Disorders

following SOT (70).More clinical data are necessary to determine
the safety, efficacy, and graft rejection risk or GVHD of immune
checkpoint inhibitors in PTLD. Currently, a phase II trial
(NCT03258567) of nivolumab in a cohort of patients—EBV(+)
non-HLs including EBV(+) PTLD—is ongoing.

This review summarizes many steps that have been
made in understanding the EBV(+)/(–) PTLD biology. The
biological differences connected with the EBV status support
the development of preventive/preventive strategies against EBV
disease and implementation of existing therapies both in the
frontline and in the setting of relapsed/refractory patients. Several

molecular targeting agents including immunomodulatory agents,
proteasome inhibitors, PI3K and Akt inhibitors, novel anti-CD20
monoclonal antibodies, and immune checkpoint inhibitors seem
to have a therapeutic potential, providing a strong rationale for
new clinical trials to improve the outcome of EBV post-transplant
lymphoproliferative disorder.
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