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Aqueous solubility is an important physicochemical property of compounds in

anti-cancer drug discovery. Artificial intelligence solubility prediction tools have scored

impressive performances by employing regression, machine learning, and deep learning

methods. The reported performances vary significantly partly because of the different

datasets used. Solubility prediction on novel compounds needs to be improved, which

may be achieved by going deeper with deep learning. We constructed deeper-net

models of ∼20-layer modified ResNet convolutional neural network architecture, which

were trained and tested with 9,943 compounds encoded by molecular fingerprints.

Retrospectively tested by 62 recently-published novel compounds, one deeper-net

model outperformed four established tools, shallow-net models, and four human experts.

Deeper-net models also outperformed others in predicting the solubility values of a

series of novel compounds newly-synthesized for anti-cancer drug discovery. Solubility

prediction may be improved by going deeper with deep learning. Our deeper-net models

are accessible at http://www.npbdb.net/solubility/index.jsp.

Keywords: aqueous solubility, deep learning, artificial intelligence, compounds, chemical, anti-cancer drug

discovery

INTRODUCTION

Aqueous solubility is an important physicochemical property of compounds in anti-cancer drug
discovery and development, impacting pharmacokinetic properties and formulations (1, 2). To
facilitate solubility assessment, a number of artificial intelligence (AI) solubility prediction tools
have been developed by employing regression and modeling (3, 4), machine learning (5–9), and
deep learning (10–12) methods. These tools have scored impressive performances with high R2

(e.g., 0.62–0.97) and low RMSE (e.g., 0.29–0.89) values (5, 13). However, the reported performances
vary significantly, even among the same tools, partly because of the different datasets used. For
instance, the reported R2 and RMSE values of MOE software V2010.10 are 0.62 and 0.51 (8)
and those in a 2014 publication are 0.27 and 1.05 (14). The reported R2 and RMSE values of
QikProp software V1.6, V2.1, and V3.2 are 0.9 and 0.8 (6), 0.95 and 0.63 (15), and 0.45 and 0.86
(8), respectively.

AI solubility prediction tools may be critically tested by newly-published novel compounds.
Tested by 62 novel compounds published since November 2017 (Methods section), four established
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tools MOE V2016.0802, QikProp QP18 and CIQP18, and
AlogGPS V2.1 scored significantly lower R2 (<0.2) and higher
RMSE (0.814–1.162) values (Results section) than the typically-
reported values (5, 6, 8, 14, 15). Our own-developed deep
learning model of typically-employed shallow-net architecture
(Methods section), trained and tested with 9,943 compounds,
also scored lower R2 (0.307) and higher RMSE (0.739) values
(Results section). Hence, there is a need for improved solubility
prediction particularly on novel compounds to promote oral
anti-cancer drug development. In AI field, deep learningmethods
with distinguished learning capabilities (16) [which has been
proved by prediction of CRISPR-Cpf1 guide RNA activity
(17) and prediction of protein-ligand binding affinity (18)]
are useful for this task, but their potential has yet to be
fully realized.

The published deep learning solubility prediction models
are primarily shallow-nets (3–7 layers) (10–12). Deep learning
performances have been routinely enhanced by going deeper
(adding more layers to shallow-nets) (19–21). Although
performances can also be enhanced by going wider (22), it
may be practically easier to develop deeper-nets by tapping
into the well-established architectures that require fewer
parameters (19–21). The depth of deeper-nets or the width of
wider-nets is constrained by the limited number of compounds
with experimental solubility data. The architecture with
fewer parameters, convolutional neural networks (CNN),
is therefore preferred. A question is whether the superior
local-feature learning capability of CNN can adequately learn
molecular features of compounds. To fit with the local-
feature learning capability of CNN, compounds are better
represented by substructure-encoded molecular fingerprints
(23) instead of molecular descriptors used for solubility
prediction by previously-developed deep learning models
(10–12). Molecular fingerprints are vectors with individual
components encoding specific sub-structures of molecules.
Hence, the superior local-feature learning capability of CNN
is expected to be useful for capturing the key sub-structural
elements and their combinations contributing the solubility
of molecules.

We constructed N-layer CNN models (N = 14, 20,
and 26) using 9,943 compounds and based on a residual
network (ResNet) architecture (20), which are significantly
deeper than the previously-developed 3–7 layers shallow-net
models (10–12). The solubility prediction capability of our
deeper-net models was tested by retrospective prediction of
the experimental solubility of 62 recently-published novel
compounds beyond the training and testing compounds. These
performances were compared with those of four established
tools, shallow-net models and four human experts. Our
deeper-net models and others were further tested by a real
anti-cancer drug discovery project with a series of novel
compounds newly-synthesized for discovering FLT3 inhibitors.
These compounds were considered difficult for solubility
estimation by medicinal chemistry experts, which are ideal
for rigorous test of solubility prediction models. Our models
are accessible at http://www.npbdb.net/solubility/index.jsp for
supporting broader tests.

MATERIALS AND METHODS

Data Collection and Processing
A total of 10,166 compounds with experimental aqueous
solubility value were collected from ChemIDplus database (24)
and Pubmed (9, 25, 26) literature search up to November
2017. Another 62 recently-published novel compounds with
experimental aqueous solubility value (Supplementary Figure 1,
6 representative compounds in Figure 1) were collected from
PMC database (27–31) search using keyword combination
of “novel”, “new,” and “solubility” and under the following
criteria: published between November 2017 and May 2018, and
solubility measured at room-temperature and around pH 7.0.
For the 10,166 compounds, their SMILES strings (which encode
sub-structures), InChIKeys (chemical structure identifiers) and
aqueous solubility values were collected from the searched
sources. For the 62 novel compounds, their structures were
drawn from literature-reported structures by using ChemDraw
18.0 and then converted to the SMILES strings by using
RDKit1. Solubility S values in different units (e.g., µg/mL,
mg/mL, and mg/L) were converted to mol/L and transformed
into logS (in logarithmic units) values. The SMILES strings
were converted to canonical SMILES strings for consistency by
using Open Babel (32). Duplicates were removed by InChIKeys
comparisons. The canonical SMILES of the remaining non-
redundant 9,943 compounds (Supplementary Table 1, the basic
physical properties detailed in Supplementary Table 2) and
the 62 novel compounds were converted into the Pubchem
molecular fingerprints (which encode sub-structures by 881 bits)
using PaDEL (33).

Established Tools and a Deep Learning
Model of Typically-Employed Shallow-Net
Architecture for Solubility Prediction
Solubility prediction performances were comparatively
evaluated with respect to four established software tools
[MOE V2016.08022, QikProp 2018-4 QP18 and CIQP183, and
AlogGPS V2.1 based on an artificial neural network method (5)].
The deep learning model was developed based on a typically-
employed shallow-net deep neural network (DNN) architecture
for solubility prediction (11), which is a 4 hidden-layers DNN
(Supplementary Figure 2) with the network architecture and
parameter sets re-constructed based on the literature descriptions
(11) with the following minor variations: the activation function
was changed from SReLU to ReLU and the compounds were
represented by pubchem molecular fingerprints instead of fp6
molecular fingerprints. The numbers of nodes of the hidden
layers are 512, 1,024, 2,048, and 4,096. The parameters of L2
regularization and dropout regularization are 0.001 and 0.5. The
9,943 compounds were randomly divided into 90% training and
10% testing datasets for training the DNNmodel.

1http://www.rdkit.org/
2http://www.chemcomp.com/index.htm
3 https://www.schrodinger.com/QikProp
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FIGURE 1 | The molecular structures and experimental solubility S values of six recently-published novel compounds.

Development of Deep learning Models of
Deeper-Net Architecture for Solubility
Prediction
The deeper-net models were based on the ResNet architecture
(20) with the usual matrix forms of the ResNet layers, filters
and feature maps replaced by vector forms. The numbers of
layers N are 14, 20 (Figure 2), and 26 (Supplementary Figure 3)
(N-1 CNN layers and 1 fully-connected layer). The vector
forms were used because the inputs are 881-dimensional vectors
(Pubchem fingerprints) instead of matrices of image pixel values.
These CNN models were trained by the 10-fold cross validation
method used for the development of two shallow-net deep
learning solubility predictionmodels (10, 12). In the 10-fold cross
validation method, the 9,943 compounds were randomly divided
into 10 sets of approximately equal sizes, with each set used
once as a testing dataset, and the remaining 9 sets as training
dataset for training the CNNmodels. The CNN hyperparameters
were optimized based on the overall performance of the 10
training/testing datasets. These hyperparameters include loss
function, kernel sizes, number of filters, stride lengths, number
of fully-connected hidden layers, number of neurons of the
fully-connected layer, activation function, optimizer, learning
rate, weight initialization, regularization, batch size, and epochs.
Multiple activation functions (Sigmoid, ReLU, Softmax) were
evaluated in both activation layers and the activation arguments
of all forward layers. The weight initialization was uniform. L2
regularization was added by small amounts of L2 weight decay.
A solubility value regression model was trained by least squares

fit (−R2 = −(1 − (
∑n−1

i=0

(

yi − ŷi
)2

/
∑n−1

i=0 (yi − y)2))) between
the predicted (ŷi) and experimental (yi) solubility values of the
n training compounds as the loss function of the output of our
deeper-net models.

Performance Evaluation Metrics
The solubility prediction performances of the developed deep
learning models were assessed by two metrics used in the

evaluation of previously-developed shallow-net deep learning
models (10, 12). One is the R2 value, where R is the Pearson
correlation coefficient defined by:

R2 = 1−

∑n−1
i=0 (yi − ŷi)

2

∑n−1
i=0 (yi − y)2

The second is the root mean squared error RMSE defined by:

RMSE =

√

∑n−1
i=0 (yi − ŷi)

2

n

where ŷi is the predicted and yi is experimental solubility values
of the training compounds.

In statistics, R2, the coefficient of determination, is the
proportion of the variance in the dependent variable that is
predictable from the independent variable(s). It is a statistical
measure used in a regression model to indicate that how well
the model fits the data. Theoretically, it denotes a goodness-of-
fit indicator that can vary from –∞ to 1. The closer the R2 value
is to 1, the better the model fits the data, and vice versa. The
other metric, RMSE, is the square root of the average of squared
errors. It is a statistical measure of the differences between the
values predicted by a model and the true values. RMSE is always
non-negative, and the value closer to 0 indicates the better fit to
the data.

Chemical Synthesis and Experimental
Aqueous Solubility Determination
In one of our drugs discovering projects toward antitumor
therapeutics, a series of novel FLT3 inhibitors were designed
and synthesized using the structure-based drug design methods.
The aqueous solubilities (pH = 7) of these compounds were
measured using the modified shake flask method and RP-HPLC
(34, 35). Each compound was added into a 1.5mL Eppendorf
tube containing Milli-Q water (1mL) to form the precipitates at
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FIGURE 2 | The architecture of the 20-layer CNN ResNet-like deep learning model. (A) A CNN ResNet-like deep learning model with 20 parameter layers. The

“conv1d x,y” is a 1D convolution layer with x kernel sizes and y filters. And the curvy arrows are the shortcut connections. The shortcut connection with a parameter

layer increases dimensions. The different color means different layer class in the architecture. “Green” means the first layer, “white” means the last layer, “gray” means

the parameter layer of the shortcut connection, and the others mean the residual layers. The color change of the residual layers from purple to blue to yellow indicates

the tensor dimension change from 9 to 18 to 36. (B) The shortcut connection in the architecture of CNN ResNet-like deep learning model. Shortcut connections

simply perform identity mapping by skipping one or more layers (20). Their outputs are added to the outputs of the stacked layers without extra parameter and

computational complexity.
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25◦C. Then the mixture was subjected to a solubility-equilibrium
stage. The tube was shook at 300 rpm at 25◦C for 24 h. The
precipitate was separated by centrifugation at 23,000 g for 20min.
Subsequently, 0.25mL of supernatant was transferred into a
1mL Eppendorf tube, and it was centrifuged again with the
same settings used above. The supernatant was then used for
HPLC analysis. An Agilent 1260 Infinity LC system (Agilent
Technologies, Inc., Santa Clara, California) was used. For HPLC
conditions, a ZORBAX SB-C18 column (5µM, 4.6 × 150mm;
Agilent), a flow rate of 0.8 mL/min for mobile phase, a UV
wavelength of 250 nM and a column temperature of 30◦C were
used. The sample was injected automatically by a mechanical
arm and separated by a constant mixture of methanol/PBS (pH
5.6), 90:10. For each compound, a standard curve consisting of
four concentrations was established. The synthetic methods of all
but compound SC5 and SC6 have been published in literatures
(36–39). The synthetic methods of SC5 and SC6 are described in
Supplementary Method 1.

RESULTS

The Training of the Deeper-Net Models and
Solubility Prediction Performance
Evaluation
Using 9,943 compounds and 10-fold cross validation method,
three deeper-net models of 14-, 20-, and 26-layer were developed.
The ranges and the optimal hyperparameter values for the 20-
layer model (which is the top performing model based on the
loss function R2 values) are given in Supplementary Table 3.
The 10-fold cross validation performances of the 14-, 20-, and
26-layer models are R2 = 0.72–0.78, 0.74–0.79, and 0.72–0.79,
and RMSE= 0.988–1.144, 1.006–1.112, 1.015–1.151, respectively
(detailed in Supplementary Table 4). In spite of different depths,
these models performed similarly well, possibly because the
superior predictive capability of these deeper-net models cannot
be fully tested by 1-fold (1/10) testing datasets. The test by novel
compounds may be better for probing the predictive capabilities.
The reported 10-fold cross validation performances of the two
previously-developed shallow-net models are R2 = 0.86–0.92 and
0.90–0.92, and RMSE = 0.58–0.79 and 0.45–0.50, respectively
(10, 12), which are substantially better than those of our deeper-
net models. It is noted that our datasets (testing 994 compounds,
training 8,949 compounds) are significantly larger than those of
the two previously-developed shallow-net models (testing 102–
287 and 129–154 compounds, training 923–2,586 and 1,161–
1,537 compounds, respectively) (10, 12). Caution is needed
in a direct comparison of the performance statistics of these
models. The significantlymore diverse testing datasets may partly
contribute to the lower performance statistics. But the more
diverse training datasets likely lead to more robust prediction
capability than the less diverse training datasets. Because of the
inaccessibility of the previously-published shallow-net models,
it is impossible to test these models on a common set of
diverse compounds. Therefore, these models were tested on
the 62 newly-published novel compounds and a series of novel

compounds from our anti-cancer drug discovery project with
solubility measured for the first time in this work.

Prediction of the Solubility Values of
Literature-Reported Novel Compounds by
the Deeper-Net Models in Comparison
With the Established Tools and
Shallow-Net Models
The solubility prediction capability of our deeper-net models
was tested by the 62 newly-published novel compounds. We
also trained 1-layer DNN model, 6-layer DNN model, and
8-layer ResNet-like model as our shallow-net models. The
testing results of these models are included in Table 1, and
the predicted logS values of these models with respect to
experimental logS values are in Supplementary Table 5. Based
on the R2 and RMSE values, the 20-layer deeper-net model
(R2 = 0.412, RMSE = 0.681) performed substantially better
than all the other models including the four established
tools and the shallow-net models (R2 in the range of <0.2
to 0.307, RMSE = 0.739–0.982). The R2 and RMSE values
of four established tools, shallow-net and deeper-net deep
learning models were evaluated by the bootstrap sampling
method. The mean, standard deviation and 95% confidence
interval of R2 and RMSE values for 10,000 bootstrap samples
of 62 recently-published novel compounds were detailed in
Supplementary Table 6. Judged by the percent of predicted logS

TABLE 1 | Performance on the logS prediction of 62 recently-published novel

compoundsa.

Model R2 RMSE PCT-10-foldb (%)

Established tools

MOE V2016.0802 <0.2 0.908 74.2

QikProp 2018-4 QP18 <0.2 0.926 69.4

QikProp 2018-4 CIQP18 <0.2 1.162 54.8

AlogGPS V2.1 0.160 0.814 77.4

Shallow-net deep learning model of a

typically-employed architecture for

solubility prediction

4-layer DNN model 0.307 0.739 80.7

Shallow-net deep learning models developed

in this work

1-layer DNN model 0.086 0.849 72.6

6-layer DNN model 0.264 0.762 79.0

8-layer ResNet-like model <0.2 0.982 66.1

Deeper-net deep learning models developed

in this work

14-layer ResNet-like model 0.133 0.827 74.2

20-layer ResNet-like model 0.412 0.681 82.3

26-layer ResNet-like model 0.075 0.854 77.4

aThe performance of the established tools, and the shallow-net and deeper-net deep

learning models in the prediction of experimental logS values of 62 recently-published

novel compounds. The best performance values are in bold font.
bPercent of predicted logS value within 10-fold of experimental value.
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TABLE 2 | Performance on the solubility category predictiona.

Human expert or established tool Percent of 62 compounds with

correct classification (%)

Deep learning model Percent of 62 compounds with

correct classification (%)

Expert 1 6.5 4-layer DNN model 79.0

Expert 2 8.1 1-layer DNN model 79.0

Expert 3 11.3 6-layer DNN model 82.3

Expert 4 74.2 8-layer ResNet-like model 80.7

MOE V2016.0802 91.9 14-layer ResNet-like model 87.1

QikProp 2018-4 QP18 85.5 20-layer ResNet-like model 85.5

QikProp 2018-4 CIQP18 87.1 26-layer ResNet-like model 83.9

AlogGPS V2.1 82.3

aThe performance of human experts, the established tools, and the shallow-net and deeper-net deep learning models in the prediction of solubility category of 62 recently-published

novel compounds. The solubility categories are practically insoluble or insoluble (<0.1 g/L), slightly soluble (0.1–10 g/L), soluble (10–100 g/L), and freely soluble (>100 g/L).

FIGURE 3 | The molecular structures and experimental solubility S values (in mg/mL) of the five synthetic novel compounds for a drug discovery project with solubility

values measured for the first time by this work.

values within 10-fold of experimental value, all but one model
achieved high performances (66.1%), suggesting the usefulness
of both established tools and deep learning models for accessing
solubility categories. Nonetheless, the 20-layer deeper-net model
substantially outperforms all other models. These suggested
that going deeper with deep learning at appropriate depth
may give rise to significantly improved solubility prediction on
novel compounds. The lower R2 and RMSE values of the 26-
layer model (R2 = 0.075, RMSE = 0.854) over the 20-layer
model indicated signs of overfitting in going further deeper
beyond∼20-layer.

Comparison With Human Experts in
Coarse-Grained Classification of the
Solubility Categories of the
Literature-Reported Novel Compounds
Four human experts in medicinal chemistry were selected from
the China Pharmaceutical University using the criterion of a
recent machine vs. human comparative solubility prediction

study (9), i.e., a human expert is someone with medicinal
chemistry expertise working or studying in a university.
These four experts include one assistant professor and three
PhD students. They were tasked to conduct coarse-grained
classification of the aqueous solubility of the 62 novel compounds
at room temperature into one of the following categories:
practically insoluble or insoluble (<0.1 g/L), slightly soluble
(0.1∼10 g/L), soluble (10∼100 g/L), and freely soluble (>100
g/L). The classification performance of these four experts
together with those of the established tools, and shallow
and deeper-net models are in Table 2. All tools and models
achieved high classification accuracies of 79.0–91.9%, which
significantly outperformed the human experts (6.5–74.2%).
These indicated the more superior capability of both established
tools and deep learning models over human experts in
coarse-grained classification of the solubility categories on
novel compounds. However, no definite conclusion could be
deduced on which was better between the established tools
and the deep learning models. No improving trend was
found with the increasing of the deep learning models’ depth.
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It seemed that the coarse-grained classification method was
not discriminative enough to differentiate the capabilities of
the established tools and deep learning models as revealed
by the more quantitatively-precise evaluations of R2 and
RMSE values.

Solubility Prediction of a Series of Novel
Compounds From a Real Anti-cancer Drug
Discovery Project
A series of 17 novel compounds were synthesized by using
the method described in Supplementary Method 1 and the
published literatures (36–39) for discovering FLT3 inhibitors.
These compounds are structurally novel based on SciFinder
search. They are difficult for solubility estimation based on
our surveys with medicinal chemistry experts. The solubility
values of these 17 compounds (Supplementary Figure 4) were
experimentally measured using the method described in the
Methods section. We were unable to determine the exact
solubility values for 12 compounds because they are insoluble
below 1.0000E-2 mg/mL in neutral water. Hence, only the
remaining five compounds (Figure 3) with exact experimental
solubility values were used for testing our deeper-net models
and other models. Partly because of the novelty and low
number of compounds, the R2 values of all models are well
below statistically meaningful values. Hence only the RMSE
values and the percent of predicted logS values within 10-fold
of experimental value were used for performance evaluation
(Table 3). Judged by the RMSE values, the deeper-net models
substantially outperformed all other models, with the 26-
layer model as the best one in spite of minor level of
overfitting. This further indicated the advantage of going deeper
for improved solubility prediction. Judged by the percent of
predicted logS values within 10-fold of experimental value, the
majority of the models (including 14- and 20-layer deeper-
net models) achieved equally good performances (60%) with
the 26-layer model as the best one (80%). This again showed
that both the established tools and deep learning models
are useful for rough estimation of the solubility values of
novel compounds.

DISCUSSIONS

Like successful applications of deep learning methods in
other fields (19–21), the superior learning capability of
deeper-net models may be exploited to improve solubility
prediction of novel compounds, including those compounds
considered by medicinal chemistry experts as difficult for
solubility estimations. To better explore the learning capability
of deeper-net architectures, the molecular representations
of the compounds may be selected for conforming to
these architectures. Specifically, the superior local-feature
learning capability of the CNN architectures may be better
exploited by using the substructure-encoded molecular
fingerprints for representing compounds. Our studies
consistently scored the substantially better solubility prediction

TABLE 3 | Performance on the logS prediction of 5 novel compoundsa.

Model RMSE PCT-10foldb (%)

Established tools

MOE V2016.0802 2.293 <20

QikProp 2018-4 QP18 2.717 20

QikProp 2018-4 CIQP18 2.308 20

AlogGPS V2.1 1.073 60

Shallow-net deep learning model of a typically-employed

architecture for solubility prediction

4-layer DNN model 1.325 60

Shallow-net deep learning models developed in

this work

1-layer DNN model 1.502 60

6-layer DNN model 1.494 40

8-layer ResNet-like model 1.646 60

Deeper-net deep learning models developed in

this work

14-layer ResNet-like model 0.982 60

20-layer ResNet-like model 0.811 60

26-layer ResNet-like model 0.689 80

aThe performance of the established tools, and the shallow-net and deeper-net deep

learning models in the prediction of experimental logS values of 5 novel compounds

(quantitative values measured in this work). The best performance value is in bold font.
bPercent of predicted logS value within 10-fold of experimental value.

performances of the deeper-net deep learning models on
novel compounds than the established tools and shallow-
net models. Nonetheless, the prediction performance of the
deeper-net models on novel compounds is affected by the
limited number of 9,943 compounds for training these models.
Solubility prediction capability of the deeper-net methods
may be further enhanced with the expanded experimental
solubility data and by means of algorithm development.
Our novel approach may find broader applications in the
development of high-performance deep learning models for the
prediction of various pharmacodynamic, pharmacokinetic, and
toxicological properties.
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