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Alterations in DNA damage response (DDR) is one of the several hallmarks of cancer.

Genomic instability resulting from a disrupted DDR mechanism is known to contribute to

cancer progression, and are subjected to radiation, cytotoxic, or more recently targeted

therapies with limited success. Synthetic lethality (SL), which is a condition where

simultaneous loss-of-function of the genes from complementary pathways result in loss

of viability of cancer cells have been exploited to treat malignancies resulting from defects

in certain DDR pathways. Albeit being a promising therapeutic strategy, number of SL

based drugs currently in clinical trial is limited. In this work we performed a comprehensive

pan-cancer analysis of alterations in 10 DDR pathways with different components of DNA

repair. Using unsupervised clustering of single sample enrichment of these pathways in

7,272 tumor samples from 17 tumor types from TCGA, we identified three prominent

clusters, each associated with specific DDR mechanisms. Somatic mutations in key

DDR genes were found to be dominant in each of these three clusters with distinct DDR

component. Using amachine-learning based algorithmwe predicted SL partners specific

to somatic mutations in key genes representing each of the three DDR clusters and

identified potential druggable targets. We explored the potential FDA-approved drugs for

targeting the predicted SL genes and tested the sensitivity using the drug screening data

in cell lines with mutation in the primary DDR genes. We have shown clinical relevance,

for selected targetable SL interactions using Kaplan-Meier analysis in terms of improved

disease-free survival. Thus, our computational framework provides a basis for clinically

relevant and actionable SL based drug targets specific to alterations in DDR pathways.

Keywords: DNA damage response, synthetic lethality, single sample gene set enrichment analysis, mutual

exclusivity, somatic mutations, drug sensitivity, disease-free survival, Kaplan-Meier analysis

INTRODUCTION

Responding to DNA damage from various internal or external stimuli is a crucial process for
cell viability. Normally the DNA repair pathways guide the cell fate decisions for cells exposed
to DNA damage; they can either be repaired and restored to normal function, or in cases where the
damage is irreversible the cell is “sacrificed” by senescence via activation of certain DNA damage
response (DDR) pathways (1). But in a third scenario, because of inefficient repair of damaged
DNA, the affected cell evades senescence, which leads to proliferation of cells carrying oncogenic
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alterations, and subsequently develops cancer (2). Genomic
instability caused by driver mutations is a hallmark of cancer
(3). A key function of the DDR machinery in cancer cells is
to promote genomic stability and guiding cell fate decisions.
Traditional cancer therapies involving radiation and cytotoxic
chemotherapies induce DNA damage and exploit DDR pathways
to facilitate tumor cell death. Thus, DDR pathways play a major
role to determine response to these therapies (4).

DNA damage response (DDR) is a complex multi-level
process involving sub-pathways like base-excision, nucleotide
excision and mismatch repair for handling single-strand breaks,
or homologous recombination repair, homology directed repair,
non-homologous end joining, and Fanconi anemia pathways
for handling double-strand breaks in DNA (5). Deficiency and
alterations in various components of the DDR machinery is
common in all types of cancers (6), but generally deficiency in
one component can be compensated by other components of
DDR (2, 7). Synthetic lethal (SL) interactions are formed between
components which are compensatory between themselves.
So, a better understanding of the SL relationships between
components of DDR is a promising approach to tackle resistance
to conventional cancer therapy. Guided by the knowledge of
specific DDR alterations in individual patients, SL-based drug
targets can be attractive choices for personalized cancer therapy.

The success of PARP inhibitors in treating BRCA1/2 mutated
tumors in clinical trials demonstrated the validity of the
concept of SL (8). FDA approval of PARP inhibitor drugs for
treating BRCA1/2-mutated ovarian and breast cancer patients
has propelled interest in exploration of other potential SL
associations between DDR components. Use of shRNA or
CRISPR screenings in cancer cell lines is a viable approach for
identifying synthetic lethal interactions specific to certain cancer
genes of interest (9, 10), but running these screenings are costly
when the number of the genes of interest is large. On the other
hand, computational prediction of cancer-specific SL interactions
can identify many potential candidates for SL interactions
(11, 12), but without proper validation of these predictions
it is hard to prioritize the targets. We tried to address this
limitation by our previously published machine-learning based
computational method called DiscoverSL that harnesses the
large-scale tumor genomic and clinical data from cancer patients
combined with the RNAi and drug screening data from cancer
cell lines to infer statistical measures on predicted synthetic
lethal interactions to prioritize clinically relevant and targetable
candidates (13). Another computational method ISLE also
prioritizes SL pairs by identifying those pairs that are predictive
of patients’ survival upon co-inactivation; but they use literature-
derived SL interactions from shRNA-screening experiments (14).
Driven by the need to identify potential SL based drug targets
specific to alterations in certain DDR pathways in cancers,
here we performed a pan-cancer analysis on enrichments or
deficiencies of different DDR pathways and alterations in the
DDR components from genomic data of 17 tumor types from
The Cancer Genome Atlas (TCGA). Combining the existing
knowledgebase on potential SL interactions from literature
and the SL predictions from DiscoverSL algorithm with the
FDA-approved drug targets, we propose clinically relevant,

and potentially actionable, cancer specific network of SL DDR
alterations, and drug interactions.

MATERIALS AND METHODS

Data Source and Pre-processing
The primary source of tumor genomic and clinical data of 17
tumor types is the cancer genome atlas (TCGA) project (15).
Somatic mutation, and RSEM processed and Z-score normalized
RNA-Seq v2 gene expression data of TCGA tumor samples
are downloaded from cBioPortal (16). Additionally, raw RNA-
Seq count data of TCGA tumor, and normal samples was
collected from a published resource from Gene Expression
Omnibus accession GSE62944, that processed TCGA raw RNA-
Seq data using featurecount package to generate the gene-wise
raw counts (17).

The gene-pathway associations for 10 DDR pathways were
collected from the curated geneset (c2 version 6.2) in the MsigDB
database (18).

For validation purposes, we collected processed shRNA
screening data in 214 cancer cell lines from Achilles project
version 2.4.3 in form of essentiality scores calculated using
ATARiS (19). Genomic profiles (mutation) of these cancer
cell lines are collected from the cancer cell line encyclopedia
[CCLE (20)].

Drug-protein interaction data are collected from the databases
DrugBank and DGIDB (21, 22). For drug sensitivity analysis
we collected drug screening data from the genomics of drug
sensitivity in cancer (GDSC) data portal (23). From this portal
we collected the drug response data in cancer cell lines using LN-
IC50 and AUC scores as well as the genomic mutation profiles of
the corresponding cancer cells.

Computational and Meta-Data
Single sample enrichment scores for 10 DDR pathways across
7,272 tumor samples from 17 histology was calculated using
ssGSEA analysis from R package GSVA (24). RSEM processed
and Z-score normalized RNA-Seq v2 gene expression data
of TCGA cohort, downloaded from cBioPortal, was used for
ssGSEA analysis. Unsupervised clustering of tumor samples
was performed using hierarchical clustering with spearman
correlation as the similarity metric.

Synthetic lethal partners for DDR genes in 17 cancer types
are calculated using recently published DiscoverSL algorithm.
For each pair of potential synthetic lethal gene pairs and a given
cancer type from TCGA, DiscoverSL uses p-values calculated
from four parameters: (a) DiffExp: differential expression of
the secondary gene in samples with vs. without mutation
in the primary gene (calculated from TCGA RNA-Seq raw
count data available from GSE62944, using EdgeR package)
(b) Exp.correlation: expression correlation of the primary and
secondary gene (calculated using Pearson’s correlation) (c)
Mutex: mutual exclusivity of mutation of the primary and
secondary gene (calculated using a hypergeometric test described
in the following section), and (d) SharedPathway: probability that
the primary and secondary genes are part of common pathways
(Also calculated using hypergeometric test using the c2 collection
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from MSigDB). In DiscoverSL, these four parameters are used as
features in a Random Forest model trained with a set of positive
and negative examples of synthetic lethal interactions derived
from literature. Detailed description for calculation of all four
parameters and the Random Forest model can be found in the
SupplementaryMethods section of our previous publication (13).

Synthetic lethal interactions reported in previous literature or
SL screens are collected from the database SynLethDB (25) and
another recent publication that curated SL interactions obtained
from SL screens in human cell lines (14).

Calculation of Mutual Exclusivity and
Mutual Co-occurrence
The probability of a tumor sample belonging to a DDR cluster
D (1, 2, or 3, derived from the unsupervised clustering of
ssGSEA scores of 10 DDR pathways) and co-occurrence of a
gene mutation event E for any DDR gene (Gene1) associated
with 10 DDR pathways is calculated with a hypergeometric test.
Let PMutco be the hypergeometric P-values for co-occurrence
of mutation in Gene1 and DDR cluster D. The formula for
calculation of the hypergeometric P-value is as follows:

PMutco =

min(S1mut ,S2)
∑

i=S12mut

(

S1mut
i

) (

ST−S1mut
S2−i

)

(

ST
S2

)

Where,

S12mut =Number of tumor samples belonging to DDR cluster
D and carrying mutation in Gene1
S1mut = Number of tumor samples with mutation in Gene1
S2 = Number of tumor samples belonging to DDR cluster D
ST = Total Number of tumor samples

Similarly, mutual exclusivity with genetic mutation in two DDR
genes Gene1 and Gene2 is calculated with a hypergeometric
test that calculates the probability of co-occurrence of mutation
in Gene1 and Gene2 in patient samples (from TCGA) for a
given cancer. Let PMutex be the hypergeometric P-values for co-
occurrence of mutation for Gene1 and Gene2. The formula for
calculation of the hypergeometric P-values is as follows:

PMutex =

min(S1mut ,S2mut)
∑

i=S12mut

(

S1mut
i

) (

ST−S1mut
S2mut−i

)

(

ST
S2mut

)

Where,

S12mut = Number of cancer samples for a cancer type C with
mutation in both Gene1 and Gene2
S1mut = Number of cancer samples for a cancer type C with
mutation in Gene1
S2mut = Number of cancer samples for a cancer type C with
mutation in Gene2
ST = Total Number of cancer samples for a cancer type C

For TCGA mutation data, cases with non-silent mutations are
considered as gene mutation events. Opposite to the mutual
co-occurrence, the mutual exclusivity P-values should represent

the P-value for non-co-occurrence of mutations in Gene1
and Gene2. So, the mutual exclusivity P-value MutexMut is
calculated as:

MutexMut = 1− PMutex

For MutexMut , the null hypothesis is that the two genes are
mutated in the same tumor samples. When MutexMut takes a
higher value (e.g., 0.98) that means the null hypothesis cannot be
rejected and the gene mutations are not mutually exclusive, while
MutexMut < 0.05 means that the null hypothesis can be rejected
and the gene mutations are mutually exclusive, i.e., the two genes
are not mutated in the same samples.

Themutual co-occurrence andmutual exclusivity p-values are
adjusted for multiple testing correction by false discovery rate
using Benjamini and Hochberg (26).

In-silico Validation of the Predicted
Synthetic Lethal Interactions
We have used multiple methods to validate the significance
of SL pair interactions. (1) To assess the effect of silencing
the SL gene (gene2) in cancer cell lines where the primary
gene (gene1) is mutated, significance of difference in shRNA
score [essentiality calculated using ATARiS algorithm from
shRNA screening of 214 cell lines (19)] is calculated by t-
test using shRNA screening data from Achilles 2.4.3 project.
We termed this parameter as PvalRNAi. (2) To assess the
clinical outcome of under-expression vs. over-expression of the
predicted SL gene (gene2) in cases with mutation in the primary
gene (gene1), Kaplan Meier survival analysis was performed
on disease free survival in TCGA clinical data. (4) To assess
the potential drug sensitivity a p-value is calculated using t-
test on the LNIC50 values between primary gene mutated vs.
non-mutated cells from the Genomics of Drug Sensitivity in
Cancer (GDSC) project data. We termed this parameter as
Drug Sensitivity.

RESULTS

Somatic Mutations in the Components of
DDR in a Pan-Cancer Context
To explore the association of 10 DDR pathway related alterations
and gene mutations in pan-cancer context, we first identified the
DDR pathway specific genes from Reactome and KEGG pathway
database [MSigDB c2 collection v6.2 (18)]. These 10 pathways
constitute 221 genes and represent different components of
DDR handling including single strand breaks or double strand
breaks in DNA as illustrated in Figure 1A and outlined in
the introduction section. Next, we identified somatic mutations
among the 221 genes in TCGA data comparing 17 cancer
types. All cancer types had somatic alterations in one or more
DDR genes. Figure 1B represents the somatic mutation in 17
TCGA cancer types. We considered genes having mutation in
at least 1% samples in a given cancer, and present in any two
or more cancers, resulting in 72 genes. Of all DDR genes, TP53
was the most frequently mutated gene. The other frequently
mutated DDR genes were PRKDC, ATM, BRCA2, POLE, ATR,
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FIGURE 1 | (A) Network diagram of genes associated with 10 DNA damage response pathways at different level of DNA repair: base excision repair, nucleotide

excision repair, mismatch repair, double strand break repair, homologous recombination repair of replication independent DNA double strand breaks, non-homologous

end joining, G2-M DNA damage checkpoint, Fanconi anemia pathway, P53 dependent DNA damage response and P53 independent DNA damage response.

(B) Somatic mutations in genes from the 10 DNA damage response pathways in 17 cancer types. We included genes that are mutated in at-least 1% of tumor

samples in more than one tumor types. Numbers in each cell represents frequency of samples carrying mutation in corresponding gene in that cancer type. Rows and

columns are sorted by the frequency of mutation of the DDR genes in the tumor types.

BRCA1, and FANCM. Among the 17 cancer types, uterine
corpus cancer (UCEC), head and neck cancer (HNSC), and skin
cutaneous melanoma (SKCM) had most frequent alterations in
DDR genes.

Exclusive Pattern of Enrichment Is
Observed Between Certain Components of
DDR
To check the difference in enrichments of the 10 DDR pathways
in the pan-cancer scenario, we did single sample geneset
enrichment (ssGSEA) analysis on 7,272 tumor samples from
17 tumor types from TCGA. Using unsupervised clustering,
we found three pathway clusters and three sample clusters of
tumor samples (Figure 2A). The sample cluster 1 had enrichment
of DNA double strand break repair associated pathways, while
the sample cluster 2 had enrichment in single strand break
repair related pathways and p53 dependent or independent
DNA damage response at G1. Sample cluster 3, had some
similar attributes from cluster 1, but can be characterized by
more enrichments in G2/M cell cycle checkpoints, Fanconi
anemia and mismatch repair pathways. So, the cluster 1 and
cluster 3 were mostly enriched for late-stage DDR (double
strand break repair and late-stage cell cycle, respectively), and

cluster 1 was more enriched in early-stage DDR (single strand
break repair and p53 dependent or independent G1 checkpoint).
From the correlation analysis of pan-cancer wide enrichment
scores (ssGSEA) as shown in Figure 2B, we observed exclusive
pattern of enrichments between the DDR pathways from three
groups; one consisting of pathways related to double strand
break repair (group 1; enriched in cluster 1), one consisting
of pathways related to late-stage cell cycle checkpoints (G2/M),
Fanconi anemia and mismatch repair (group 2; enriched in
cluster 3), and the other one consisting of single strand break
repair and p53 dependent or independent DNA damage response
(group 3; enriched in cluster 2). Among the pathways in group
1 and group 2, non-homologous end joining had negative
correlation with the pathways in group 2, while homologous
recombination had a positive correlation with these pathways.
Mismatch repair had weak positive correlation with not just
the pathways from the same group (Fanconi anemia and
G2/M checkpoint) but also homologous recombination repair
pathway from group 1. This correlation can be attributed to
the fact that many components of the Fanconi anemia pathway
interacts with the mismatch repair related proteins (27). The
correlation of the homologous recombination repair with G2/
M DNA damage checkpoint is also expected as this pathway
of double strand break repair is restricted to G2 phase or late
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FIGURE 2 | (A) Unsupervised clustering of ssGSEA scores of 10 DDR pathways across 7,272 tumor samples reveals three distinct clusters of tumors. A mutually

exclusive enrichment pattern can be seen between these DDR pathways: P53 dependent or independent G1 DNA damage response and double strand break repair,

homologous recombination repair, and non-homologous end joining. (B) Correlation plot showing the correlation of ssGSEA enrichments of 10 DDR pathways.

(C) Stacked barplot shows the fraction of samples belonging to each of the three DDR clusters identified from (A) in each of the 17 tumor types from TCGA.

S phase (28). Among the pathways in group 3, nucleotide and
base excision repair had weak positive correlation with p53
mediated DNA damage checkpoints. All pathways from group
3 had negative correlations with the pathways from group 1
and group 2. P53 dependent or independent DNA damage
response showed strongest negative correlation with homologous
recombination repair (r < −0.6). From published literature
we see that p53 has direct role in suppressing homologous
recombination repair of DNA double strand breaks (29). Thus,
tumors may undergo DNA double strand break repair through
activated homologous recombination repair in the absence of
p53mediated apoptosis, while tumors are most likely to undergo
cell cycle arrest at G1 phase by intervention of p53. We
checked the distribution the samples assigned to these three
clusters in each of the 17 cancer types (shown in Figure 2C).
Though there was some variability in distribution of three
clusters in different cancer types, cluster 1 had the lowest
frequency of samples in almost all cancer types (only kidney
renal cell carcinoma KIRC had almost equal frequency of all
3 clusters).

Underlying Gene Mutation Signatures of
the Three Major DDR Clusters
To compare the somatic mutations among DDR pathway
genes between the 3 clusters (obtained from the ssGSEA

analysis, see Figure 2A), we performed a statistical test for

mutual co-occurrence of the somatic mutations of the 221

genes among the three DDR clusters. Figure 3A, represents

40 genes (hypergeometric test, FDR corrected p < 0.3)
showing higher occurrence of somatic mutations. These
genes formed mutually exclusive pattern between the DDR
clusters. The mutated genes representing cluster 1 were
mostly associated with nucleotide excision repair (POLR2A,
POLR2B, ERCC4, POLD1), mismatch repair (RFC1, MLH1),
base excision repair (POLD1, PARP1), and Fanconi anemia
(FANCM, FANCA). The mutated genes in tumors from cluster
2 were mostly associated with homologous recombination
repair (BRCA2, RAD50, RAD54B, BLM, MDC1, LIG1), non-
homologous end joining (RAD50, XRCC4), ATM pathway
(TP53), Fanconi anemia (BRCA2, USP1), meiotic recombination
(MLH3, RAD50, BLM) and also mismatch repair (EXO1, MSH6,
MLH3), base excision repair (LIG1, LIG3), and nucleotide
excision repair (ERCC5, DDB1, ERCC2, CUL4B, LIG1). The
genes mutated in cluster 3 were mainly associated with cell
cycle checkpoints (CHEK2, ATR, CDKN1A, POLE, PSME4,
PSMC2, PRKDC), and additionally with Fanconi anemia
(FANCE, PALB2), and non-homologous end joining (LIG4,
PRKDC). Moreover, in all cancer types, we observed mutually
exclusive pattern of mutations between the clusters, but not
within the same cluster (Figures 3B–E, Supplementary Figure 1;
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FIGURE 3 | (A) Mutual co-occurrence of certain DDR genes was observed with each of the three DDR clusters identified in 2b. In the matrix, the color key blue to red

denotes the tendency from mutual exclusivity to mutual co-occurrence of the corresponding gene mutation (y-axis) and the corresponding DDR cluster (x-axis). The

p-values for co-occurrence of DDR gene mutations and DDR clusters calculated using hypergeometric test are shown in each cell. (B–E) Mutually exclusive mutations

of DDR genes representing three different DDR clusters (from 3a) is shown for tumor types (B) SKCM (C) BRCA (D) OV (E) PAAD.

p-value calculated using hypergeometric test followed by
FDR correction).

Analysis of Transcriptome-Wide Synthetic
Lethal Candidates Identifies Common and
Exclusive Targets for Different DDR
Clusters
We looked for potential synthetic lethal partners of the
cluster specific 40 significant DDR genes (see Figure 3A) using
two approaches: (1) from published synthetic lethal screens
in human cell lines (14, 25) and (2) using our previously
published machine-learning based algorithm DiscoverSL (13).
To shortlist themost probable SL candidates from theDiscoverSL
predictions, we applied two in-silico validation approach. First,
we calculated the conditional essentiality of the SL interaction,
i.e., the statistical significance of difference between the shRNA
scores (targeting the synthetic lethal gene) for human cell lines
with or without mutation in the primary gene; and second,
we performed Kaplan-Meier analysis on TCGA clinical data
to check if the primary gene is mutated, the differences in
disease-free survival between patients when the SL interactor
gene downregulated (expression<median) compared to samples
where the gene is upregulated (expression > median). The
SL pairs which showed significant effects of co-inactivation
from both validation methods were chosen as the final list

of most probable SL interactors for DDR genes. Figure 4A

shows a representation of selected SL interactors for genes
from the three DDR clusters. A subset of genes was shown
to be exclusively associated with each cluster (shown as
colored boxes in Figure 4A). We checked the functional
enrichments of the common and exclusive SL interactors of
these DDR genes. The common SL interactors for all three
clusters were enriched for MAPK pathway, ERBB pathway, GAP
junction, and proteasomes (Figure 4B). Functional enrichment
analysis exclusive to the three DDR clusters (Figures 4C–E)
showed that, cluster 1 is associated with NGF signaling,
ERBB signaling, integrin pathway, retinoic acid pathway, Fc
gamma mediated phagocytosis; cluster 2 is found to be
enriched with cell cycle and immune system associated pathways
were enriched, and cluster 3 had mostly immune response
related pathways.

DDR Genes Having Distinct Alteration
Patterns Between Different DDR Clusters
Are Potentially Synthetic Lethal
Having observed mutually exclusive mutation pattern of 40
DDR genes associated with different clusters (shown in selected
cancers in Figures 3B–E), we wanted to see if these genes
also exhibit synthetic lethality. To test this hypothesis, we
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FIGURE 4 | (A) Predicted SL interactors of genes mutated in cluster 1, cluster 2, or cluster 3. Blue denotes an SL interaction and white denotes no SL interaction

between the corresponding SL gene (columns) and DDR cluster (row). We can see there is some overlap and some exclusivity between SL partners for DDR genes

from different DDR clusters. (B–E) Barcharts show pathways enriched for predicted synthetic lethal partners (B) common for all clusters (C–E), unique for gene

mutations specific to DDR clusters 1, 2 and 3, respectively.

searched for synthetic lethal interactions between DDR genes

from published synthetic lethal screens in human cell lines.

We identified SL interactions between multiple DDR genes that

supported our postulation (Supplementary Table 1). Further,

from the predicted SL interactions from DiscoverSL we found

many potential SL relationships that fulfilled the 2 in silico

validation criteria mentioned above (Supplementary Table 1).

A representation of 3 SL pairs one from each cluster, that
passed our rigorous filter criteria were shown in Figure 5.
The filtered SL pairs are validated in-silico at shRNA level
(Figure 5A), and by Kaplan Meier analysis showing the clinical
relevance of the same pairs as disease-free survival when ±

mutation in one gene had a significant association of over
(>median) or under (<median) expression of SL partner
gene (Figure 5B). As shown from the figure, PARP1 (cluster
1) was found to have conditional essentiality with cell lines
having mutation in CHEK2 (cluster 3) and a survival advantage
of down regulation of PARP1 in prostate cancer patients
when CHEK2 was mutated. Similarly, TP53BP1 (cluster 3) has
conditional essentiality in cell lines having mutation in TP53
(cluster 2) with survival advantage in lung cancer patients,
and POLD1 (cluster 3) has conditional essentiality in cell
lines having mutation in BRCA2 (cluster 1) and survival
advantage shown in skin cancer patients. A complete list of SL
interactions (previously reported or novel prediction) is shown
in Supplementary Table 1.

Analysis of Drug Sensitivity Associated
With Mutations in DDR Genes From
Different Clusters
To find potential drugs for targeting the SL interactors of
DDR genes from different clusters, we combined the drug-
target information from the databases DrugBank (21) and
DGIdb (22), and the drug sensitivity data in cell lines from
GDSC portal (23). We limited our drug search to only the
drugs approved by FDA for treating cancers, as per the
National Cancer Institute resource (https://www.cancer.gov/
about-cancer/treatment/drugs). For the drugs targeting SL
interactors of the DDR genes from each cluster, we calculated
the relative drug sensitivity in presence of mutations in the
primary gene. Figure 6A shows the drugs targeting potential
SL interactors for the mutations in the primary DDR genes
from different clusters. Drugs showing significantly increased
sensitivity for specific DDR gene mutations highlighted
with green (p < 0.1, one-sided t-test). Combining the drug
sensitivity results with the information on the potential
SL interactions from literature and computer predictions,
we generated a network of the DDR gene alterations, SL
interactions and drugs (Figure 6B). The SL interactions are
restricted to only those showing significant clinical benefit from
the disease-free survival analysis (described in the previous
section). The drug Gefitinib (targeting EGFR signaling) was
only seen to have sensitivity for the gene FANCE from DDR
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FIGURE 5 | (A) Predicted synthetic lethal partners for gene mutations specific to each DDR cluster, that have conditional essentiality in presence of the corresponding

gene mutations as observed from cancer cell line RNAi screening data from Achilles portal. The term RNAiScore in y-axis is used to represent the essentiality score of

genes in shRNA screenings processed by ATARiS algorithm, as collected from the Achilles project v 2.4.3 (described in the data collection section in Methods). The

more negative RNAiScore, the more essential the corresponding gene. (B) From TCGA genomic and clinical data, certain predicted synthetic lethal genes of the

primary genes from each of the three DDR cluster show survival advantage in terms of increased disease-free survival when down-regulated compared to when

up-regulated (down<median, up>median) in certain cancer types in presence of somatic mutations in that DDR gene.

cluster 3 (Figure 6C). The drug Bleomycin (targeting DNA
replication, Figure 6D) showed sensitivity to only TP53
mutation. The drugs Olaparib (PARP-inhibitor, Figure 6E),
Nilotinib (targeting ABL signaling, Figure 6F), Lenalidomide
targeting protein stability, and Alectinib targeting RTK signaling
was only seen to have sensitivity for genes from DDR cluster 2
(BRCA2, TP53, or ERCC5). The drugs Vorinostat, Trametinib,
Idelalisib, Docetaxel, Bortezomib, Dasatinib, and Midostaurin,
targeting histone acetylation, PI3K/MTOR signaling,
ERK/MAPK signaling, mitosis, proteasome and kinases,
respectively, showed sensitivity for DDR genes from all three
clusters (Figures 6A,F).

DISCUSSION

DNA damage response alterations are vital to the transformed
cells to evade senescence. But at the same time, these alterations
which are common in cancers are also supposed as “Achilles heel”
of the cancer that makes them vulnerable to certain cytotoxic
or targeted therapies (30). In order to get an understanding
of potential targets specific to different DDR alterations, we
performed an analysis of multi-cancer study on the patterns
of alteration in 10 DDR pathways across 7,272 tumors from
17 tumor histology in TCGA. We identified distinct sample
clusters based on defect in DDR mechanism rather than by
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FIGURE 6 | (A) Drugs targeting predicted synthetic lethal partners for gene mutations specific to each DDR cluster, that have conditional sensitivity in presence of the

corresponding gene mutations as observed from cancer cell line drug screening data from GDSC portal. In the matrix, color coding of each cell denotes whether the

corresponding drug (in y-axis) is sensitive to mutations in the corresponding DDR gene (in x-axis). The column color labels annotate the DDR clusters where mutations

in the corresponding DDR gene is prevalent. (B–E) Sensitivities of Gefitinib in presence of FANCE mutation, Bleomycin in presence of TP53 mutation, Nilotinib in

presence of BRCA2 mutation, and Olaparib in presence of TP53 mutation; as seen from cancer cell lines in GDSC portal. The DrugScore in the y-axis represents LN

IC50 values of the drugs in the cell lines with/without mutation in the corresponding DDR genes. (F) Association network of predicted synthetic lethal genes of gene

mutations specific to each DDR cluster across TCGA tumor types, and potential drugs targeting the synthetic lethal genes which are also sensitive to mutations in the

primary DDR gene. The following color coding is applied; tumor types: red, DDR gene mutations specific to DDR cluster 1: cyan, DDR gene mutations specific to DDR

cluster 2: pink, DDR gene mutations specific to DDR cluster 3: purple, synthetic lethal genes: white and drugs: green.

histology. This pattern of exclusive enrichment of certain DDR
pathways and depletion of others is expected as tumors with
defects in certain DDR pathways tend to rely on the residual DDR
pathways to evade apoptosis resulting from genotoxic stress (7).
Cancer type-specific distribution of the number of tumor samples
belonging to these three clusters showed that all cancer types
had a higher fraction belonging to defects in double strand break
repair pathways, such as homologous recombination, which is
consistent with the observations from a previous pan-cancer
study (6).

Notably, looking at the underlying genomic signatures of the
DDR clusters, we found that the somatic mutation patterns of
genes from different clusters showed a clear mutually exclusive
signature in all cancers (see Figure 3A). Association of the
genes representing the three clusters indicates that these genes
were involved in complementary DDR pathways; cluster 1 has
genetic alterations related to single strand break repair pathways
like base excision and nucleotide excision repair. Cluster 2
has genetic alterations related to homologous recombination,
non-homologous end joining repair, and nucleotide excision
repair. Cluster 3 has genetic alterations mostly related to cell

cycle checkpoints. In support of our findings, a considerable
crosstalk among the single- and double-strand lesion repair
pathways and replication fork restart pathways has been reported
by several studies. A functional crosstalk was shown in which
overexpression of a DNA repair component in one pathway
compensates for a repair defect in another, conferring therapeutic
resistance (31). A signaling crosstalk between the homologous
recombination and canonical non-homologous end joining
pathways through ATR, ATM, and DNA-PK has been reported
(32, 33). Finally, a direct crosstalk when specific components
are shared among pathways, for example, PARP1 functions
in base excision repair and in alternative non-homologous
end joining (34). These findings suggest that simultaneous
alterations in these pathways will be potentially detrimental to
the tumor cells. Identifying cancers that are functionally defective
in specific repair pathways could benefit DNA-repair targeted
therapies (35). From our findings, we showed that there are
indeed potential SL relationships between genes from different
clusters, and their co-inactivation can be lethal to the tumor
cells (as seen in Figure 5, from RNAi screening data, e.g.,
CHEK2 and PARP1, TP53 and TP53BP1, BRCA2 and POLD1).
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As many of the SL interactions found from the essentiality
screens do not translate into clinically beneficial targets, we also
checked from TCGA clinical data, whether co-inactivation of the
potential SL candidates show a significant increase in disease-
free survival time. Among the potential SL interactors from
different clusters, BRCA2 (cluster 2) and PARP1 (cluster 1) have
been reported in literature as SL partners (26). Additionally,
we found potential SL relationships between TP53 (cluster 2)
and TP53BP1 (cluster 3), and CHEK2 (cluster 3) with PARP1
(cluster 1) that has not been reported previously but show
clinical benefits upon co-inactivation in lung adenocarcinoma
(LUAD) and prostate adenocarcinoma (PRAD), respectively.
We observed that co-inactivation of potential SL partners
does not always show significant clinical benefit (in increased
survival time) in all tumor types. The varying sensitivity to
co-inactivation of same SL partners in different tumor types
may be linked to the underlying heterogeneity of different
tumor histology.

Given the importance of DDR pathways in cancer, we
hypothesize the occurrence of common SL mechanisms between
cancer types. We identified SL genes common to all clusters,
that are associated with MAPK, ERBB, proteasome pathways.
From the drug sensitivity data, the cancer drugs targeting
kinases (Dasatinib, Bosutinib, Axitinib, Alectinib), PI3K/MTOR
pathway (Idelalisib, Temsirolimus), MEK pathway (Trametinib,
Dabrafenib), EGFR signaling (Cetuximab, Gefitinib), proteasome
(Bortezomib), HDACs (Vorinostat, Belinostat), cell cycle
(Paclitaxel, Docetaxel, Palbociclib), Retinoid receptors
(Bexarotene) were found to be sensitive to mutations in
genes from multiple DDR clusters. The importance of the
receptor tyrosine kinase signaling (EGFR/MEK/ERK/PI3K)
in regulation of DDR pathways and mediating radiation or
chemo resistance is well-known, and many ongoing clinical
trials are investigating the potential of combination therapies
involving DDR inhibitors and tyrosine kinase inhibitors
in cancers [reviewed by (36)]. Also, there is evidence of
HDAC inhibitors triggering DNA damage in cancer cells
which further attenuates by DNA-damaging chemotherapy
or radiation (37). So, inactivation of DDR proteins may
sensitize cancer cells to HDAC inhibitors, as we see from our
analysis. There are reports connecting proteasomes to DDR
pathways and proteasome inhibitors are shown to enhance
sensitization of cancer cells to DNA damaging agents (38).
Consistently, our analysis indicates that co-inactivation of DDR
genes combined with proteasome inhibitors may be lethal to
cancer cells.

Among the SL interactor pathways exclusive to DDR cluster
1, there were pathways associated with efficient DNA double
strand break repair, e.g., integrin, ERBB pathways. It has been
previously shown that activated ERBB pathway can trigger DNA
double strand break repair (39) and disabling the ERBB pathway
resulted in genotoxic cell death induced by radiation (40).
Similarly, it has been shown that beta integrins can positively
regulate components of homologous recombination repair of
DNA double strand breaks, facilitating resistance to radiation-
induced cell death (41). Thus, co-inactivation of single strand
break repair (which is predominantly associated with DDR

cluster 1) with ERBB or integrin pathway can be lethal to
cancer cells. This observation is further supported by our drug
sensitivity analysis, as we observed sensitivity of EGFR signaling
inhibitor drug cetuximab to be sensitive to alterations in cluster
1 (Figure 6F).

The SL interaction of cluster 2 with cell cycle related pathways
was also expected from our analysis, as the gene alterations
specific to cluster 3 were mostly associated with cell cycle
checkpoints. Consistently, from the drug sensitivity analysis, we
found sensitivity of the drug Palbociclib (targets cell cycle) in
presence of alterations in cluster 2. Besides them, some drugs
were only sensitive to mutations in cluster 2 which was mostly
associated with double strand break repair; e.g., Olaparib (PARP
inhibitor), Nilotinib (ABL inhibitor), and Bleomycin (DNA
ligase inhibitor). PARP inhibitor drugs are the first ever FDA-
approved therapies for treating tumors deficient in homologous
recombination repair (42). In case of Bleomycin, we found
literature reports supporting the sensitivity to Bleomycin by
impairing p53 function in transgenic mice (43).

Interestingly, the SL interactors of gene alterations specific
to cluster 3 were mostly enriched for immune system mediated
cell killing, e.g., complement cascade associated with innate
immunity. As stated earlier, the DDR cluster 3 was mostly
associated with alterations in cell cycle checkpoint genes, e.g.,
CHEK2,ATR, PRKDC. It was reported that inhibition of cell cycle
components (CDK4/6) can trigger anti-tumor immune response
(44). Also, DDR signaling is involved in innate immune response,
and currently DDR inhibitors (ATR or PARP1 inhibitors)
combined with immune checkpoint inhibitors are undergoing
clinical trials (45–47).

In summary, DNA and DNA damage response proteins have
incredible potential as next generation therapeutic targets for the
treatment of multiple cancers. While long term effects of DDR
inhibition have yet to be understood in patients, and the potential
for the emergence of secondary cancers exists, there is significant
evidence at both the preclinical and early clinical stage that this
specific targeting strategy will be the next breakthrough in cancer
therapy. Our systematic analysis of multi-cancer SL targets and
drug sensitivity revealed many potential drug targets for treating
cancers deficient in DNA damage response in addition to PARP
inhibitors and established a framework to explore and prioritize
the potential targeted therapies for certain DDR alterations
in cancer.
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