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Objectives: We used radiomic analysis to establish a radiomic signature based on

preoperative contrast enhanced computed tomography (CT) and explore its effectiveness

as a novel recurrence risk prognostic marker for advanced high-grade serous ovarian

cancer (HGSOC).

Methods: This study had a retrospective multicenter (two hospitals in China) design and

a radiomic analysis was performed using contrast enhanced CT in advanced HGSOC

(FIGO stage III or IV) patients. We used a minimum 18-month follow-up period for all

patients (median 38.8 months, range 18.8–81.8 months). All patients were divided into

three cohorts according to the timing of their surgery and hospital stay: training cohort

(TC) and internal validation cohort (IVC) were from one hospital, and independent external

validation cohort (IEVC) was from another hospital. A total of 620 3-D radiomic features

were extracted and a Lasso-Cox regression was used for feature dimension reduction

and determination of radiomic signature. Finally, we combined the radiomic signature

with seven common clinical variables to develop a novel nomogram using a multivariable

Cox proportional hazards model.

Results: A final 142 advanced HGSOC patients were enrolled. Patients were

successfully divided into two groups with statistically significant differences based on

radiomic signature, consisting of four radiomic features (log-rank test P = 0.001,

<0.001, <0.001 for TC, IVC, and IEVC, respectively). The discrimination accuracies of

radiomic signature for predicting recurrence risk within 18 months were 82.4% (95%

CI, 77.8–87.0%), 77.3% (95% CI, 74.4–80.2%), and 79.7% (95% CI, 73.8–85.6%)
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for TC, IVC, and IEVC, respectively. Further, the discrimination accuracies of radiomic

signature for predicting recurrence risk within 3 years were 83.4% (95% CI, 77.3–89.6%),

82.0% (95% CI, 78.9–85.1%), and 70.0% (95% CI, 63.6–76.4%) for TC, IVC, and

IEVC, respectively. Finally, the accuracy of radiomic nomogram for predicting 18-month

and 3-year recurrence risks were 84.1% (95% CI, 80.5–87.7%) and 88.9% (95% CI,

85.8–92.5%), respectively.

Conclusions: Radiomic signature and radiomic nomogram may be low-cost,

non-invasive means for successfully predicting risk for postoperative advanced HGSOC

recurrence before or during the perioperative period. Radiomic signature is a potential

prognostic marker that may allow for individualized evaluation of patients with

advanced HGSOC.

Keywords: advanced high-grade serous ovarian cancer, CT, prognosis, radiomics, recurrence

INTRODUCTION

Ovarian cancer is the leading cause of gynecological cancer-
related deaths (1). Seventy percent of these deaths are due to
high-grade serous ovarian cancer (HGSOC) (2, 3) while 60% of
such patients are diagnosed at an advanced stage (1). Although
a significant proportion of patients experience a complete
clinical remission with aggressive surgery and platinum-taxane
chemotherapy (4), the median progress-free survival (PFS) in
advanced HGSOC patients is 18 months, with most advanced
HGSOC patients with recurrence experiencing a PFS of <3 years
(5–7). Therefore, predictive recurrence in advanced HGSOC
patients is critical for the identification of precise, personalized
treatment, and follow-up plans that prolong patient survival.
Currently, predicting the recurrence of advanced HGSOC
during the perioperative period remains limited. Development
of prognostic markers of advanced HGSOC are thus critical to
improving outcomes in these patients.

Contrast enhanced computed tomography (CT), a routinely
used diagnostic tool, provides a non-invasive and low-cost
method for extracting HGSOC prognostic information
(8). Radiomics, a subset of the field of medical imaging
research, has progressed dramatically in recent years, enabling
comprehensive expression of tumor heterogeneity and more
advanced prognostic applications (9). Using the high-throughput
quantitative radiomic features often extracted from medical
images, clinicians can develop personalized treatment plans and
improve tumor detection strategies, as well as phenotypically
subtype and evaluate the curative effects of particular treatments
as well as patients’ prognoses (10–12). Radiomics approach
is an effective tool for exploring the relationships among
radiomic features and patients’ prognoses, which may promote
new ideas and improvements for oncological decision-
support (13). In particular, radiomics has been successfully
applied to determining tumor prognosis (14) and HGOSC
recurrence (15, 16).

In this retrospective multicenter study, we hypothesized that
radiomic analysis would provide a prognostic marker (radiomic
signature) of advanced HGSOC recurrence. We performed a
radiomic analysis to extract CT-based quantitative radiomic

features and developed a novel prognostic marker (radiomic
signature) for individualized, pretreatment evaluation of PFS in
patients with advanced HGSOC. Furthermore, we validated the
predictive ability of this radiomic signature over 18 months and
3 years, respectively. Moreover, we developed a novel nomogram
in conjunction with this radiomic signature and revealed seven
common clinical characteristics that might be associated with
relapse. Collectively, these findings provide potentially critical
insights into individualized treatment and follow-up planning.

MATERIALS AND METHODS

We enrolled 142 patients with advanced HGSOC. All patients
were enrolled between March 2010 and September 2015 at
West China Second University Hospital of Sichuan University,
Chengdu, China (WCSUH-SCU), or between May 2012 and
October 2016 at Henan Provincial People’s Hospital, Zhengzhou,
China (HNPPH). The ethics committee of WCSUH-SCU and
HNPPH approved this study and the requirement for informed
consent was waived. Our study was conducted in accordance with
the Declaration of Helsinki.

Eligibility Criteria
Patient inclusion criteria were: (a) pathologically confirmed
International Federation of Gynecology and Obstetrics (FIGO)
stage III or IV HGSOC, (b) diagnosis made at and primary
debulking surgery (PDS) performed at WCSUH-SCU or
HNPPN, (c) preoperative contrast enhanced CT of the abdomen
and pelvis via the Picture Archiving and Communication System
(PACS), and (d) available follow-up data. Patient exclusion
criteria were: (a) a follow-up time of <18 months in censored
patients, (b) a response to PDS including partial remission or
progression, (c) undergoing neoadjuvant chemotherapy (NACT)
followed by interval debulking surgery (IDS) as NACT alters CT
findings. Details of study inclusion and exclusion criteria are
summarized in Figure 1.

One hundred enrolled patients from WCSUH-SCU were
divided into a training cohort (TC) and an internal validation
cohort (IVC) based on their time of surgery at a 1:1 ratio.
Fifty patients with an early surgical time were allocated to the
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FIGURE 1 | Eligibility criteria. Flowchart depicting the patient selection process. WCSUH-SCU, West China Second University Hospital of Sichuan University; HNPPH,

Henan Provincial People’s Hospital; HGSOC, High-Grade Serous Ovarian Cancer; FIGO, International Federation of Gynecology and Obstetrics; PACS, Picture

Archiving and Communication System.

TC group while another 50 patients with a late surgery time
comprised the IVC group. The 42 enrolled patients fromHNPPH
were used as an independent external validation cohort (IEVC).
In addition, we also collected clinical information from all
patients including their age at surgery, preoperative carbohydrate
antigen 125 (CA-125) levels, postoperative CA-125 levels, FIGO
stage, residual tumor size, tumor side, and menopause status.

Primary Treatment
Primary debulking was performed according to WCSUH-SCU
or HNPPH surgical templates, including at least total abdominal
hysterectomy (TAH), bilateral salpingo-oophorectomy (BSO),
omentectomy, and pelvic/para-aortic lymphadenectomy.
Additional resections were performed at the discretion of the
surgeon. Six to eight cycles of taxane/carboplatin chemotherapy
were then performed postoperatively.

Follow-Up and Clinical Endpoints
All patients were followed every 3 months for the first 2 years,
every 6 months for the following 3–5 years, and annually
thereafter. The PFS was the primary end point for our study.
Recurrence dates were determined according to a follow-up

physical exam, CT findings, and CA-125 levels. Follow-up times
were defined as the time between complete clinical remission and
clinical recurrence or the time of the last follow-up.

CT Parameters
The patients of WCSUH-SCU were examined using a
multidetector CT scanner (Brilliance 6, Philips Medical
System, Best, Netherlands), scanning parameters were as follows:
tube voltage, 120 kVp; tube current, 230mA; beam pitch, 0.9;
reconstruction thickness, 2mm; reconstruction interval, 1.5mm.
Contrast medium 80–100mL (Iopamidol 370, Bracco, Italy) was
injected into the antecubital vein using a mechanical injector at a
rate of 2.5–3.5 mL/sec.

The patients of HNPPH were examined using a multidetector
CT scanner (Brilliance 16, Philips Medical System, Best,
Netherlands; GE Discover CT 750HD, GE LightSpeed VCT 64,
GE Medical Systems, Milwaukee, USA), scanning parameters
were as follows: tube voltage, 120 kVp; tube current, automatic
milliampere setting with a range 100–500mA; beam pitch, <1;
reconstruction thickness, 2.0 (Brilliance 16) or 5.0 (GE Discover
CT 750HD and GE LightSpeed VCT 64) mm; reconstruction
interval, 1.2 (Brilliance 16 and GE Discover CT 750HD) or 1.25
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(GE LightSpeed VCT 64) mm. Contrast medium 60–100mL
(Ultravist 370, Bayer, Germany) was injected into the antecubital
vein using a mechanical injector at a rate of 3–3.5 mL/s.

CT examinations in this study were strictly performed in
accordance with the principle of “As Low As Reasonably
Achievable” (ALARA), and the radiation doses were recorded.
During the period of examination, patient was in suspended
respiration. The scan area was from the symphysis pubis to the
diaphragm, including non-enhancement scan, arterial phase and
venous phase. The time delay from contrast agent injection to
image acquisition was approximately 70 s.

Tumor Segmentation
We used preoperative contrast enhanced CT Digital Imaging and
Communications inMedicine (DICOM) data from the PACS. All
CT DICOM images were collected from four different scanners
with different scanning parameters. The ITK-SNAP (www.
itksnap.org) was used for 3-D manual segmentation performed
by three experienced radiologists. Masks of the tumors were
drawn on CT images by two board-certified radiologists with
more than 8 years of experience in ovarian cancer, which were
blinded to the patients’ clinical information. The region of
interest (ROI) covered the whole tumor and was delineated on
each slice of the CT image. These masks were combined when
the difference between the individual masks identified by the
two radiologists was <5%. When the difference between the
two masks was greater than 5%, the masks were determined by
a senior radiologist with more than 20 years of experience in
ovarian cancer.

Next, DICOM images and segmentation results were
normalized according to pixel spacing and slice thickness. We
determined the minimum pixel spacing and slice thickness
parameter values for all CT images. Then processed the original
image and segmentation with a linear interpolation algorithm
based on these minimum values. Finally, normalized CT and
tumors to the same physical space.

Radiomic Features Extraction
Radiomic features expressing tumor characteristics were high-
dimensional quantitative features extracted from CT images.
In the present study, we investigated a feature-based approach
to explore meaningful and reliable information associated with
progress-free survival in patients with advanced high-grade
serous ovarian cancer from pre-therapeutic contrast material-
enhanced CT data. In total, we extracted 620 quantitative features
including imaging features previous used features in 9. These
features could be divided into four groups as follows (Table 1):
histogram (17 features), shape (8 features), textural (51 features),
and wavelet (544 features). A filtering process was performed
to implement image smoothing and image difference before CT
radiomic feature extraction. 3D “Coiflet 1” wavelet transform on
CT images with 8 decompositions: LLL, LLH, LHL, LHH, HLL,
HLH, HHL, HHH, considering L and H to be a low-pass (i.e.,
a scaling) and a high-pass (i.e., a wavelet) function. Then re-
calculate the histogram and textural features. The definition of
radiomic features can be found in our previous research (17).

Radiomic Features Selection and Radiomic
Signature Building
Due to the extraction of high dimensional radiomic features
in this study, had all 620 radiomic features were used to build
radiomic signature, over-fitting would have occurred. Therefore,
we used a least absolute shrinkage and selection operator
(LASSO) regression to select for features which were most
closely related to recurrence (18). The parameter λ was selected
in LASSO through the smallest leave one out cross-validation
(LOOCV) error. After L1 regularization, the coefficients for
most radiomic features were reduced to zero and any remaining
non-zero coefficient radiomic features were selected. Next,
we built a Cox model with these select radiomic features.
The radiomic signature value for each patient was a linearly-
weighted combination of the features with non-zero coefficients.
All radiomic feature extraction, dimensionality reductions, and
radiomic signature construction algorithms were implemented
using MATLAB R2016a (MathWorks, Natick, MA).

Validation of Radiomic Signature and
Development of an Individualized
Prognostic Model
The potential association between radiomic signature and PFS
was validated in the TC, IVC, and IEVC, respectively. Kaplan–
Meier survival analysis was used in each cohort. Patients from
each cohort were divided into high-risk and low-risk groups
by the median radiomic signature of the TC. The relationship
between radiomic signature and PFS was determined with a
log-rank test. A univariable Cox proportional hazards model
was used to calculate the concordance index (C-index) for the
radiomic signature and to predict the individual probabilities
of 3-year and 18-month PFS after complete clinical remission
in each cohort. The discriminant accuracy of the univariable
Cox model was evaluated using a time-dependent C-index
(constructed with the nearest neighbor estimator).

A multivariable Cox proportional hazards model was
constructed using the radiomic signature and seven easily
available clinical characteristics that might be associated with
relapse in TC. The radiomic signature, age and preoperative
CA-125 were used as continuous variables, while the others
were used as categorical variables. All categorical variables were
dichotomized (FIGO stage, III or IV; postoperative CA-125
≤35 or >35 U/mL; residual tumor, =0 cm or >0 cm; tumor
side, unilateral or bilateral; menopause status, menopause or
premenopausal). We used these independent predictors to build
a multivariable cox model and then developed a novel radiomic
nomogram to predict the individual probabilities of 3-year and
18-month PFS after complete clinical remission (19). Then,
these clinical characteristics were used to develop a clinical
prognostic model. Two prognostic models were used to predict
the individual probabilities of 3-year and 18-month PFS and the
discriminant accuracy of the multivariate Cox models (radiomic
nomogram model and clinical prognostic model) were evaluated
using a time-dependent C-index (constructed with the nearest
neighbor estimator). The DeLong’s test (20) was used to compare
the nomogram model and clinical prognostic model. The 95%
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TABLE 1 | Radiomic features extracted in our study.

Histogram (n = 17) Shape (n = 8) GLCM (n = 22) GLSZM (n = 13) GLRLM (n = 11) NGTDM (n = 5)

Energy Compactness1 Autocorrelation Short zone emphasis Short run emphasis Contrast

Entropy Compactness2 Cluster Prominence Large zone emphasis Long run emphasis Busyness

Standard Entropy Maximum 3D

diameter

Cluster Shade Gray-level

non-uniformity

Gray-level

non-uniformity

Complexity

Kurtosis Spherical

disproportion

Cluster Tendency Zone-size

non-uniformity

Run-length

non-uniformity

Coarseness

Maximum Sphericity Contrast Zone percentage Run percentage Strength

Mean Surface area Correlation Low gray-level zone

emphasis

Low gray-level run

emphasis

Mean absolute

deviation

Surface to

volume ratio

Difference entropy High gray-level zone

emphasis

High gray-level run

emphasis

Median Volume Dissimilarity Small zone low

gray-level emphasis

Short run low gray-level

emphasis

Minimum Energy Small Zone High

Gray-Level Emphasis

Short run high

gray-level emphasis

Mass Entropy Large zone low

gray-level emphasis

Long run low gray-level

emphasis

Range Homogeneity1 Large zone high

gray-level emphasis

Long run high

gray-level emphasis

Root mean square Homogeneity2 Gray-level variance

Skewness Information measure of

correlation1

Zone-size variance

Standard deviation Information measure of

correlation2

Uniformity Inverse difference

moment normalized

Standard uniformity Inverse difference

normalized

Variance Inverse variance

Maximum probability

Sum average

Sum entropy

Sum variance

Variance

GLCM, gray level co-occurrence matrix; GLRLM, gray-level run-length matrix; GLSZM, gray-level size zone matrix; NGTDM, neighborhood gray-tone difference matrix (17).

confidence interval (CI) of the C-indices was calculated by
bootstrapping with a 1000 resample method (21).

A calibration curve (22) was used to assess the degree of
variability in radiomic signature and nomogram prediction and
to compare their predicted recurrence probabilities with true
recurrence probabilities. Each group contained at least 10 patient
samples. The calibration curve was tested using the Hosmer-
Lemeshow test (23) to determine whether the predicted curve
and the true curve significantly differed. This study design is
illustrated in Figure 2.

Statistical Analyses
Median and interquartile ranges (IQRs) for all demographic
and clinical data were reported for radiomic signature, age,
and preoperative CA-125 levels. Frequencies and proportions
were reported for other categorical variables. Differences in
continuous variables and categorical variables were examined
using the F-test/independent samples t-test and Fisher exact test,

respectively. All statistical tests were two-sided. Significance was
set as P < 0.05. Validation of radiomic signature, construction
of Cox models and statistical analyses were implemented
with R version 3.5.1 (R Foundation for Statistical Computing,
Vienna, Austria).

RESULTS

Demographic and Clinical Data
The primary clinical and pathological attributes of all 142 patients
are listed in Tables 2, 3. Median (IQRs) patient age at surgery
was 50 years (44.5–57 years). Median (IQRs) preoperative CA-
125 levels were 713.6 U/mL (401.9–2179.8 U/mL). There were
54% patients whose postoperative CA-125 was≤35 U/mL. These
patients with lowCA-125 levels had significantly better prognoses
(P = 0.002). Most patients were FIGO stage III (79%), who also
had a significantly lower recurrence rate (P = 0.021). Forty-
two percent of PDS outcomes were “no gross residual.” Half
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FIGURE 2 | Study flowchart. LASSO, least absolute shrinkage and selection operator; ROC, receiver operating characteristic; K-M, Kaplan-Meier.

TABLE 2 | Clinical patient characteristic by cohort.

Characteristics Training cohort of

WCSUH-SCU

(n = 50)

Validation cohort of

WCSUH-SCU

(n = 50)

Validation cohort of

HNPPH

(n = 42)

p-value

Age at surgery (years),

median (IQRs)

50 (46–59.5) 50 (44.5–57.5) 50 (41.5–56) 0.283

Preoperative CA-125 (U/mL),

median (IQRs)

913.3

(396.4–2193.6)

1346.4

(405.8–3093.6)

482.5

(402.0–713.6)

0.611

Postoperative CA-125 (%)

≤35 U/mL 25 (50) 28 (56) 23 (55) 0.831

>35 U/mL 25 (50) 22 (44) 19 (45)

FIGO stage (%)

III 43 (86) 41 (82) 28 (67) 0.070

IV 7 (14) 9 (18) 14 (33)

Residual (%)

=0 12 (24) 14 (28) 8 (19) 0.584

>0 38 (76) 36 (72) 34 (81)

Tumor side (%)

Unilateral 23 (46) 20 (40) 23 (55) 0.377

Bilateral 27 (54) 30 (60) 19 (45)

Menopause status (%)

Menopause 37 (74) 33 (66) 31 (74) 0.640

Premenopausal 13 (26) 17 (34) 11 (26)

Recurrence (%)

Yes 20 (40) 29 (58) 32 (76) 0.002

No 30 (60) 21 (42) 10 (24)

Follow-up in censored patients

(month), median (IQRs)

46.1 (42.9–55.7) 33.6 (31.4–35.2) 25.6 (21.0–32.4) –

Follow-up in recurrence

(month), median (IQRs)

26.6 (18.7–29.2) 16.5 (12.6–20.0) 16.4 (9.7–28.1) –

p-values are the result of Fisher exact tests (categorical variables) or F-tests (continuous variables). WCSUH-SCU, West China Second University Hospital of Sichuan University; HNPPH,

Henan Provincial People’s Hospital; CA-125, Carbohydrate Antigen 125; FIGO, International Federation of Gynecology and Obstetrics; IQRs, interquartile ranges.

of all tumors were unilateral and the other half were bilateral.
Menopausal women constituted the majority of all patients
(71%). Eighty-one patients (57%) had documented PFS during

the study period. The median (IQRs) follow-up time was 38.8
months (32.5–45.8 months) in the censored patients. Themedian
(IQRs) PFS was 17.9 months (13.0–26.7 months) and only 2
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TABLE 3 | Clinical characteristic of patients in recurrence and no recurrence cohorts.

Characteristics All Patients

(n = 142)

Recurrence

(n = 81)

No recurrence

(n = 61)

p-value

Age at surgery (years)

median (IQRs)

50 (44.5–57) 50 (45–57) 50 (43.5–57) 0.438

Preoperative CA-125 (U/mL)

median (IQRs)

713.6

(401.9–2179.8)

609.7

(417.2–2127.9)

851.9

(396.2–2020.2)

0.951

Postoperative CA-125 (%)

≤35 U/mL 76 (54) 34 (42) 42 (69) 0.002

>35 U/mL 66 (46) 47 (58) 19 (31)

FIGO stage (%)

III 112 (79) 58 (72) 54 (89) 0.021

IV 30 (21) 23 (28) 7 (11)

Residual (%)

=0 60 (42) 34 (42) 26 (43) 1.000

>0 82 (58) 47 (58) 35 (57)

Tumor side (%)

Unilateral 71 (50) 43 (53) 28 (46) 0.498

Bilateral 71 (50) 38 (47) 33 (54)

Menopause status (%)

Menopause 101 (71) 59 (73) 42 (69) 0.709

Premenopausal 41 (29) 22 (27) 19 (31)

Follow-up (month)

median (IQRs)

27.7 (17.2–37.8) 17.9 (13.0–26.7) 38.8 (32.5–45.8) –

p-values are the result of Fisher exact tests (categorical variables) or independent-samples t-tests (continuous variables). CA-125, Carbohydrate Antigen 125; FIGO, International

Federation of Gynecology and Obstetrics; IQRs, interquartile ranges.

TABLE 4 | Four radiomic features selected by LASSO-Cox.

Radiomic features Coefficients of LASSO-Cox C-index (95% CI) P-value

CoifletLLL GLSZM ZSV 5.47648232895881e-06 0.624 (0.565–0.684) 0.036

CoifletLHL FOS maximum −0.0178879313170910 0.673 (0.604–0.743) 0.012

CoifletLHH FOS maximum −0.0122131044045091 0.669 (0.608–0.731) 0.001

CoifletHLL GLSZM SZLGE −229.560623168945 0.552 (0.492–0.612) 0.388

LASSO, least absolute shrinkage and selection operator; GLSZM, gray-level size zone matrix; ZSV, zone-size variance; FOS, first-order statistics; SZLGE, small zone low

gray-level emphasis.

patients had a platinum-free interval length <6 months. The
median (IQRs) number of days between obtaining CT images
and undergoing surgery was 10 days (4–56 days). There were
no significant statistical differences between the two cohorts in
clinical variables with the exception of recurrence rate (Table 2).
There were also no significant statistical differences between
the recurrence and no recurrence groups with the exception of
postoperative CA-125 level and FIGO stage (Table 3).

Radiomic Features Selection and Radiomic
Signature Building
Based on the TC, we selected four radiomic features from 620
high-dimensional features that were most strongly associated
with PFS to build the radiomic signature. These included the
zone-size variance in the gray-level size zone matrix (GLSZM) of
textural features extracted from the CoifletLLL wavelet transform,
the first-order statistics (FOS) feature, which describes the
maximum intensity value extracted from the CoifletLHL wavelet
transform, the FOS feature, which describes the maximum value
of the intensity levels extracted from the CoifletLHH wavelet

transform, and the small zone low gray-level emphasis in the
GLSZM of textural features extracted from the CoifletHLL wavelet
transform. The details of selected four radiomic features are
described in Table 4.

Validation of Radiomic Signature and
Prognostic Model
Statistically significant discrimination between the PFS for the
high-risk and low-risk recurrence groups, divided by median
radiomic signature of the TC, was observed. Log-rank test p-
values were P = 0.001, P < 0.001, and P < 0.001 for the TC,
IVC, and IEVC, respectively (Figure 3). In the univariable Cox
analysis, the C-indices of the radiomic signature were 0.758
(95% CI, 0.660–0.856), 0.752 (95% CI, 0.718–0.787), and 0.739
(95% CI, 0.698–0.780) for TC, ICV, and IEVC, respectively. The
discrimination accuracy of the radiomic signature for predicting
3-year recurrence risk was 83.4% (95% CI, 77.3–89.6%), 82.0%
(95% CI, 78.9–85.1%), and 70.0% (95% CI, 63.6–76.4%) in the
TC, IVC and IEVC, respectively (Figure 4A). The discrimination
accuracy of the radiomic signature for predicting 18-month
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FIGURE 3 | Clinical recurrence-free survival stratified by risk according to radiomic signature. Kaplan-Meier curves showing clinical recurrence-free survival in patients

stratified by radiomic signature risk and classification in the WCSUH-SCU training cohort (A), the WCSUH-SCU internal validation cohort (B), and the HNPPH

independent external validation cohort (C). High-risk and low-risk curves were compared with the log-rank test. WCSUH-SCU, West China Second University

Hospital of Sichuan University; HNPPH, Henan Provincial People’s Hospital.

FIGURE 4 | Time-dependent ROC curve and calibration curves. Time-dependent ROC curve for the radiomic signature predicting 3-year (A) PFS and 18-month (B)

PFS in the WCSUH-SCU training cohort, WCSUH-SCU internal validation cohort, and the HNPPH independent external validation cohort. Time-dependent ROC

curve for the radiomic nomogram predicting 3-year (C) PFS and 18-month (D) PFS in the training cohort compared with the predictive models based on clinical

characteristics. Calibration curves of 3-year (E) and 18-month (F) time-dependent ROC curve of radiomic nomogram and radiomic signature. ROC curve, receiver

operating characteristic curve; WCSUH-SCU, West China Second University Hospital of Sichuan University; HNPPH, Henan Provincial People’s Hospital. PFS,

Progress Free Survival.

recurrence risk was 82.4% (95% CI, 77.8–87.0%), 77.3% (95% CI,
74.4–80.2%), and 79.7% (95% CI, 73.8–85.6%) in the TC, IVC,
and IEVC, respectively (Figure 4B).

A multivariable Cox analysis using eight independent
predictors was used to develop a novel radiomic nomogram to
predict the probability of recurrence within 3 years or 18 months
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FIGURE 5 | Radiomic nomogram. Probability of 3-year and 18-month progress-free survival (PFS) in patients with advanced high-grade serous ovarian cancer using

the radiomic nomogram prediction model, which was developed in a training cohort with radiomic signature and seven clinical characteristics. First, locate the

radiomic signature value of a patient on the Radiomic Signature axis and draw a line straight upward to the Points axis. Second, repeat the process for each variable.

Third, Sum the points of the eight risk factors. Finally, locate the final sum on the Total Point axis and draw a line straight down to find the probability of 3-year and

18-month PFS. FIGO, International Federation of Gynecology and Obstetrics; CA-125, Carbohydrate Antigen 125.

TABLE 5 | Eight variables’ coefficients of nomogram.

Variables Coefficients

Radiomic signature 0.4858

Age 0.0076

FIGO 0.1314

Preoperative CA-125 0.0002

Postoperative CA-125 0.7080

Residual 0.1682

Tumor side 0.2069

Menopause status 0.0685

(Figure 5; Table 5). The discrimination accuracy of the radiomic
nomogram for predicting 3-year recurrence risk was 88.9% (95%
CI, 85.8–92.5%) in the TC but only 73.7% (95% CI, 69.4–78.1%)
via the clinical prognostic model alone (DeLong’s test P =

0.031, Figure 4C). The discrimination accuracy of the radiomic
nomogram for predicting 18-month recurrence risk was 84.1%
(95% CI, 80.5–87.7%) in the TC but only 64.9% (95% CI,
59.0–70.8%) via the clinical prognostic model alone (DeLong’s
test P = 0.006, Figure 4D). The models also demonstrated
favorable calibration. The p-values via the Hosmer-Lemeshow
test for 3-year, and 18-month PFS predictive ability of the
radiomic signature and radiomic nomogram were 0.199, 0.178
(Figure 4E), and 0.766, 0.839 (Figure 4F), respectively.

DISCUSSION

In the present retrospective multicenter study, we employed a
radiomic analysis approach using preoperative contrast enhanced
CT images data to develop a radiomic model via TC. We
then built a radiomic signature for the TC, IVC, and IEVC
using this model and tested its prognostic utility for advanced
HGSOC (FIGO stage III or IV). We also investigated the
relationship between the PFS and radiomic signature in advanced
HGSOC via Kaplan-Meier survival analysis and the Cox
proportional hazards model. We also implemented internal
validation and independent external validation across two key
time points. Finally, we developed a novel nomogram to further
improve the predictive ability and verify the validity of the
radiomics approach.

Our previous radiomic analysis work had been successfully
applied in many different oncological diseases including HGSOC
(11, 16, 17, 24, 25). Existing research has clarified the relationship
between radiomic features and tumor prognosis (15, 26, 27).
Quantitative radiomic features were also proposed to explain
tumor characteristics and were significantly associated with
patients’ prognoses (13). These features were also found to
have the capability to mine prognostic information from CT
images that were not recognizable by eye (28). Radiomic feature
data might allow for the excavation of otherwise unavailable
prognostic information from CT images. For instance, radiomic
analysis was found to be feasible for use in preoperative
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non-invasive prediction of prognosis based on CT images
(10). Due to the high heterogeneity among HGSOC patients,
predicting progression risk is challenging (29). However,
radiomic analysis might allow for an additional method by which
tumor heterogeneity can be characterized (9). Furthermore, CT
provides a low-cost and non-intrusivemeans with which to assess
tumors. Given this, distinct radiomic signature might guide
clinical practice, as other clinical variables such as CA-125 level,
FIGO stage, etc.

In the present study, we extracted a total of 620 3-
D radiomic features. The features with interpretability were
different from deep learning features (30, 31), which were
generally lacking in interpretability. We calculated the intra-class
correlation coefficient (ICC) of the radiomic features using the
ROI selected by the two radiologists. The ICC values (range,
0.84–0.97) showed that the features were stable between two
radiologists. LASSO regression analysis is a highly-dimensional,
high-performance data processing algorithm commonly used in
machine learning (27). We used this approach in the present
study to select four radiomic features that were closely related
to recurrence risk and to build a radiomic signature. Although
the CT images in this study were acquired with four scanners
at two different institution and with different imaging protocols,
we found little impact of this variability on the prognostic
model’s predictivity validity, as verified in IVC and IEVC.
Rather than randomly dividing patients, we grouped patients
from WCSUH-SCU by their surgical timing (early and late).
This revealed that our TC-built model which was built by the
data of existing patients could be used to predict prognoses
of newly patients. This design increased the generalization
ability of the prognostic model. Median radiomic signature of
TC stratified patients into high-risk and low-risk recurrence
groups in each cohort. These two groups also had significantly
different PFS. The prediction results for 3-year and18-month PFS
revealed that CT-based radiomic analysis successfully stratified
patients according to their radiomic signature values. The
radiomic nomogram (incorporating both radiomic signature
and seven clinical characteristics) outperformed the clinical
prognostic model. Although common clinical variables can
be used to predict the recurrence of ovarian cancer (32–34),
predicting the recurrence of advanced HGSOC is less effective.
Therefore, use of the radiomics (radiomic signature and radiomic
nomogram) not only allows for the prediction of advanced
HGSOC recurrence, but also complements existing ovarian
cancer prognostic markers.

It is a meaningful research for accurate prediction of
individual patient outcomes by means of applying radiomics
approach to the analysis of advanced HGSOC. There are few
studies of CT-based analysis of PFS in ovarian cancer, especially
in advanced HGSOC patients. The present study not only
validated our previous results but also confirmed the value of
radiomics approach in better understanding tumor prognosis.
Additionally, high recurrence risk might be identified using this
technique in advanced HGSOC patients such that more intensive
treatments might be administered. This additional information
might affect the selection of chemotherapy drugs and the
determination of chemotherapy regimens (35). Meanwhile, in

those with elevated recurrence risk, follow-up periods might be
shortened. Thus, this additional method of risk identification in
HGSOC patients may have a positive impact on improving their
treatment and prolonging their survival.

While the present study offers significant benefits, it also
has some limitations which warrant discussion. First, it was
a retrospective study with a relatively small sample size.
Furthermore, all samples were collected from patients in
developing countries and of the same race, limiting the
applicability of the present study to more heterogeneous
populations. A larger, prospective clinical trial is thus required
to address these limitations. Additionally, given our use
of an immature automatic segmentation algorithm, manual
segmentation was used in this study. Manual segmentation may
have resulted in inconsistent, subjective tumor segmentation,
thereby reducing the model’s performance. Based on our
previous findings, further studies of automatic segmentation
algorithms are required to address this limitation (36, 37).

In conclusion, radiomic signature, and radiomic nomogram
may allow for the prediction of postoperative advanced HGSOC
recurrence. These methods, which can be employed both before
or during the perioperative period and are low-cost and non-
invasive, are likely to affect clinical treatments and follow-up
planning. Our results using the prognostic model suggest that
radiomic signature is a potential prognostic marker and predictor
of individual differences in advanced HGSOC progression.
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