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Resistance of neoplastic cells to therapy is considered a key challenge in the treatment

of cancer. Emergence of resistance is commonly attributed to the gradual mutational

evolution of neoplastic cells. However, accumulating evidence suggests that exogenous

stressors could significantly accelerate the emergence of resistant clones during the

course of treatment. Herein, we review molecular mechanisms that regulate the evolution

of resistance in a tumor with particular emphasis on the role of cell cycle.
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INTRODUCTION

Emergence of resistant cells in a neoplastic population complicates the course of treatment and
leads to recurrence of cancer. This is because resistant clones can efficiently adapt to exogenous
stressors including therapeutic agents. Despite being widely acknowledged as a central issue in
the treatment of cancer, mechanisms that facilitate emergence of resistant neoplastic cells remain
largely unknown. It is commonly believed that gradual evolution of a neoplastic genome by
mutational changes drives the phenotypic heterogeneity in a uniform population of cells. This
paradigm assumes a lack of directionality owing to the random nature of mutations. This notion,
however, conflicts with evidence that suggests exogenous stressors could accelerate and direct
emergence of resistant neoplastic cells. Keats et al. demonstrated that treatment of multiple
myeloma triggers a clonal competition that in consequence leads to oscillatory dominance of
resistant subclones (1). Herein, we review the molecular mechanisms that facilitate and direct
emergence of resistance in a neoplastic population. We particularly focus upon the role of
endogenous mechanisms of adaptation to stressors in instructing cancer resistance.

TOLERANCE AND RESISTANCE: SEPARATE BUT INTERTWINED

Adaptation of neoplastic cells to therapy can be induced by two parallel and yet distinctmechanisms
(Figure 1). “Tolerance” to therapy occurs when neoplastic cells simply transition into a dormant
or quiescent state due to applied therapies and survive the stressors but do not proliferate (2). This
phenomenon is similar to bacterial tolerance induced by application of antibiotics (3). In contrast to
tolerance, resistant cells continue to proliferate despite presence of cytotoxic or genotoxic stressors.
Resistance requires altered interpretation of exogenous stressors by neoplastic cells. Such capacity
is usually acquired by mutations that reduce the effective concentration of the stressors (4).
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FIGURE 1 | Tolerance and resistance drive emergence of neoplastic adaptation to stressors. The neoplastic cells respond to applied stressor by apoptosis, tolerance,

or resistance. While in tolerance mode cells remain in quiescence by expansion of G0, resistant cell proliferate despite presence of stressor.

The two proposed modes of neoplastic adaptation can be
distinguished phenotypically during the course of treatment.
Tolerance leads to a phenomenon commonly known as tumor
dormancy (2, 5). During dormancy, the “occult tumor” is
clinically undetectable (5). In the subsequent phase, evolution
of resistance leads to the relapse of cancer and concomitant
unresponsiveness to applied therapies.Despite being separate
entities, there is some evidence that tolerance can be a prelude
to mutational evolution and resistance (6, 7). This proposal is not
unprecedented. In a parallel scenario, it was demonstrated that
emergence of antibiotic resistance is accelerated in a background
of tolerance (i.e., quiescence) (8). This raises important questions
about the molecular signature of the tolerance program and how
it facilitates subsequent emergence of resistance.

REPROGRAMMING OF CELL CYCLE
FACILITATES TOLERANCE OF
STRESSORS

Tolerance is induced by a reversible exit from cell cycle during
transition from mitosis to G1 phase (2). This phase, commonly
known as G0 (9), is defined based on the sensitivity of cell cycle
to nutritional stressors. During G0 and prior to the “restriction
point” (10) nutritional information is processed by cycling cells
and integrated into multiple signaling cascades that license
progression into G1 phase under optimal availability of nutrients
(11). Suboptimal nutritional condition, on the other hand, leads
to transient arrest at G0 (11). Lengthening G0 requires global
changes in metabolic activity of cycling cells (Figure 2). In the
nutrient limiting condition, reduced ratio of ATP/AMP leads to
activation of the AMPK (AMP-activated protein kinase) cascade
(12) and inhibition of mammalian target of rapamycin (mTOR)

signaling (13). In consequence, autophagy is activated (14) to
balance the energetic demands of stressed cells via autocatalytic
activity (15) and energy-consuming protein synthesis is inhibited
(16). The enhanced autophagic flux leads to transient arrest of
cell cycle (17) while repressing the induction of a senescence
program (18). This occurs due to convergence of autophagy and
proteolysis (19). Key regulators of autophagy, such as glycogen
synthase kinase-3β (Gsk-3β), also drive degradation of cyclin D1
(20). Autophagic elimination of cyclin-D1 (21), along with other
parallel events in pro-catalytic G0 phase, transiently abolishes
progression of cell cycle.

Since autophagy improves the adaptive capacity of cells (22), it
is not surprising that cell cycle arrest at pro-autophagic G0 leads
to amplified tolerance of neoplastic cells (23). In fact, autophagy
has been suggested to be the main gateway to tumor dormancy
(24). The improved adaptability of cells in pro-autophagic G0 is

mainly related to changes that are dictated by energetic demands.
Signaling by AMPK leads to activation of ULK1 and ULK2 and
autophagic elimination of mitochondria (25). This pro-survival

change reduces the number of mitochondria that accommodate
several key apoptotic inducers (26) and renders quiescent cells
more resistant to apoptotic stimuli. Senescence is another route

for elimination of neoplastic cells (27). Notably, autophagic flux

also inhibits pathways that induce senescence (18). Autophagic
degradation of p53 (28), in particular, is a major contributor
to the repression of senescence during quiescence (29). Yet,

inhibition of p53 has another profound consequence and that
is reduced apoptotic tendency of quiescent cells (30). Another

important aspect of autophagy is that the molecular machinery

that propels autophagosome and endosome formation is shared
(31). Therefore, enhanced autophagic flux would reduce the
capacity of cells for concomitant endocytosis and impair the
uptake of cytotoxic agents by neoplastic cells (32).
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FIGURE 2 | Resistance can develop in a background of tolerance. The

enhanced autophagic flux drives adaptation to stressors and also arrests the

cycle at G0. Due to inhibition of HR, DNA repair by NHEJ generates a

hypermutability state that is tolerated owing to enhanced autophagic flux.

The pathways that instruct adaptation to stressors are
conserved from Caenorhabditis elegans to human (22). In fact,
the conservation extends beyond metazoan animals. In addition
to the canonical pathways described, progression of cell cycle
into G1 in yeasts requires further licensing by a complex
molecular network that senses the availability of nitrogen
and phosphate sources (33). The cascade in regulated by a
cyclin-dependent protein kinase, Pho85 (34). Under suboptimal
nutritional conditions, inhibition of Pho85 leads to transient cell
cycle arrest at G0 (33). It was recently demonstrated that human
breast carcinoma cells utilize the activity of this ancient cascade
to enhance tolerance to genotoxic stressors (35). MiRNA4673
is central to this tolerance mechanism. The miRNA enhances
autophagy by targeting cdk18, the human homolog of yeast
metabolic sensor Pho85 (34, 36). Inhibition of cdk-18 simulates
a faux nutrient-deprivation condition and activates autophagy
leading to improved tolerance of breast carcinoma cells by
transient arrest at G0 (35). The activity of miR4673 has another
significant consequence. The miRNA alters kinetics of DNA
repair and increases mutability of the neoplastic cells (35).

TOLERANCE IS CONDUCIVE TO
HYPERMUTABILITY

Multiple mechanisms are involved in repair of DNA damage
(37). The two major pathways for repair of DNA double-
stranded breaks are homologous recombination (HR) and non-
homologous end joining (NHEJ) (38). While repair based on
HR has a higher fidelity, NHEJ is more efficient in repairing
DNA damage (repair time ≈30min for NHEJ vs. >7 h for

HR). Notably, DNA repair mechanisms vary according to the
phase of cycle (39). Homologous recombination (HR) is, in
particular, repressed during G0/early G1 (40). The inhibition of
HR alters the balance in favor of error-prone non-homologous
end-joining (NHEJ) (41). The shift to NHEJ during quiescence
(G0) by inhibition of HR improves tolerance to exogenous
stressors (42, 43). This is in part due to accelerated kinetics
of NHEJ compared to HR (38). However, repair by error-
prone NHEJ amplifies the mutability of quiescent cells. Such
hypermutability is not just a bystander effect. Under stressful
conditions, hypermutability is actively encouraged to accelerate
evolution of novel traits that improve the adaptability of cells to
exogenous stressors (44). Double-stranded breaks are reported to
drive stress-induced mutagenesis (45). In addition to damage-
related mutations, transposable elements are involved in the
emergence of novel phenotypes by hypermutability (46). The
parallel role of pro-survival mechanisms that improve tolerance
of neoplastic cells to DNA damage during G0 should not be
neglected. Autophagic depletion of p53 (28), for example, reduces
pro-apoptotic signaling in stressed cells (30). Remarkably,
depletion of p53 triggers hypermutability by reducing the
fidelity of double-stranded break repair mechanisms (47). The
evidence suggests that induction of autophagy during G0, not
only improves tolerance by the mechanisms described, but also
accelerates emergence of resistance by amplifying the mutability
of neoplastic cells. This scenario is aligned to the proposed
evolution of resistance in the background of tolerance (8). The
resistant cells, upon re-entry into cell cycle, would trigger the
relapse of a dormant cancer (6, 48).

THERAPEUTIC IMPLICATIONS

From a treatment perspective, tolerance-mediated resistance
provides an operational framework for developing therapeutic
strategies (5, 49, 50). One such strategy is to maintain neoplastic
cells in a state of dormancy (49). This approach is termed
“sleeping strategy.” In another approach, termed “awakening
strategy,” neoplastic cells are stimulated to re-enter the cell
cycle in order to improve the efficiency of anti-proliferative
drugs (51). In addition to canonical pathways of G0 arrest,
non-canonical cdk18-dependent cascade (36) may be targeted
to enhance progression of neoplastic cells into interphase (35).
However, as mentioned previously, progression into cycle of
arrested cells may lead to emergence of resistant clones. A safer
approach could be induction of senescence in quiescent cells by
repression of autophagy (18).

CONCLUDING REMARKS

The evidence provided suggests that tolerance and resistancemay
be interpreted as linked traits in a spectrum. Such connectivity
would have implications for diagnosis and therapy in cancer
patients. Given the role of cell cycle in induction of quiescence
and coupling of the latter to hypermutability, novel therapeutics
that target cell cycle dynamics may improve the outcome of
cancer treatment.
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