AUTHOR=Qin Xin , Xu Haisheng , Gong Wenrong , Deng Wenbin TITLE=The Tumor Cytosol miRNAs, Fluid miRNAs, and Exosome miRNAs in Lung Cancer JOURNAL=Frontiers in Oncology VOLUME=4 YEAR=2015 URL=https://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2014.00357 DOI=10.3389/fonc.2014.00357 ISSN=2234-943X ABSTRACT=

The focus of this review is to provide an update on the progress of microRNAs (miRNAs) as potential biomarkers for lung cancer. miRNAs are single-stranded, small non-coding RNAs that regulate gene expression and show tissue-specific signatures. Accumulating evidence indicates that miRNA expression patterns represent the in vivo status in physiology and disease. Moreover, miRNAs are stable in serum and other clinically convenient and available tissue sources, so they are being developed as biomarkers for cancer and other diseases. Cancer is currently the primary driver of the field, but miRNA biomarkers are being developed for many other diseases such as cardiovascular and central nervous system diseases. Here, we examine the framework and scope of the miRNA landscape as it specifically relates to the translation of miRNA expression patterns/signatures into biomarkers for developing diagnostics for lung cancer. We focus on examining tumor cytosol miRNAs, fluid miRNAs, and exosome miRNAs in lung cancer, the connections among these miRNAs, and the potential of miRNA biomarkers for the development of diagnostics. In lung cancer, miRNAs have been studied in both cell populations and in the circulation. However, a major challenge is to develop biomarkers to monitor cancer development and to identify circulating miRNAs that are linked to cancer stage. Importantly, the fact that miRNAs can be successfully harvested from biological fluids allows for the development of biofluid biopsies, in which miRNAs as circulating biomarkers can be captured and analyzed ex vivo. Our hope is that these minimally invasive entities provide a window to the in vivo milieu of the patients without the need for costly, complex invasive procedures, rapidly moving miRNAs from research to the clinic.