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The clonotypic B cell receptor immunoglobulin (BcR IG) plays a seminal role in

B cell lymphoma development and evolution. From a clinical perspective, this view is

supported by the remarkable therapeutic efficacy of BcR signaling inhibitors, even among

heavily pre-treated, relapsed/refractory patients. This clinical development complements

immunogenetic evidence for antigen drive in the natural history of these tumors. Indeed,

BcR IG gene repertoire biases have been documented in different B cell lymphoma

subtypes, alluding to selection of B cell progenitors that express particular BcR IG.

Moreover, distinct entities display imprints of somatic hypermutation within the clonotypic

BcR IG gene following patterns that strengthen the argument for antigen selection.

Of note, at least in certain B cell lymphomas, the BcR IG genes are intraclonally

diversified, likely in a context of ongoing interactions with antigen(s). Moreover, BcR IG

gene repertoire profiling suggests that unique immune pathways lead to distinct B cell

lymphomas through targeting cells at different stages in the B cell differentiation trajectory

(e.g., germinal center B cells in follicular lymphoma, FL). Regarding the implicated

antigens, although their precise nature remains to be fully elucidated, immunogenetic

analysis has offered important hints by revealing similarities between the BcR IG of

particular lymphomas and B cell clones with known antigenic specificity: this has paved

the way to functional studies that identified relevant antigenic determinants of classes of

structurally similar epitopes. Finally, in certain tumors, most notably chronic lymphocytic

leukemia (CLL), immunogenetic analysis has also proven instrumental in accurate patient

risk stratification since cases with differing BcR IG gene sequence features follow distinct

disease courses and respond differently to particular treatment modalities. Overall,

delving into the BcR IG gene sequences emerges as key to understanding B cell

lymphoma pathophysiology, refining prognostication and assisting in making educated

treatment choices.
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INTRODUCTION

B Cell Differentation
Antigen encounter critically shapes the fate of B cells, essentially
kicking off two major possible pathways: B cells can either
undergo immediate proliferation and differentiation into short-
lived plasma cells, or migrate to secondary lymphoid organs
and enter specific structures termed germinal centers (GCs).
In the former, B cells express polyreactive, low-affinity B cell
receptor immunoglobulin (BcR IG) without relevant support
from T cells. In the latter, B cells within the GCs are subjected
to affinity maturation in a T cell-dependent manner, resulting in
the generation of B cells with high-affinity BcR IG, specific for
the selecting antigen. Activated B cells with high affinity BcR IG
are selectively propagated and mature into two discrete B cell
populations: (i) plasma cells that proliferate fast and secrete high-
affinity antibodies; and, (ii) long-lived memory B cells capable
of eliciting robust responses in future exposure to the original
selecting antigen (1–4).

Differentiation Pathways of Mature B Cells
Memory B cells circulate in the body as resting lymphocytes until
reactivation and can be distinguished from naïve B cells based
on a series of distinct features. In brief, memory B cells: (i) have
increased lifespan; (ii) are mainly found in areas where antigen
encounter takes place; (iii) display differential expression of
quiescence factors, costimulatory and anti-apoptotic molecules
as well as signal transducers; (iv) are capable, upon reactivation,
to proliferate and differentiate into plasma cells rapidly secreting
large amounts of antibodies, thus, providing a more efficient
immune response; (v) can re-enter the GC and be subjected to
further affinity maturation in order to refine antigen binding
specificity. At the molecular level, affinity maturation is geared by
two independent yet mechanistically related processes affecting
the clonotypic BcR IG i.e., somatic hypermutation (SHM) and
class switch recombination (CSR) (5–7).

SHM is a highly specific mechanism introducing mostly single
nucleotide changes into the rearranged variable genes of the
BcR IG at a rate far exceeding mutational activity elsewhere
in the genome. Mutations do not occur randomly but instead
tend to cluster within the regions forming the antigen binding
site, namely the complementarity-determining regions (CDRs),
enriched for specific nucleotide motifs that serve as SHM
hotspots. Within the GC, a single B cell progenitor generates
B cells expressing different variants of its BcR IG that display
distinct affinities for the given antigen. Some of the mutation
combinations will result in higher affinity BcR IG and the B
cells expressing these receptors will become favored for activation
and proliferation (8, 9). SHM targets not only the rearranged IG
genes but also some off-target genes, including BCL6, albeit with
lower frequency, and even any heterologous sequence introduced
downstream the IGHV gene promoter (10).

CSR is the second mechanism participating in affinity
maturation within the GCs and is responsible for the change of
the BcR IG isotype. There are five different isotypes, namely IgM,
IgG, IgA, IgE, and IgD. Naïve B cells express IgM and/or IgD,
whereas after antigen encounter B cells can express IgG, IgA,

or IgE. CSR changes the constant domain of the BcR IG heavy
chain without any effect on the variable domain, leading to the
expression of BcR IG with high affinity for the same antigen yet
different effector functions (11–13).

Both SHMandCSR depend on the activity of an enzyme called
activation-induced cytidine deaminase (AID). AID deaminates a
cytosine (C) turning it into uracil (U), thus causing mutations at
C-G pairs. A group of low-fidelity DNA polymerases undertakes
the repair of the mismatches. In SHM, the U is recognized
as thymidine (T) by the repair mechanisms and the C-G
pair is converted to T-adenine (A) pair through RNA-editing
mechanisms. In CSR, double-stranded DNA (dsDNA) breaks
are introduced at the U-G pairs. Joining and repair are
targeted by different repair mechanisms leading to chromosomal
recombination events (14–16).

In rare instances, memory B cells lack SHM within the BcR
IG. A possible explanation for this phenomenon could be that
these cells originate from early GC B cells before the actual
onset of SHM (5). That said, there is also evidence that B cell
activation and the subsequent generation of memory B cells can
occur outside the GC environment. Indeed, a GC-independent
but T cell-dependent pathway to memory B cell formation
has been described, generating memory B cells with limited if
any SHM. Furthermore, depending on the type of antigen, the
microenvironment where antigen encounter takes place and the
particular cytokinemilieu, B cells may even undergo SHM and/or
CSR outside the GC, although the range of available classes
appears to be restricted (17, 18).

A prime example of B cells operating outside the context
of GCs concerns the B cell population that resides within the
marginal zone (MZ). MZ B cells provide frontline protection
against blood borne pathogens and rapidly respond against
encapsulated bacteria by differentiating into antigen-specific
plasma cells. Additionally, they are responsible for housekeeping
activities, since they recognize and remove senescent cells and
other cellular debris. In order to serve these functions, MZ B cells
express distinctive BcR IG where their antigen reactivity patterns
are reflected in a restricted BcR IG gene repertoire. Of note,
at least a fraction of MZ B cells, particularly in the spleen,
carry SHM within both their BcR IG genes as well as the BCL6
gene, highlighting an active SHM mechanism. Furthermore,
splenic MZ B cells share phenotypic similarities with memory
B cells and display enhanced immune response potential. These
similarities led to the hypothesis that splenic MZ cells are either
of post-GC origin or derive from an independent differentiation
pathway (19–22).

Cellular Origin of B Cell Lymphomas:
Overview
Aberrations at any stage in the differentiation process of mature B
cells can lead to uncontrolled proliferation and, ultimately, to the
emergence of B cell non-Hodgkin lymphomas (B-NHLs) (23, 24).
Antigen experienced B cells, such as GC and memory B cells are
widely thought to represent progenitor cells for different types
of B-NHL, most notably follicular lymphoma (FL) (25), diffuse
large B cell lymphoma (DLBCL) (26, 27), and Burkitt lymphoma
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(BL) (28–30). A key molecular feature of these lymphomas
pertains to the identification of SHM imprints within the variable
domain of the clonotypic BcR IG, alluding to antigen exposure.
This notion is further supported by the pronounced intraclonal
diversification of the IG genes, at least in some of these tumors.
One of the most notable examples is FL (31–33), where the
analysis of somatic mutations led to the notion that SHM is
an ongoing process continuously altering the structure of the
clonotypic BcR IG under antigenic pressure.

Along the same lines, the study of the BcR IG expressed
by the malignant B cells supported potential reactivity against
superantigens, at least for a fraction of BL (34) and DLBCL
cases. In more detail, the superantigenic binding motifs for
N-acetyllactosamine-containing epitopes and Staphylococcal
protein A (SpA) have been found intact in BL cases that carry
BcR IGs encoded by the IGHV4-34 gene and IGHV3 subgroup
genes (34), respectively. Similar findings have been reported for
DLBCL cases utilizing the IGHV4-34 gene (35).

Chronic stimulation of the BcR IG by microbial antigens
or autoantigens can promote the expansion and progression of
malignant B cells. This is amply exemplified by gastric MALT
lymphoma that is strongly associated with chronic infection
by Helicobacter pylori (36). Similar links to pathogens have
been identified for extranodal MZ lymphomas (ENMZL) of
different tissues, such as ocular adnexa MZ lymphoma and
cutaneous MZ lymphoma, which have been associated with
infections by Chlamydia psitacci and Borrelia burgdorferi,
respectively (37). Moreover, ENMZL of the salivary and the
thyroid glands have been linked to continuous triggering
by autoantigens responsible for Sjögren’s syndrome and
Hashimoto thyroiditis, respectively (38). Interestingly, BcR
IG gene repertoire restrictions and distinctive SHM patterns
characterize ENMZL as well, albeit with significantly different
IG gene distributions depending on the primary site of
involvement, indicating distinct antigen exposure histories
(39, 40). Extensive immunogenetic profiling of MZ lymphomas
and cross-comparison to other B-NHLs has also documented
the existence of rare public BcR IG stereotypes shared by
different entities. This finding raises the intriguing possibility
that common immune mechanisms triggered by pathogens
may underlie the ontogeny of diverse B lymphoproliferations
likely due to targeting versatile progenitor B cells in particular
microenvironments, including the GC but, perhaps, also
extrafollicular sites (39).

The aforementioned examples constitute proof-of-concept
about antigen-driven lymphomagenesis, while also highlighting
the critical role of affinity maturation processes, particularly
SHM, in B-NHL development and evolution. In these examples,
the putative cell of origin can be pinpointed with some degree
of certainty to a GC or post-GC cell. In the sections that follow,
we will start with FL as a reference case for GC-originating
lymphomas and then focus on certain other lymphoproliferative
entities where the putative cell(s) of origin still remain(s) elusive.
We will present the immunogenetic evidence that have assisted
in gradually revealing the implicated ontogenetic processes while
also acquiring an ever-increasing role in prognostication and
clinical decision-making at large.

Follicular Lymphoma
Follicular lymphoma (FL), the second most common nodal
lymphoma, is generally considered as a prototype of indolent
lymphomas displaying a clinical course that is characterized
by slow progression and high response rates to therapy (41).
However, a significant fraction of patients with FL eventually
develop resistant disease, while in almost half of cases the original
indolent disease transforms into an aggressive subtype, such as
DLBCL (42, 43).

It is widely established that FL arises in germinal centers,
hence maintaining features of normal GCs. In more detail, FL
cells form follicles surrounded by non-malignant antigen
presenting cells (including T cells, dendritic cells and
macrophages) (44); express GC surface markers such as
BCL6 and CD10 (44); and, display a gene expression signature
that is similar to that of centrocytes and/or centroblasts (26).

Most patients with FL (around 85%) carry the t(14;18)
(q32;q21) chromosomal translocation, which constitutes a
hallmark of this lymphoma (45). In specific, this translocation
involves the bcl-2 gene (B cell leukemia/lymphoma 2) and the
IgH (immunoglobulin heavy chain) gene locus, leading to the
overexpression of the BCL2 protein that prevents cells from
undergoing apoptosis. The increased frequency of t(14;18) in FL
together with its presence at diagnosis support its consideration
as the initial oncogenetic hit during the development of FL (41).

In regard to the timing of the t(14;18) in the natural history
of FL, it was initially accepted that it takes place early in
B cell development, during the initial phase of the V(D)J
recombination process that involves the rearrangement between
a IGHD and a IGHJ gene. However, the analysis of BCL2-
IGH junctions (46, 47) provided evidence that the translocation
event can also occur at a more advanced stage of the V(D)J
recombination process, when an IGHV gene recombines with the
assembled IGHD-IGHJ gene complex.

An alternate scenario (41) involved naive B cells carrying the
t(14;18). These, previously unselected cells, would exit the bone
marrow and move to secondary lymphoid tissues, where they
would undergo the GC reaction. The constitutive expression of
BCL2, not normally expressed in the GC microenvironemnt,
could offer a selective advantage to these cells by protecting them
from apoptosis (48). Finally, FL progenitor cells would acquire
secondary genetic lesions due to activation induced cytidine
deaminase (AID) activity (49) and transform to FL cells. This
scenario of FL ontogenesis was challenged by the observation
that cells similar to FL progenitor cells can be detected in the
blood of healthy individuals who did not develop FL (50–52).
Moreover, recent studies showed that most of the FL progenitor
cells have probably undergone some kind of selection since they
were not naive B cells, but rather IgD+CD27+ (or IgM+CD27+)
memory cells that are GC-experienced (53, 54). Similar to FL
cells, these FL-like cells in healthy individuals frequently show
evidence of class-switch recombination of the translocated IGH
allele, whereas the functional allele encodes a surface IgD (or
IgM). The role of these FL-like cells in the pathogenesis of FL
remains unknown.

Nonetheless, FL progenitor cells do exist and have a far
more complicated genetic background than previously thought,
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as shown in 2 case reports where both the donor and
the recipient developed FL after allogeneic hematopoietic cell
transplantation (55, 56). In the most recent study (56), the
t(14;18) was detected in the donor sample along with 14
of the 15 gene somatic mutations that were present in the
tumors from both the donor and the recipient, yet at a much
lower frequency.

Our understanding of the origin of FL is further complicated
by an entity called FL in situ, which has been proposed as a true
precursor lymphoma state (57, 58). However, this entity needs to
be further studied in order to gain better insight into its natural
history and relation, if any, to early stage FL.

Supraphysiological N-Glycosylation of the Clonotypic

Immunoglobulin and Cellular Activation in Follicular

Lymphoma
Immunogenetic studies in FL reported an unbiased IGHV gene
repertoire. In the vast majority of FL cases, the rearranged IGHV
genes carry imprints of SHM, withmostmutations located within
the CDRs (59–61). The analysis of SHM patterns in FL also
revealed pronounced intraclonal diversification, indicating that
the lymphoma cells further diversify their IG genes through
ongoing SHM (32, 62). IG light chain genes also display imprints
of SHM, albeit to a lesser degree than their partner heavy chains
(63) (Table 1).

A striking feature of the BcR IG in FL concerns the unusually
high incidence of novel N-glycosylation sites (Asn-X-Ser/Thr)
introduced by SHM mostly in the CDRs of the heavy chains
and less frequently in the light chains (64). BcR IG are known
to be variably glycosylated, most commonly within the constant
region of the molecule. However, the variable region may also
be glycosylated and this modification is known to affect the
process of antigen recognition and binding (65). In FL, these
novel N-glycosylation sites are present in essentially all cases
at diagnosis (64, 66) indicating that they are introduced at
early stages of disease ontogeny. These modifications were not
frequently present in normal B cells, suggesting their potential
relevance for FL pathogenesis (64, 67).

Analysis of the added glycans in the BcR IG from FL
revealed that they concern oligomannoses in the variable
regions but complex sugars in the constant regions (68).
These glycans interact with mannose-specific lectins, especially
with dendritic cell-specific intercellular adhesion molecule-
3-grabbing non-integrin (DC-SIGN) expressed by dendritic
cells, macrophages and lymphatic endothelial cells. Lectin
binding to FL triggers persistent activating signals leading to
intracellular Ca2+ increase, sustained phosphorylation of the
SYK, AKT, PLCγ2, and ERK1/2 kinases downstream the BcR, and
increased expression of cMYC (69–71). This finding suggests that
interactions between FL cells and the tumor microenvironment
affect and promote tumor progression.

Another immunogenetic feature that could likely impact on
binding to lectins concerns the IG isotype, however the published
evidence remains controversial. In a recent study (70), activation
by DC-SIGN occurred in FL cases of either the IgM or the IgG
isotype, whereas in another study (71) only IgM+ FL cells could
respond to lectin binding. IgG+ FL cases carry BcR IG that are
more commonly auto-reactive compared to those expressed by
IgM+ FL cases (72). Hence, arguably, although IgG+ FLs contain
inserted N-glycosylation sites as in the case of IgM+ FLs, lectin-
mediated BcR IG triggering has a greater effect on non-auto-
reactive FLs (IgM+). That said, additional studies are required
in order to fully elucidate the role, if any, of lectin-induced BcR
IG activation in the natural history of IgG+ FL.

Chronic Lymphocytic Leukemia
Chronic lymphocytic leukemia (CLL) is a chronic B cell
malignancy, representing 30–40% of all adult leukemias (73).
It is a disease of aged individuals with unknown etiology
and variable clinical course, ranging from very indolent to
rather aggressive, intricately linked to and likely reflecting the
underlying biological diversity. Indeed, CLL is characterized
by a complex biological landscape. The combined effect of
cell-intrinsic aberrations and microenvironmental triggering
underlies the characteristic resistance to apoptosis, while
also promoting cell proliferation, ultimately driving disease
progression (74, 75).

TABLE 1 | Overview of the immunogenetic profiles of CLL and MCL.

Immunogenetic characteristics FL CLL MCL

IGHV gene repertoire No major biases. Disease-specific biases

(dominance of IGHV1-69, IGHV3-7, and

IGHV4-34).

Disease-specific biases

(dominance of IGHV3-21, IGHV4-34,

IGHV1-8, IGHV3-23)ref.

SHM status Most cases carry somatic mutations in the

heavy chains. Very few mutations were

identified in the light chains.

Mutations clustered within the CDRs.

A pattern of ongoing mutations was

observed in a significant fraction of cases.

Significant SHM imprint (GI < 98%) in

more than 50% of cases.

Disease-specific, recurrent SHMs at the

individual IGHV gene level.

Important prognostic implications.

SHM (GI < 100%) present in 70% of

cases.

Specific SHM targeting at the individual

IGHV gene level.

No solid correlations between SHM

status and patient prognosis.

BcR IG stereotypy Not found. Stereotyped subsets account for around

30% of cases.

Stereotyped subsets account for >10%

of cases utilizing mainly the IGHV3-21

or and IGHV4-34 genes.

FL, folicullar lymphoma; CLL, chronic lymphocytic leukemia; MCL, mantle cell lymphoma; IGHV, immunoglobulin heavy variable; SHM, somatic hypermutation; BcR IG, B cell

receptor immunoglobulin.
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CLL Clones Express a Restricted B Cell Receptor

Immunoglobulin Gene Repertoire
Immunogenetic analysis has been at the forefront of CLL research
for more than two decades, offering robust evidence that the
clonotypic BcR IG engages in specific recognition of and selection
by (auto)antigen. This process likely shapes clonal behavior and
eventual clinical outcome. It all started in the 1990s when studies
reported restricted usage of certain IGHV genes (IGHV1-69,
IGHV3-7, IGHV4-34) by CLL cells and, in parallel, documented
the existence of SHM patterns consistent with antigen selection
in a substantial fraction of cases (76, 77). These findings were
subsequently confirmed in larger cohorts strongly implying
the selection of CLL progenitor cells by a restricted set of
antigens (78, 79).

A turning point in CLL research was the demonstration that
roughly 50% of cases utilizing the IGHV3-21 gene displayed
highly similar heavy variable CDR3 (VH CDR3). These CLL
cases also expressed quasi-identical light chains encoded by
the IGLV3-21 gene (80). Clearly at odds with serendipity, this
remarkable restriction argued for antigenic pressure leading
to the selection of particular features of the clonotypic BcR
IG. Soon thereafter, it became apparent that antigen binding
site restrictions was a feature of the CLL BcR IG repertoire
beyond IGHV3-21 expressing cases: indeed, a sizeable fraction
of unrelated CLL patients were assigned to subsets characterized
by highly similar, “stereotyped” VH CDR3 sequences. On these
grounds, it was reasonably suggested that BcR IGs belonging to
the same stereotyped subset were selected by a restricted range of
antigenic epitopes (81–88).

Delving deep into this phenomenon in increasingly populated
CLL cohorts (89, 90) revealed that BcR IG stereotypes collectively
accounted for almost one-third of the BcR IG repertoire in
CLL and could be classified into a large number of subsets,
ranging in size from only a pair to hundreds of cases (“major”
subsets) (Table 1). Inevitably, it became relevant to address
the issue of whether stereotyped BcR IGs were exclusive to
CLL or could also be found in other B-NHLs and/or other,
non-malignant entities. Cross-entity comparisons identified only
a few shared homologous VH CDR3, thus revealing that
the majority of stereotyped BcR IGs are “CLL-biased.” The
few BcR IG sequence matches concerned sequences from
autoreactive B cell clones, as well as sequences from diverse B
cell lymphoproliferative disorders directly or indirectly linked
to infections by certain pathogens (e.g., the hepatitis C virus in
the case of CLL stereotyped subset #13) (91). These observations
supported the notion that, occasionally, common progenitors
may give rise to distinct pathologies. Although the implicated
mechanisms remain obscure, this observation underscores the
versatility of B cells while also questioning the relevance
of “straightforward” one-to-one matching of normal B cell
subpopulations and B-NHLs.

Immunogenetics and the Ontogeny of CLL
The presence of SHM within the clonotypic IGHV genes of the
malignant clones dichotomize CLL into two broad categories
with postulated distinct origin: (i) cases with few or no SHM
(unmutated CLL, U-CLL) purportedly originating from B cells
at a point of differentiation prior to the accumulation of high

FIGURE 1 | Ontogenetic scenarios for CLL. Different types of B cells stimulated by microenvironmental triggers acquire a specific phenotype characterized by the

expression of CD5. Then, CD5+ B cells undergo clonal expansion with or without SHM and CSR. In this step, these small size clonal expansions may acquire genetic

lesions display specific CLL-like immunogenetic characteristics and are referred to as Low Count-Monoclonal B-cell Lymphocytosis (LC-MBL). After acquisition of

additional genetic and epigenetic changes and/or molecular characteristics of the BcR IG the clones lose the clonal restraint (High Count-MBL, HC-MBL). Finally,

HC-MBL cases progress to overt CLL.
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levels of SHM in the context of a GC reaction (naïve B cells?);
and, (ii) cases with a heavy SHM load (mutated CLL, M-CLL)
that could reasonably be thought to derive from B cells antigen-
selected in a classic T cell-dependent manner within the GC
microenvironment (92). However, despite appearing reasonable,
this orderly “binary” theory does not exhaust all potential options
and scenarios. One such option could be that at least a fraction of
CLL clones might derive from extrafollicular B cells. This concept
is grounded on the fact that low-affinity BcR IG with few or
no traces of SHM can arise in a T cell-independent manner in
the MZ. A similar immunogenetic profile has been reported for
memory B cells generated through proliferative expansions early
after immunization in a T cell-dependent but GC-independent
manner (17) (Figure 1).

Interestingly, CLL monoclonal antibodies (mAbs), especially
those with no or limited SHM, display similarities with natural
antibodies present in the blood circulation of healthy individuals
that recognize non-protein antigenic epitopes common in
pathogenic and commensal organisms as well as cellular debris
(19, 20). In fact, similar to natural antibodies, recombinant
mAbs from U-CLL clones were found to exhibit polyreactivity
and low-affinity binding against apoptotic cells and bacteria
(93–100). On the other hand, recombinant mAbs from M-CLL
clones recognized a more restricted set of antigenic epitopes,
yet with higher affinity. Relevant to mention, when mutated
mAbs were reverted back to their germline configuration they
acquired reactivity against a more extended range of antigens,
thus indicating that both U-CLL and M-CLL could derive from
autoreactive progenitor B cells (96).

In mice, natural antibodies originate from B-1 cells, a self-
renewing CD5+ B cell population with a distinctive, highly
restricted BcR IG gene repertoire. The existence of a distinct
B-1 lineage with unique properties and role in humans is still
contested (101, 102). That notwithstanding, the immunogenetic
analogy between B-1 cells and stereotyped CLL clones, especially
those belonging to U-CLL, cannot be overlooked, prompting
speculations that such clones could originate from a (still elusive)
population of evolutionarily conserved B cells functionally
intermediate between innate and adaptive immune cells. Put
differently, BcR IG stereotypy may reflect origin from a
particular cell population characterized by inherent invariance
that is responsible for highly conserved, “housekeeping” immune
functions (90).

An alternative approach to tracing the cellular origin of CLL
was to assess AID expression and functionality. Pioneer studies
showed that AID was expressed at higher levels and was more
active in vivo in U-CLL compared to M-CLL (103, 104). More
extensive studies demonstrated that, in both CLL mutational
subgroups, AID was fully functional in only a small fraction of
cells that had recently divided or were actively dividing (105).
Moreover, it was reported that ex vivo exposure of CLL cells,
from both U-CLL and M-CLL, to stimuli mimicking T cell
triggering resulted in upregulated expression of AID (105). These
intriguing findings challenged a naïve origin for U-CLL, instead
supporting that the properties of the corresponding unmutated
or minimally mutated BcR IG were optimal for clonal vigor,
hence functionally selected.

Additional in vitro studies focusing on the signaling capacity
of the BcR IG showed differential signaling capacities in U-
CLL and M-CLL (106–109). The observed differences in the
ability to signal through the BcR IG can be attributed to either
differences in the nature and strength of antigenic stimulation or
the different cellular origin of U-CLL and M-CLL. In specific,
mutated BcR IGs were more often associated with decreased
signaling capacity due to desensitization, ultimately leading to
anergy. In contrast, U-CLL cases were shown to express more
competent BcR IG indicating that antigenic stimulation can
promote the survival and growth of the leukemic cells possibly
explaining disease aggressiveness (110–112).

Besides classic antigen-driven stimulation, cell-autonomous
signaling triggered by BcR IG self-association has been proposed
as an alternative mode of activation exclusive for CLL amongst
all studied mature B-NHLs. This signaling mode was shown
to promote Ca2+ influx and nuclear factor-κB target gene
transcription without the implication of exogenous antigen
(113). Cell-autonomous signaling was also shown to play a role
in leukemia development in the EµTCL1 mouse model that
represents an established animal model of aggressive CLL (114).

Recently, we investigated the mechanism of cell-autonomous
signaling in cases belonging to stereotyped subsets #2 and #4
that represent paradigmatic examples of aggressive and indolent
disease, respectively. We documented BcR IG self-association
in both subsets, albeit with different, subset-specific patterns
of interactions and resultant cell activation status (115). These
findings are not only relevant to CLL biology but also offer a
novel perspective to BcR antagonism as an potential therapeutic
strategy for CLL.

Immunogenetics in Clinical Decision-Making
In 1999 two independent studies reported that the SHM
status of the clonotypic rearranged IGHV genes has
important prognostic implications since U-CLL patients
generally experience a significantly more aggressive disease
course compared to M-CLL patients (116, 117). In the
ensuing years, IGHV gene SHM status emerged as one
of the most robust prognostic markers, independent of
clinical stage or other biomarkers. More importantly,
it remains stable overtime, thus contrasting other well-
established prognostic/predictive markers, including genomic
aberrations, which are influenced by or reflect disease
evolution (118).

Thanks to the evidence amassed over the last 20 years,
it is now widely held that the SHM status of the rearranged
IGHV gene represents a cornerstone for the development of
biologically-grounded prognostic schemes enabling accurate risk
stratification in CLL. This notion is supported, amongst others,
by the asymmetric distribution of cell-intrinsic aberrations
with important prognostic/predictive value (e.g., cytogenetic
aberrations and gene mutations) between U-CLL vs. M-CLL
(119–121). Characteristic examples concern the adverse-
prognostic del(17p) and del(11q) that are significantly enriched
in the former, thus contrasting MYD88 mutations which
predominate by far in the latter. Interestingly, even more
striking associations between immunogenetic characteristics
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and oncogenetic aberrations have been reported in CLL subsets.
For instance, stereotyped subset #2 exhibits a 45–50% incidence
of SF3B1 mutations as opposed to only 5–10% in generic CLL
cohorts (122, 123); moreover, stereotyped subset #8 (IGHV4-
39/IGKV1(D)-39), the CLL subgroup with the highest risk for
Richter’s transformation amongst all CLL (124), exhibits a∼60%
incidence of trisomy 12 as opposed to only ∼15% in generic
CLL cohorts (120). Subsequently, similar observations have
been made for other B-NHL as well e.g., significant enrichment
of (i) TNFAIP3 mutations in ocular adnexa lymphoma cases
expressing IGHV4-34 BcR IG (125, 126); (ii) KLF2 mutations in
splenic marginal zone lymphoma cases expressing IGHV1-2∗04
BcR IG (127–129). These findings indicate that a distinctive
signaling capacity shaped by particular BcR IG may favor the
acquisition and/or selection of certain ongogenetic hits by as yet
undetermined mechanisms.

Returning to prognostication, another point to consider
concerns the differing relative significance of cell-intrinsic
aberrations in U-CLL vs. M-CLL. Hence, trisomy 12 appears to
be associated with a rather favorable outcome when present in
U-CLL whereas the opposite holds true for M-CLL. A similar
observation has beenmade for TP53 aberrations [del(17p) and/or
TP53 mutations], where M-CLL patients showed significantly
longer time-to-first-tratment (TTFT) and overall survival (OS)
compared to U-CLL patients carrying the same genomic
aberrations IG (130, 131). Prompted by these observations,
more recently, we followed a compartmentalized approach in
order to study the prognosis of CLL patients divided into
M-CLL and U-CLL and identied distinct factors contributing
to disease prognostication in each subgroup (132). In detail,
whereas TP53 aberrations were associated with inferior outcome
in both M-CLL and U-CLL, trisomy 12 and/or stereotyped
subset #2 membership constituted adverse prognosticators
for the former whereas SF3B1 mutations and del(11q) had
the most significant negative impact amongst the latter
(132) (Figure 2).

With hindsight, the 1999 publications from the Chiorazzi
and Stevenson groups on IGHV gene SHM status and
prognostication in CLL represent a true landmark in cancer
research due to linking a “physiological” mark of immune
maturation with disease outcome (116, 117). The immediate,
direct effect was to spur an intense study of IG genes: thus,
a research activity reserved for specialized labs became a
test for routine diagnostic labs. This led to the amassment
of IG gene sequences from thousands of patients, a true
treasure trove of information with not only prognostic but
also biological relevance. The late, indirect effect was a major
contribution toward a paradigm change in CLL treatment
brought about by the advent of BcR signaling inhibitors
(BCRi) i.e., ibrutinib, a BTK inhibitor, and idelalisib, a PI3Kδ

inhibitor (133, 134).
Additional evidence strengthening the clinical importance

of immunogenetics in CLL came about more recently from
studies showing that IGHV gene SHM status was also strongly
associated with the clinical response to chemoimmunotherapy
(more particularly the fludarabine cyclophosphamide rituximab
regimen, FCR). In more detail, the duration of 1st complete

FIGURE 2 | Prognostic factors for CLL patient groups based on the mutational

status of the BcR IG. Modified after Baliakas et al. (132). (A) Prognostic factors

such as male gender, mutational status around the 2% cutoff, TP53abn, +12

and assignment to stereotyped subset #2 correlated with short TTFT in

M-CLL. (B) On the other hand, male gender, TP53abn, SF3B1 mutations and

del(11q) in U-CLL patients were associated with similar, short TTFT (99). BcR

IG, B cell receptor immunoglobulin; TTFT, time to first treatment; TP53abn,

del(17p) and/or TP53 mutations; +12, trisomy 12; M-CLL, CLL with mutated

IGHV genes; U-CLL, CLL with unmutated IGHV genes.

remission (CR) was significantly shorter in U-CLL compared
to M-CLL, highlighting that theurapeutic interventions should
be tailored to the SHM status (135). Of note, such effect was
not seen with ibrutinib as 1st line treatment, where this agent
proved equally effective across bothU-CLL andM-CLL (133). On
this evidence, the 2018 iwCLL guidelines explicitly state that this
biomarker should be assessed for all CLL patients in both general
practice and clinical trials (136).

Is everything settled when it comes to immunogenetics
and clinical decision making? For a number of reasons, the
answer appears to be no. First, the distinction into U-CLL
vs. M-CLL relies on the use of a 98% cut-off value of
identity between the clonotypic rearranged gene and its closest
germline counterpart. Although this cut-off still holds, caution
is warranted for M-CLL cases with IGHV germline identity
close to the 98% value (i.e., 97–97.9%) for which the term “IG-
borderline” was coined. These cases do not appear to represent
a homogeneous group with intermediate prognosis but rather
a mix of indolent and aggressive cases, clearly indicating the
need for further study (137). Second, ample evidence now
exists that subgroups of patients within each mutational group
(i.e., M-CLL and U-CLL) may deviate from the expected
“norm” for that group: the most compelling case concerns
stereotyped subsets.

Indeed, the study of major CLL stereotyped subsets has
revealed that similarities between cases in a given subset extend
beyond immunogenetic and other biological characteristics
of the malignant clones (genomic aberrations, epigenomic
status, BcR IG 3D conformation and signaling capacity) to
disease course and outcome (108, 115, 120, 138–141). A most
characteristic example concerns stereotyped subsets #2 (IGHV3-
21/IGLV3-21 BcR IG) and #4 (IGHV4-34/IGKV2-30 BcR IG).
Though both concern mostly M-CLL, the former displays
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a very aggressive clinical course similar to that of patients
with TP53 aberrations, despite rarely carrying such lesions,
thus sharply contrasting subset #4 that has emerged as the
prototype of indolent CLL (120). Therefore, BcR IG stereotypy
may assist meaningfully in refining prognostication in CLL
beyond the binary M-CLL vs. U-CLL distinction, although
more evidence is essential before integrating this information
into clinical decision making, a view also shared by the recent
iwCLL guidelines.

Mantle Cell Lymphoma
Mantle cell lymphoma (MCL) is an aggressive lymphoma
representing 5–10% of all B-NHL. In sharp contrast to the
remarkably heterogeneous profile of genomic aberrations in
CLL, MCL is characterized by the almost ubiquitous presence
of the t(11;14) (q13;q32) chromosomal translocation underlying
the formation of the IGH/CCND1 fusion gene and, ultimately,
leading to cyclin D1 overexpression, a true pathologic hallmark
of MCL (142, 143).

Traditionally, MCL has been associated with a rather
aggressive clinical course. However, MCL patients with specific
clinical characteristics, such as those with non-nodal disease
presentation, tend to follow amore indolent course of the disease,
characterized by prolonged TTFT and PFS as well as excellent
OS (144). Until recently, the reason for this divergent clinical
behavior, especially in view of the quite consistent genomic
landscape, has remained elusive.

Immunogenetics in MCL: An Indelible Imprint of

Antigen Selection
Immunogenetic studies from the early 2000s reported
overexpression of certain IGHV genes in MCL, alluding to
functional selection (145–150). However, due to the small
sample size of these studies, definitive conclusions could not
be drawn until almost a decade later when the analysis of a
large MCL series (>800 cases) provided compelling evidence

implicating antigen involvement in disease ontogeny (151).
In more detail, just four IGHV genes, namely IGHV3-21,
IGHV4-34, IGHV1-8, and IGHV3-23, collectively accounted
for almost 50% of the total repertoire. SHM was present in
the clonotypic rearranged IGHV genes of ∼70% of MCL cases
with patterns indicative of a post-GC derivation; moreover,
in analogy to CLL, asymmetries were noted regarding IGHV
gene usage in subgroups of MCL with distinct SHM status. Last
but not least, stereotyped BcR IG were documented in MCL
based on the presence of specific gene associations and shared
amino acid motifs within the VH CDR3 region. Stereotyped
subsets in MCL represented almost 10% of all cases, the vast
majority utilizing either the IGHV3-21 or the IGHV4-34 gene
(Table 1).

Not paradoxically, comparisons were made to CLL, especially
regarding BcR IG stereotypes and SHM patterns, revealing
disease-biased profiles. Furthermore, stereotyped BcR IG
utilizing the same IGHV gene (e.g., IGHV3-21 or IGHV4-
34) clearly differed in MCL vs. CLL, hence could be safely
considered as disease-specific (151). Furthermore, several
recurrent SHM present in rearrangements of a given IGHV
gene were found to be “MCL-biased” since they were either
under-represented or completely absent in other B cell
malignancies. Overall, these findings constituted a unique
profile arguing compellingly for antigen selection in MCL
ontogeny (151).

Prompted by the CLL case, many studies have investigated
whether IGHV gene SHM status may serve as a prognosticator

also in MCL, however the obtained results were not always

consistent (146–149). Still, a tendency of MCL patients with

a heavier SHM load to experience a more indolent disease

was evident. These patients presented more frequently with
early-stage disease, absence of bone marrow infiltration
and non-nodal disease and, moreover, were characterized
by lower relapse rates and longer relapse-free survival
(149, 152) (Table 1).

FIGURE 3 | Possible scenarios for MCL ontogenesis. (A) Cases with unmutated BcR IG derive from naïve B cells, whereas those with mutated BcR IG might derive

from an antigen-experienced, post-GC B cells. (B) Other possible MCL progenitor cells include: (i) a normal B cell subpopulation between naïve and GC cells,

characterized by few SHMs, (ii) cells that differentiated in a GC-independent but T cell-dependent microenvironment, and (iii) B cells from early phases of GC reactions.
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How Many Ontogenetic Pathways to MCL?
Considering the evidence presented above, one could draw a
plausible ontogenetic scenario for MCL whereby cases with
unmutated BcR IG might derive from a pre-GC naïve B cell,
whereas those with mutated BcR IG might derive from an
antigen-experienced, post-GC B cell (142). In line with this,
SOX11-positive, BcR IG-unmutated clones had a gene expression
profile (GEP) similar to that of naïve B cells, whereas the GEP of
SOX11-negative, BcR IG-mutated patients was close to that of
memory B cells (152).

However, other evidence questions this scenario. First, BcR
IG stereotypes, a telltale sign of selection, were found even in
cases lacking any SHM within the clonotypic IGHV genes (151).
Second, almost all MCL cases express AID, with significantly
higher levels amongst those with unmutated BcR IG (153),
whereas a fraction of cases exhibit ongoing CSR in vivo
(154). Third, MCL clones, regardless their SHM status, respond
favorably to the BTK inhibitor ibrutinib (155). Hence, alternative
ontogenetic scenarios can be envisioned (156), including,
amongst others, a normal B cell subpopulation intermediate
between naïve and GC cells, with a low impact of SHM, and an
IgM+IgD+CD27−CD23−CD5+CD10− phenotype (157); B cells
maturing in GC-independent but T cell-dependent pathways; B
cells participating in early phases of GC reactions, prior to class
switching etc. (Figure 3).

Amidst all this uncertainty, one thing is certain: naivety does
not become MCL!

CONCLUDING REMARKS

B cell maturation is a highly complex process where even small
derogations can pave the way to the development of malignancy.
Critical for the neoplastic transformation of mature B cells is
the communication with the tumor microenvironment, more
specifically, antigenic stimulation. The key role of antigens
in the onset and evolution of mature B cell lymphomas has
been corroborated by ever-growing evidence from different,
complementary research fields. Immunogenetics has been at the
forefront of such endeavors and is reasonably anticipated to hold
its leading role in the years to come.
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