AUTHOR=Malo Courtney S. , Khadka Roman H. , Ayasoufi Katayoun , Jin Fang , AbouChehade Jackson E. , Hansen Michael J. , Iezzi Raymond , Pavelko Kevin D. , Johnson Aaron J. TITLE=Immunomodulation Mediated by Anti-angiogenic Therapy Improves CD8 T Cell Immunity Against Experimental Glioma JOURNAL=Frontiers in Oncology VOLUME=8 YEAR=2018 URL=https://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2018.00320 DOI=10.3389/fonc.2018.00320 ISSN=2234-943X ABSTRACT=
Glioblastoma (GBM) is a lethal cancer of the central nervous system with a median survival rate of 15 months with treatment. Thus, there is a critical need to develop novel therapies for GBM. Immunotherapy is emerging as a promising therapeutic strategy. However, current therapies for GBM, in particular anti-angiogenic therapies that block vascular endothelial growth factor (VEGF), may have undefined consequences on the efficacy of immunotherapy. While this treatment is primarily prescribed to reduce tumor vascularization, multiple immune cell types also express VEGF receptors, including the most potent antigen-presenting cell, the dendritic cell (DC). Therefore, we assessed the role of anti-VEGF therapy in modifying DC function. We found that VEGF blockade results in a more mature DC phenotype in the brain, as demonstrated by an increase in the expression of the co-stimulatory molecules B7-1, B7-2, and MHC II. Furthermore, we observed reduced levels of the exhaustion markers PD-1 and Tim-3 on brain-infiltrating CD8 T cells, indicating improved functionality. Thus, anti-angiogenic therapy has the potential to be used in conjunction with and enhance immunotherapy for GBM.