AUTHOR=Ghosh Susmita , Prasad Manu , Kundu Kiran , Cohen Limor , Yegodayev Ksenia M. , Zorea Jonathan , Joshua Ben-Zion , Lasry Batel , Dimitstein Orr , Bahat-Dinur Anat , Mizrachi Aviram , Lazar Vladimir , Elkabets Moshe , Porgador Angel
TITLE=Tumor Tissue Explant Culture of Patient-Derived Xenograft as Potential Prioritization Tool for Targeted Therapy
JOURNAL=Frontiers in Oncology
VOLUME=9
YEAR=2019
URL=https://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2019.00017
DOI=10.3389/fonc.2019.00017
ISSN=2234-943X
ABSTRACT=
Despite of remarkable progress made in the head and neck cancer (HNC) therapy, the survival rate of this metastatic disease remain low. Tailoring the appropriate therapy to patients is a major challenge and highlights the unmet need to have a good preclinical model that will predict clinical response. Hence, we developed an accurate and time efficient drug screening method of tumor ex vivo analysis (TEVA) system, which can predict patient-specific drug responses. In this study, we generated six patient derived xenografts (PDXs) which were utilized for TEVA. Briefly, PDXs were cut into 2 × 2 × 2 mm3 explants and treated with clinically relevant drugs for 24 h. Tumor cell proliferation and death were evaluated by immunohistochemistry and TEVA score was calculated. Ex vivo and in vivo drug efficacy studies were performed on four PDXs and three drugs side-by-side to explore correlation between TEVA and PDX treatment in vivo. Efficacy of drug combinations was also ventured. Optimization of the culture timings dictated 24 h to be the time frame to detect drug responses and drug penetrates 2 × 2 × 2 mm3 explants as signaling pathways were significantly altered. Tumor responses to drugs in TEVA, significantly corresponds with the drug efficacy in mice. Overall, this low cost, robust, relatively simple and efficient 3D tissue-based method, employing material from one PDX, can bypass the necessity of drug validation in immune-incompetent PDX-bearing mice. Our data provides a potential rationale for utilizing TEVA to predict tumor response to targeted and chemo therapies when multiple targets are proposed.