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Worldwide, head and neck cancers (HNCs) account for approximately
900,000 cases and 500,000 deaths annually, with their incidence continuing
to rise. Carcinogenesis is a complex, multidimensional molecular process leading
to cancer development, and in recent years, the role of nerves in the
pathogenesis of various malignancies has been increasingly recognized.
Thanks to the abundant innervation of the head and neck region, peripheral
nervous system has gained considerable interest for its possible role in the
development and progression of HNCs. Intratumoral parasympathetic,
sympathetic, and sensory nerve fibers are emerging as key players and
potential targets for novel anti-cancer and pain-relieving medications in
different tumors, including HNCs. This review explores nerve-cancer
interactions, including perineural invasion (PNI), cancer-related axonogenesis,
neurogenesis, and nerve reprogramming, with an emphasis on their molecular
mechanisms, mediators and clinical implications. PNI, an adverse histopathologic
feature, has been widely investigated in HNCs. However, its prognostic value
remains debated due to inconsistent results when classified dichotomously
(present/absent). Emerging evidence suggests that quantitative and qualitative
descriptions of PNI may better reflect its clinical usefulness. The review also
examines therapies targeting nerve-cancer crosstalk and highlights the influence
of HPV status on tumor innervation. By synthesizing current knowledge,
challenges, and future perspectives, this review offers insights into the
molecular basis of nerve involvement in HNCs and the potential for novel
therapeutic approaches.
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1 Introduction

Carcinogenesis is a complex, multifactorial, and multistage
process. As a result, it leads to the development and progression
of malignancies. Furthermore, differently from purely genetic
disease, cancer can be considered as an evolutionary and
ecological process involving constant interactions between tumor
cells and their environment (1–3). The increasing knowledge
regarding the molecular processes which drive tumor growth and
metastatic spread is paving the way for highly tailored and
personalized treatment strategies which can, in turn, improve the
long-term patient outcomes (1, 2, 4).

The current research on this topic is mainly focused on the
concept of the tumor microenvironment (TME), which is
considered as a local environment in which cancer cells and
cancer stem cells (CSCs) develop (5). It consists of immune cells,
blood vessels, cancer-associated fibroblasts, extracellular matrix
(ECM), signaling molecules (6) and different types of nerves (7,
8). Nerve cells are active elements of the TME and the interactions
between cancer cells and the host neuronal microenvironment
through paracrine and electrochemical signaling have been
recognized (7–13). In particular, an increase in the tumoral
electrical activity has been described and explained as a
consequence of the extensive functional connectivity between
nerves and cancer cells, observed in various malignancies (14).
As the peripheral nervous system is the source of many TME
molecules, it may also play a significant role in cancer
development and progression (5–9). Recent studies have
identified a process of neoplastic expansion along nerves which is
known as perineural invasion (PNI), meaning that some cancer cells
disseminate to distant organs not only through lymphatic and blood
vessels, but also invading the local nerves (7–9). PNI is a common
finding especially in neurotropic malignancies, such as prostate and
pancreatic cancer (7) and it has also been investigated in tumors of
the head and neck (HN) region (15). As PNI is associated with worse
clinical outcomes (9), scientists have put much effort into
recognizing, defining, and also studying molecular and
intercellular events behind the PNI process. However, the direct
mechanisms underlying PNI are still not fully understood (7, 8, 15,
16). Besides PNI, several additional cancer-related neuronal
phenomena have lately been recognized and the role of
axonogenesis, neurogenesis, and neuronal transdifferentiation in
carcinogenesis and tumor progression warrants further
investigation (17–21).

HN cancers (HNCs) are a heterogenous group of malignancies
occurring in the HN region. Worldwide, the incidence of HNCs in
2020 reaches approximately 900,000 cases, and 500,000 deaths
annually (22). The main histological type of HNC is squamous
cell carcinoma (SCC) (95% of HNCs cases), which develops from
mucosal membranes of the upper gastrointestinal and respiratory
tracts (23, 24). Several exogenic cancer risk factors such as tobacco
use, alcohol consumption, human papillomavirus (HPV) infection,
poor oral hygiene, and some occupations (such as roofer, cleaner,
painter) have been identified for HNCs (23–26). Cancers affecting
the HN region typically occur in elderly patients with heavy use of
alcohol and tobacco, however, the prevalence in this group of people
is decreasing (23, 27). On the other hand, the number of HPV-
associated HNCs, especially among young people, is growing (22, 23,

27). HPV-positive HNCs tend to have a more favorable prognosis,
with 5-year survival rates of 75%–80%, compared to less than 50%
HPV-negative cases (23, 28). This disparity is partly due to increased
sensitivity of HPV-positive tumors to chemotherapy and
radiotherapy, as well as fewer distant metastases compared to
HPV-negative cancers (29, 30). In contrast, HPV-negative tumors
are associated with unfavorable genomic alterations, including TP53
mutations and disruptions in cell-cycle regulators, contributing to
their poorer outcomes (23, 31).

In addition, HNCs are among the most painful cancers, and they
usually cause dysfunction and deformity in areas that are essential to
patients’ daily functional and social activities. This means that HNCs
are a determining factor in the decline in quality of life observed in
these patients (23, 32).

The involvement of nerves in HNCs was first noted historically
in 1862 by Neumann, describing PNI in a patient with primary SCC
of the lower lip infiltrating the mental nerve (33). Subsequently, in
the late 20th century, research further highlighted that HNCs could
disseminate through the body via nerves at the microscopic level,
and thus are not easily recognizable radiographically, meaning that
exploring the nerve-cancer cell interactions in the carcinogenesis of
HN tumors is essential (34, 35). These early findings highlighted that
cancers could disseminate through the body via nerves at the
microscopic level, and thus are not easily recognizable
radiographically, meaning that exploring the nerve-cancer cell
interactions in the carcinogenesis of HN tumors is essential.
Compared to HPV+ tumors, HPV- HNCs are more densely
innervated (21, 31), predominantly by sensory nerve fibers, and
more painful (36, 37), which could be a consequent of the
involvement of sympathetic, parasympathetic, and sensory
innervation (38–42). PNI in HNCs is a complex phenomenon
with significant clinical implications. In recent years, various
histopathologic subclassifications of PNI in HNCs have been
proposed (43–45). The interplay between nerves and HNCs,
however, is intricate and not fully understood at molecular and
structural levels. Further studies clarifying the role of cancer-nerve
interactions in HNCs may facilitate the development of novel nerve-
targeting treatment options or the repurposing of well-established
drugs with potential anti-cancer effects (such as β-blockers) in
oncology (46–54).

In this review, the aim is to report the current knowledge
regarding the involvement of nerves in carcinogenesis, relevant
molecular mechanisms focusing on HNCs. Furthermore, clinical
significance of PNI, other nerve-related phenomena upon
carcinogenesis and current therapies directions will be summarized.

2 Nerves participation in tumor
microenvironment

TME is an extracellular matrix composed of CSCs, blood vessels,
host cells (including endothelial cells, pericytes, immune cells,
fibroblasts) and neurons, and macromolecules, such as collagen,
glycoproteins, and elastin (6, 10). Constant interactions between
malignant and nonmalignant cells result in TME development,
which acts as the protumorigenic factor (5–7). In particular,
nonmalignant cells provide signals for the uncontrolled
proliferation of cancer cells (5, 55) and host cells supply a new
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vessel network and nutrition for cancer cells. Moreover, host
inflammatory reactions enable the tumor to survive and play a
role in the development of resistance to therapy (55, 56). In return,
cancer cells influence TME host cells through paracrine signaling,
matrix remodeling, and cell-cell interactions, resulting in a constant
TME expansion and rebuilding which lead to tumor development,
progression, and metastasis (8, 57).

As mentioned above, cancer’s niche consists of local nerves,
which can constitute a favorable way to disseminate. Histologically,
peripheral nerves consist of axon fascicles; groups of fascicles are
surrounded by epineurium, which results from the fascicle
transformation into connective tissue. In particular, endoneurium
covers a single axon, lying upon layers of Schwann cells (SCs), which
together work as a natural barrier for cancer dissemination. This
means that infiltration through the nerves is challenging and
neoplastic cells need to produce various mediators, such as
neurotrophins, chemokines, cellular adhesion molecules, and
some enzymes, such as metalloproteinases (MMPs), which favors
extracellular matrix remodeling and collagen degradation (58, 59).
Figure 1 shows the basic structure of the peripheral nerve.

The expression of MMPs is regulated by many factors, including
interleukins, interferons, growth factors, TNF-α, and TGF-β (60).
For instance, neural and cancer-derived nerve growth factor (NGF),
binding to its receptor TrkA expressed on cancer cells, leads to p44/
42 MAPK-mediated MMP-2 overexpression in pancreatic cancer
(61–63). Also, glial cell-derived neurotrophic factor (GDNF)-RET
signaling pathway activation stimulates both MMP-2 and MMP-9
expression in adenoid cystic carcinoma (ACC) of the salivary
glands (64–67).

Another important element of TME is represented by SCs,
which play a central role in nerve-cancer interactions (15). Their
physiological functions include myelin formation in the peripheral

nervous system and contribution to nerve repairing processes (57,
68, 69). During carcinogenesis, SCs can degrade the extracellular
matrix (57). Also, in the presence of cancer cells, SCs upregulate the
expression of glial fibrillary acidic protein (GFAP), typical of
dedifferentiated SCs and involved in the nerve repair process
(57). Notably, Deborde et al. revealed a close association between
GFAP+ SCs and PNI occurrence in pancreatic adenocarcinoma,
thyroid cancer, salivary duct carcinoma, and cutaneous SCC (57).
Interestingly, the reduction of neural cell adhesion molecule 1
(NCAM1), a member of immunoglobulin superfamily cell
adhesion molecules taking part in axon guidance and synapse
formation, on SCs results in decreased cancer cell invasion (57,
70). Nevertheless, interconnections between NCAM1low SCs and
cancer cells are not fully eliminated, but cell recruitment and
migration are significantly impaired (57). In a murine model, the
increased interleukin 6 (IL-6) secretion from SCs, which results from
the adenosine-mediated interplay between oral SCC and SCs, leads
to hypertrophy and increased proliferation and migration of
SCs (71, 72).

In summary, TME is involved in the main features of cancers
- uncontrolled proliferation, migration, and invasion of cancer
cells. The presence of cancer cells in the neighborhood leads to
increased activity of host cells, which in turn could favor cancer
cell growth. Moreover, SCs contribute to carcinogenesis, as they
are an effective source of protumorigenic molecules for cancer
cells. Due to the anatomy of the HN region, tumor cells have
great access to the peripheral nerves. These nerves can be
hijacked by tumor to modulate the TME. Finally, an in-depth
understanding of complex interconnections between the various
TME components is essential for the development of effective
and personalized strategies to achieve improved cancer
survival rates.

FIGURE 1
Structure of the peripheral nerve andmechanisms of PNI in head and neck cancers. The complex interactions between cancer cells, various stromal
cells, and nerves contribute to the invasion of tumor cells into nerves. Numerous molecules, including NGF, BDNF, GDNF, and Gal play an important role
in PNI pathogenesis. NGF, nerve growth factor; BDNF, brain-derived neurotrophic factor; Gal, galanin; GDNF, glial cell-derived neurotrophic factor; TrkA,
tropomyosin receptor kinase A; TrkB, tropomyosin receptor kinase B; GalR2, galanin receptor 2; GFRα1, GDNF Family Receptor-α1; RET, rearranged
during transfection; PNI, perineural invasion; EMT, epithelial-to-mesenchymal transition; MET, mesenchymal-to-epithelial transition.
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3 Perineural invasion in head and
neck cancer

3.1 Definition, frequency, and
subclassifications of PNI

3.1.1 General information and definition of PNI
It is well-known that cancer cells can spread through the

organism through lymphatic and blood vessels. Many recent
studies emphasize, however, that the neoplastic invasion of
peripheral nerves should also be acknowledged (9, 16, 73–78).
PNI is a common pathological finding in various human cancers
(9, 16, 73). Among cancers in the HN region, SCC and ACC are the
most frequently nerve-invading malignancies (79). Moreover, HPV-
associated HN SCCs are less likely to develop PNI (15).

Despite many years of research regarding PNI, its definition is
still an open question. The first definition of PNI was proposed in
1985 by Batsakis et al., who considered PNI as the infiltration of
tumor cells in, around, and through the nerves (9). Although there is
no universal definition of PNI, the most commonly accepted one
describes the PNI as a “tumor in close proximity to the nerve and
involving at least 33% of its circumference or tumor cells within any
of the three layers of the nerve sheath” (9).

3.1.2 The prevalence and evaluation of PNI
The prevalence of PNI among cancers of the HN region reported

in studies varies between 14% and 63% (80). PNI frequency differs
depending on the tissue type, ranging from 27%–82% for cutaneous
and mucosal types to 31%–96% for the ACC (81). Notably, PNI is
more common in late-stage HN tumors (82). So far, histological
evaluation is accepted as the best method for PNI recognition. To
increase the detection rate of PNI in HNCs, the addition of
immunohistochemical methods to the standard hematoxylin-
eosin staining has been proposed (83–85). Also, utilizing deep
learning and artificial intelligence (AI)-assisted approaches may
provide a solution to the remarkable problem of intra- and inter-
observer variability within the PNI identification in HNCs (86).
While considering imaging techniques, the detection of cancer
dissemination along nerves (perineural spread - PNS) is the most
easily visible inMRI. MRI sensitivity for PNS detection in HNCs was
divergent in different studies - in the latest, sensitivity reached 62%
when using 1.5T MRI (87), whereas an earlier study that used 3T
MRI, reached a sensitivity of 95% (88). Interestingly, radiomic
features extracted from computed tomography offer a promising
avenue for improving the detection, characterization, and
prognostication of PNI in HN malignancies (87, 88). Radiomics
is an emerging field that involves the extraction and analysis of a
wide range of quantitative features from radiographic images,
providing detailed insights into tumor characteristics, which
could potentially aid in identifying and understanding PNI (89).
Although symptomatic PNI occurs only in 30%–40% of patients,
this percentage can be misleading as some early subtle symptoms
can be overlooked (80). It should be noted that pretreatment pain
may predict the presence of PNI in HN SCC patients (87).

In HN neoplasms, PNI primarily affects major nerves–CNV and
CNVII, mainly due to the extensive spread of their fibers and
abundant interconnections with other nerves (90, 91). Also, these
nerves allow neoplasms to transit into intracranial space.

Noteworthy, MRI is a gold standard to assess anatomical
pathways of CNV and CNVII and review key landmarks for PNS
detection in SCC, ACC, and other HNCs during the diagnostic
process (90–92).

3.1.3 The prognostic significance and subdivision
of PNI

Several meta-analyses and systematic reviews have analyzed the
prognostic role of PNI in various HN SCCs (93), ACCs (94), and
parotid malignancies (95). Particularly, separate reports regarding
PNI significance among HN SCC patients have been conducted in
oral (96), oral tongue (97), and cutaneous malignancies (43).
Accordingly, they concluded that PNI is associated with poor
clinical outcomes across these cancers.

Nevertheless, numerous HNC-related reports indicate that,
when defined using a simple dichotomous (present or absent)
approach, the prognostic value of PNI is inaccurate and
inconsistent (73, 98–101). Therefore, several quantitative and
qualitative subclassifications of PNI have been proposed in recent
years, taking into account: localization (intra-, peri-, or
extratumoral) (44, 102–105), number of foci [unifocal/multifocal
(45, 99, 105–107) and low PNI/high PNI groups with PNI foci 1-
5 or >5, respectively (107)], foci density (low or high) (103–106), size
of involved nerve [<1 mm or ≥1 mm (73, 99) and ≤0.5 mm
or >0.5 mm (103)], gradation of PNI extent (percentage of the
circumference of nerve involved by tumor: 100% or <100%) (103),
depth of the tumor cells’ nerve invasion (44, 105, 106, 108), and
worst pattern of PNI (WPNI): cancer cells encircling
nerves <33%, ≥33%, or infiltrating into nerve sheaths (109)
(Figure 2; Table 1).

Among HNCs, oral cancer has been the most extensively
considered in studies focused on investigating the influence of
histopathologic PNI sub-categories on patients’ outcomes. A
recent systematic review concluded that PNI is generally a
negative prognostic factor in oral cancer, in terms of locoregional
recurrence, disease-free survival (DFS), and overall survival (OS)
(96). However, identifying subgroups of oral cancer patients
according to the severity of PNI could guide clinical decision-
making and thus improve patients’ prognosis. For instance,
multifocal PNI was a better predictor of the risk of local failure
and disease-specific survival (DSS) than the depth of infiltration
(106) - the acknowledged predictor for lymph node metastasis in
oral SCC (110). Also, multifocal PNI elicits comparable effects to the
presence of nodal metastases without extranodal extension on
disease-specific mortality among oral SCC patients (106).
Analogously, the quantification of PNI by focus number (no PNI,
low PNI, and high PNI, with no, 1-5, and >5 PNI foci, respectively)
was shown to predict cervical lymph node metastasis, poor 5-year
DSS, and 5-year OS in early oral SCC (107). Moreover, Fu et al.
introduced a new variable, WPNI, subdividing oral cancer patients
into three types of WPNI (109). They presented that a higher WPNI
score results in a more aggressive disease course, with more frequent
lymph node metastasis, higher locoregional recurrence rate, and
distant metastasis (109). Interestingly, patients with the highest
WPNI showed the worst prognosis and impaired immune
response, with a noticeable decrease in the total number of
T cells, especially inhibitory CD3+CD8+ T cells, and B cells (109).
In addition, Aivazian et al. study comprising 318 oral SCC patients,
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nearly one-third with PNI, provided insight into the plausible
prognostic role of quantitative PNI characterization (99). Their
findings indicate that patients with unifocal PNI display
comparable outcomes to PNI-negative cases, regardless of the
size of the involved nerve. At the same time, multifocal PNI was

associated with worse clinical outcomes, irrespective of
postoperative radiotherapy, especially when the involvement of
nerves >1 mm in size was noted (99). Over a decade ago, Miller
et al. categorized PNI according to its extent into intratumoral,
peripheral, and extratumoral in HNCs (102). As their

FIGURE 2
Quantitative and qualitative subclassifications of PNI in head and neck cancers. In HNCs, several graduations and descriptions of PNI have been
proposed. A more precise description of PNI in the histopathological reporting of HNCs could guide the decision-making process for optimal cancer
treatment. PNI, perineural invasion.

TABLE 1 Summary of PNI subclassifications and their clinical relevance in various head and neck cancers.

PNI subclassification Cancer type Patient endpoints
explored

Conclusion Ref.

Localization (intra-, peri-, extratumoral) Noncutaneous HN SCC, oral and
oral tongue SCC

LRC, DSS, DFS, RFS, OS Extratumoral PNI is associated with
poorer prognosis, predicting worse
DFS and/or OS compared to
intratumoral PNI

(44,
102–105)

Number of Foci (unifocal/multifocal) Oral and oral tongue SCC Local failure, cervical lymph node
metastasis, DSS, OS

Multifocal PNI predicts higher risk of
local failure and disease-specific
mortality. Moreover, multifocal PNI
may be linked to a poorer prognosis
irrespective of post-operative
radiotherapy. It is also a stronger
prognostic indicator than depth of
invasion

(45, 99,
105–107)

Foci Density (low or high) Oral and oral tongue SCC DSS, risk of distant metastasis High foci density is linked with a
significantly increased risk of distant
metastasis and a decrease in DSS

(103–106)

Size of Involved Nerve (<1 mm or ≥1 mm
and ≤0.5 mm or >0.5 mm)

HN SCC, oral SCC LF, DSS Larger nerve involvement (≥1 mm) is
associated with worse clinical
outcomes, independent of other
treatment factors

(73, 99, 103)

Gradation of PNI Extent (percentage of
the circumference of nerve involved by
tumor: 100% or <100%

Oral SCC Survival outcomes, locoregional
recurrence

Gradation of PNI extent was not
predictive for survival outcomes on
multivariable analysis

(103)

Worst Pattern of PNI (cancer cells
encircling nerves <33%, ≥33%, or
infiltrating into nerve sheaths)

Oral SCC Lymph node metastasis,
locoregional recurrence, distant
metastasis, immune response

Higher worst pattern of PNI scores
predict a more aggressive disease
course, with higher rates of
metastasis and recurrence, and
poorer immune response

(109)

Endoneural (Intraneural) Invasion Oral SCC, ACC, melanoma,
cutaneous SCC

DSS, OS ENI predicts poorer survival; PNI
alone is not as predictive

(34, 35,
98, 100)

ACC, adenoid cystic carcinoma; DFS, disease-free survival; DSS, disease-specific survival; ENI, endoneural invasion; HN SCC, head and neck squamous cell carcinoma; LF, local failure; LRC,

local-regional control; OS, overall survival; PNI, perineural invasion; RFS, recurrence-free survival.
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subcategorization was shown to be predictively relevant (102), more
recent studies analyzed the association between PNI histological
location and survival outcomes in oral SCC (44, 104). Two research
teams have concluded that in comparison to intratumoral PNI,
patients with extratumoral PNI carry a more unfavorable prognosis
in oral SCC. On multivariable analysis, the presence of extratumoral
PNI was associated with poorer 5-year locoregional control, DFS,
and OS rates in Lee et al. research (44), whereas, in Park et al. study,
extratumoral PNI was a significant predictor only for DFS among
oral SCC patients (104).

Among all oral cancers, tongue SCC is the most prevalent
malignancy (22, 111). Several authors have demonstrated that
different PNI-related features can influence the prognostic value
of PNI in patients with tongue SCC (97, 103, 105). Interestingly,
Cracchiolo et al. reported that foci density, a novel histological
characteristic of PNI, might have a prognostic utility in tongue
cancer (103). Moreover, a subgroup analysis revealed that patients
with high foci density PNI had a 19.4-fold increased risk of
developing distant metastasis in comparison to an appreciable
6.4-fold increase in PNI-positive patients with oral tongue
SCC (103).

It is worth noting that some authors distinguish an additional
PNI-linked phenomenon - the endoneural (intraneural) invasion
(ENI). It is defined as the presence of PNI with tumor cells invading
into and/or with irregular destruction of the axon of the nerve
bundles (98, 103). ENI has been acknowledged in various
malignancies, including HNCs (34, 35, 112). It has been
suggested that the distinction between PNI and ENI can affect
the clinical approach to the patient, as confirmation of the fact
that presence of the PNI or/and ENI can lead to disease recurrence
and increased mortality (113). For instance, the occurrence of ENI
histological examinations predicts poor prognosis in patients with
ACC, whereas PNI occurrence does not significantly affect the OS
(98). In accordance with these findings, a recent study on
235 patients with oral SCC revealed that the distinction between
PNI and ENI could have a prognostic significance (100).
Interestingly, PNI was identified in approximately 31.5 percent of
all oral cancer patients, among which ENI concerned almost two-
thirds of these cases. In a multivariate analysis, the occurrence of
ENI was independently and significantly associated with poorer
cancer-specific survival in patients with oral SCC. At the same time,
the PNI presence was not correlated with any clinical parameters
(100). In addition, the ENI occurrence has been linked with a higher
frequency of either local or distant recurrence than in patients with
PNI solely among pancreatic cancer patients who received the
neoadjuvant therapy (112). Notably, DFS and OS were
significantly shorter in patients with ENI, compared with PNI
only (112). In contrast, an analysis of the influence of
pretreatment facial weakness due to parotid gland cancers on
PNI/ENI occurrence did not find any correlation between intra-
or PNI and T and N tumor status. However, as one-third of resected
facial nerves had no PNI/ENI evidence, the authors suggested that
some patients could preserve the facial nerve if the decision
regarding CNVII resection was based on intraoperative
findings (114).

Recent evidence underscores the prognostic significance of PNI
in HNCs, not only for its association with poor clinical outcomes but
also for its link to cancer-associated pain. A novel study

demonstrated that PNI independently predicts severe, activity-
linked pain in patients with HN SCCs, highlighting its significant
impact on daily functioning and quality of life. RNA sequencing
analysis from The Cancer Genome Atlas (TCGA) revealed PNI-
related disruptions in pathways associated with ECM, with several
differentially expressed genes identified as potential molecular
targets for cancer progression and pain management (115).

3.1.4 PNI - conclusion and future directions
In summary, defining PNI remains challenging and requires

clearer andmore universal standardization. Addressing variability in
histological PNI assessment is crucial for accurate diagnosis and
prognostication. Advanced methods such as radiomics and AI-
based technologies hold potential for reducing variability,
improving detection rates, and expediting diagnosis in the
context of PNI in HNCs (116). Simply defining PNI in a
dichotomous manner (present or absent) is insufficient in the
modern oncology era. Therefore, more precise evaluation and
descriptions of PNI, with the indication of PNI stage, could be
used to stratify patients with HNCs into different risk categories,
requiring distinct treatment regimens. Also, there is a need for
further studies comparing the clinical usefulness of PNI and ENI, as
some authors question the role of PNI as the independent prognostic
factor in HN malignancies (98, 100, 112). Finally, novel findings
emphasize the need for comprehensive pain phenotyping and
targeted interventions in PNI-positive HNC patients to improve
both prognostic outcomes and pain control strategies (115).

3.2 Molecular mechanisms of PNI

There is growing evidence that interaction between peripheral
nerves and cancer cells is essential for neoplasm development and
dissemination (9, 16, 117). Cancers trigger PNI by influencing the
secretion of various molecules, modulating numerous signaling
pathways and altering the expression of different receptors and
adhesion molecules (Figure 1). PNI is an invasive process, where
genes associated with EMT, invasion, andmetastasis are upregulated
(118). It is crucial to observe that, in some terms, nerve-cancer
crosstalk during PNI development is similar to nerves response to
injury (9, 16, 117, 119). Cancer cells are able to damage nerves
present in the TME through their demyelination and degradation,
leading to the local inflammatory response and impairment of anti-
tumoral immune activity (120). Consequently, nerve-cancer
interactions may promote resistance to immune checkpoint
inhibitors (120, 121). In some reports, the presence of PNI
correlated with a positive epidermal growth factor receptor
(EGFR) expression in HN SCCs (12, 121).

During PNI development, exosomes are contributing factors to
the nerve-cancer crosstalk. They are a subtype of extracellular
vesicles with a diameter usually ranging between 30 and 100 nm,
which can contain DNA, RNA, lipids, metabolites, cytosolic and
cell-surface proteins (73). Studies show that exosomes contribute to
neoplastic transformation, tumor growth, epithelial-to-
mesenchymal transition (EMT), metastasis, angiogenesis, and
paraneoplastic syndromes (8, 21, 74). In addition, they
presumably participate in tumor innervation, as their content
released by exocytosis stimulates peritumoral neurites outgrowth
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(8). Noteworthy, exosome-induced innervation seems to be
independent of neurotrophins (21). Madeo et al. revealed that
exosomes derived from both HPV+ and HPV- HN SCCs may
induce tumor innervation, a process additionally potentiated by
ephrin B1-laden exosomes in their study (21). As an axonal guidance
molecule, ephrin B1 can redirect nerve growth trajectory through its
receptor. Moreover, salivary ACC-derived exosomes stimulate
fibroblasts to produce NGF, eventually leading to PNI occurrence
and cancer progression (77).

Recent studies have highlighted differences in innervation
patterns between HPV+ and HPV- HNCs, showing that HPV-
tumors are generally more densely innervated than their HPV+
counterparts (21, 31). The higher frequency of PNI in HPV-negative
HN SCCs may be partly attributed to the prevalence of TP53
mutations, which occur in over 85% of these tumors but are rare
in HPV-positive cases (123, 124). Additionally, epigenetic
modifications of genes contributing to cancer progression can
lead to the PNI process in HNCs (125). In contrast, HPV-
positive HN SCCs promote tumor innervation through distinct
mechanisms, including CCND1 gene (encoding cyclin D1)
amplification influencing microRNA packaging in exosomes and
the production of CD9+ exosomes containing oncogenes E6 and E7
(21, 126). Identifying biomarkers, such as CCND1 amplification and
exosomal oncogenes E6 and E7, is crucial for distinguishing subsets
of HPV-positive patients, particularly those with densely innervated
tumors, linked to aggressive behavior and potentially poorer clinical
outcomes (17, 45). These insights could improve prognostication
and guide the development of tailored treatments to modulate
cancer-associated nerves and reduce tumor aggressiveness of
certain HPV-positive HN SCCs.

Many studies reveal that the key element of PNI is the migration
of axons to the tumor niche (9, 127–130). Among the diverse
molecules present in the perineural niche, a few have a very well-
researched role in PNI development. As they regulate neural growth
and maturation, they are assumed to play a significant role in the
perineural spread of neoplasms (9). The usage of these molecules can
be seen figuratively as a tool for taking control of the local nervous
system by cancer cells. Besides, tumor cells use upregulation of
neurotrophins to become independent from the host’s paracrine
system (7, 131–133). Having their own source of stimulating
molecules, cancer cells are able to start the proteolytic enzyme-
mediated infiltration of basement membranes and invasion of
peripheral nerve fibers (9, 60, 61). The molecular mediators
involved in PNI are discussed below.

3.2.1 Nerve growth factor
NGF is a well-known neurotrophic factor and neuropeptide

primarily involved in the development and survival of sympathetic
and sensory neurons (134). The role of NGF in human malignancies
has been recently emphasized (130, 132, 84).

Evidence from published studies indicates that within the TME
of HNCs, NGF is predominantly secreted by cancer cells (135–138).
This secretion occurs in both HPV-positive and HPV-negative HN
SCCs, with NGF receptors not exhibiting HPV-specific distribution
(139). For instance, a higher expression of NGF in the oral cancer
tissue than in the surrounding tissues was observed (135). Also, NGF
and its receptor, TrkA, are upregulated in oral SCC adjacent to areas
of PNI (136). Similar findings were observed in ACC (138, 138).

NGF binding to TrkA leads to the overproduction of MMP-2, an
enzyme needed for tumor metastasis (90). In addition, oral tongue
SCC research revealed that NGF expression in cancer cells correlates
with PNI and lymph node metastasis (84). Furthermore, NGF
upregulation correlates with larger tumor size, advanced clinical
stage, greater tumor thickness, and close or positive section margin
in oral SCC and ACC (84, 135, 140, 141). In oral and salivary
cancers, NGF was shown to induce EMT, cell dispersion, and PNI,
resulting in increased tumor aggressiveness via the activation of the
PI3K/Akt signaling pathway (131). Importantly, NGF activating
TrkA and NGFR facilitates PNI development and metastasis
formation, and provokes pain in patients with oral SCC (142).
Also, NGF modulates the expression of ATP receptors in mouse
trigeminal ganglion cells, thereby enhancing pain sensation in the
murine model of HN SCC (143). NGF may be also linked with
cancer-induced cachexia (144).

Interestingly, salivary ACC is capable of producing exosomes
promoting a fibroblast-mediated tumor neural invasion due to the
expression of promigratory and proinflammatory molecules such as
C-X-C motif chemokine ligand 12, neurotrophic receptor tyrosine
kinases 1 and 2, neurotrophin 4, NGF, brain-derived neurotrophic
factor (BDNF), and C-X-C chemokine receptor type 4 (77).

Zhang et al. study revealed constant interactions of cancer cells
with SCs in pancreatic cancer (145). Pancreatic cancer cells can
induce SC autophagy through NGF/ATG7 paracrine pathway.
Subsequently, SCs reciprocally induce cancer cells’ autophagy and
chemoattraction, resulting in SC proliferation, migration, and the
promotion of PNI at the cancer site (145). Furthermore, Nodal, a
protein playing a role in the activation of the differentiation process
of embryonic tissues and neural development during embryogenesis
(146), has been shown to influence the expression of NGF, BDNF,
GDNF, and MMP-9, resulting in the enhancement of pancreatic
cancer cell invasion ability, dorsal root ganglia (DRG) and synapse
outgrowth, and hence the promotion of PNI (130).

The influential role of NGF signaling and its contribution to
cancer-related features have led to an interest in anti-NGF treatment
for its management (142, 144). Knowing that NGF blockade
significantly reduced tumor proliferation, nociception, and weight
loss in preclinical oral SCC models (143), anti-NGF is a promising
treatment strategy to treat oral SCC progression, pain, and cachexia.

3.2.2 Brain-derived neurotrophic factor
BDNF is believed to be overexpressed in various HNCs (142,

147). In health, it promotes the growth and differentiation of the
nervous system (7). In head and neck malignancies, BDNF can be
produced by both tumor and stromal cells, including cancer-
associated fibroblasts (148, 149).

Ein et al. investigated the role of BDNF and TrkB in the in vitro
model of oral tongue SCC. In their study, high levels of BDNF
resulted in an increase in SCC and SC interaction and migration
(150). Moreover, the use of high TrkB inhibitor (ANA-12) levels
resulted in SCs dedifferentiation and migration (150). Interestingly,
it also led to the formation of a border between Schwann and cancer
cells, consequently slowing down the dissemination of cancer cells
(150). In an in vitro co-culture oral SCC model, SCs and cancer cells
carried crosstalk resulting in the migration of these cells towards
each other (151). However, treatment with the TrkB inhibitor
resulted in an SC-associated cancer cell dispersion (151).
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Therefore, SCs must be taken into account in understanding the PNI
initiation. Another study exploring the cancer-SCs crosstalk
demonstrated that BDNF/TrkB axis plays a crucial role in the
PNI progression via the EMT induction in salivary ACC (152).
Among intrahepatic cholangiocarcinoma patients, a high expression
of BDNF correlates with the presence of PNI and lower survival rates
(153). Interestingly, BDNF is likely to promote PNI in a dose-effect
manner (153). Besides, BDNF/TrkB signaling may regulate tumor-
induced facial hypersensitivity in oral cancer pain (154).

3.2.3 Glial cell-derived neurotrophic factor
Another family of neurotrophins – GDNF – has been reported

to possibly play a pivotal role in PNI pathogenesis. That family
consists of GDNF, neurturin, artemin, and persephin. The binding
of a GDNF member to its receptor - GDNF Family Receptor-α1
(GFRα1) - leads to the RET receptor activation (155). Alternatively,
GDNF may also bind to the NCAM in a RET-independent manner
(156). GDNF molecules promote survival, proliferation, migration,
and invasion through effectors such as MAP kinase, AP-1
transcription factor, and MMPs in various cancer cell types (155,
157–160). GDNF is expressed in both HPV-positive and HPV-
negative HN SCCs (161). Recent research suggested that GDNF has
its role in PNI of HN SCC by promoting migration of these cells
(160, 161). It was demonstrated that GDNF can induce the
migration of HPV-positive SCC cancer cells (161). Additionally,
sensory nerve-derived GDNF can promote HNC cells’ escape from
NK cell control via JAK2-STAT1-mediated PD-L1 upregulation
(160). Among patients with lacrimal ACC, GFRα1 and RET
expression were positively correlated with PNI presence and
cancer recurrence (162). Artemin, another member of the GDNF
family, was found to be overexpressed in laryngeal SCC (163).
Moreover, it corresponded with poor patient survival and
advanced tumor stage (163).

In pancreatic cancer, Zhang et al. described the enhancement in
CD74-dependent expression of GDNF. GNDF secretion resulted in
a change in cell phenotype for more mobile, and subsequently, in
PNI and outgrowth of DRG cells (164). Besides, soluble
GFRα1 released from the DRG cells after binding with the
cancer-derived GDNF activates the MAPK pathway, resulting in
cells’ enhanced migratory potential and, in effect, nerve invasion by
the cancer cells (64). Another pro-migratory pathway stimulated by
GDNF in human salivary ductal carcinoma involves the GDNF-
RET-β-Pix-Cdc42 signaling cascade (165).

3.2.4 Galanin
Galanin (Gal), a peptide derived from both sensory neurons in the

dorsal root ganglia and cancer cells, contributes to the HN SCC
development (128, 166, 167). Generally, Gal receptor 1 (GalR1) is
involved in tumor suppression and exerts antiproliferative actions,
whereas activation of GalR2 induces antiproliferative or proliferative
effects in HN SCCs (168). Epigenetic mechanisms regarding Gal and its
receptors are related to HNC tumorigenesis (166, 168). Likewise, Gal and
GalR1/2 promoter methylation status may serve as a potential biomarker
for predicting clinical outcomes in patients with HN SCCs and salivary
duct carcinoma, a rare and aggressive parotid gland malignancy (166,
168). It was also demonstrated that Gal overexpression correlates with
poorer OS in HN SCC (170). Accordingly, high Gal/GalR2 levels were
associated with a decreased OS of salivary ACC patients (171).

Activation of the Gal/GalR2 signaling results in cell
proliferation, survival, angiogenesis, and immunosuppression in
HN SCCs (170, 172, 173). Conversely, GalR2 may inhibit tumor
cell proliferation and induce caspase-3-dependent apoptotic
mechanisms (174). Interestingly, GalR2 activation leads to the
increased secretion of its ligand, Gal, in a positive autocrine
feedback loop in this malignancy (128). In response, cancer-
derived Gal promotes neuronal outgrowth into the TME and
invasion of cancer cells into nerves (128). Particularly, nerve-
derived Gal could stimulate the PNI through the EMT process in
this cancer (171). Therefore, targeting the GalR2-induced pathway
or blocking Gal offers a promising clinical strategy for disrupting the
neural-tumor crosstalk in PNI, potentially improving treatment
outcomes of HNC patients.

4 Axonogenesis, neurogenesis, and
nerve transdifferentiation

PNI and axogenesis are two different processes: the first refers to
the dissemination of cancer cells by nerve fibers, while the latter is
described as a nerve outgrowth into the tumor niche (21). They both
contribute to cancer growth, development, and metastasis (7, 175).
Another nerve-related phenomenon is neurogenesis - an outgrowth
of neuronal cell progenitors in the cancer niche, derived from CSCs
or cells migrating from the central nervous system (18–20, 176). As
an outcome, axonogenesis and neurogenesis may lead to nerve
outgrowth at the tumor site, measured by nerve density, usually
defined as the number/area of nerves divided by the total area
analyzed (177). Although not fully understood, the PI3K-mTOR
pathway, affected by the TP53 mutation status, may play a role in
regulating nerve density within the TME of HN SCCs (178). In most
reports, including HNCs, higher nerve density correlated with more
advanced cancers with a worse clinical prognosis (17, 42, 179).
Noteworthy, the interactions between stromal cells, epithelial cells,
and nerves constitute the natural base of this process (8, 21). Under
physiological conditions, this interplay is coupled with processes
followed by nerve injury (58). Many recent studies, especially those
investigating prostate cancer, show that axonogenesis precedes and
facilitates PNI (175). In addition, the occurrence of neural
progenitors within the TME initiating cancer-related
neurogenesis during cancer development has been detected in
prostate cancer and hepatocellular carcinoma (18, 180). Notably,
in hepatocellular carcinoma, neural progenitors predominantly
express parasympathetic features (180).

Data on neurogenesis in HNCs are currently limited. While the
study by Amit et al. primarily investigated the effects of p53 loss on
neuronal reprogramming, it did not explicitly demonstrate
neurogenesis as defined by the migration of cancer stem cells
from the central nervous system. Amit et al. reported that loss of
p53 in HNC led to increased axonogenesis and recruitment of
adrenergic fibers, which were associated with enhanced cancer
cell proliferation in HPV-negative oral SCC (17). Additionally, in
a mouse model of HPV-negative oral SCC, cancer cells were shown
to transfer microRNAmolecules to adjacent neuronal cells, resulting
in a sensory-to-adrenergic switch in peripheral nerves and
promoting tumor progression (17). Although this study does not
directly address neurogenesis from central nervous system-derived
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progenitors, it provides valuable insights into the mechanisms by
which tumor cells can influence and reprogram the neuronal
environment to support cancer progression.

Of note, CSCs, a population of cells found in many common
cancers, including HNCs (20, 181), can switch into tyrosine
hydroxylase-positive cells, characteristic of sympathetic neurons
(182). Moreover, CSCs may convert to ACh-producing cells - a
pattern suggestive of parasympathetic neurons (182).

Tumors secrete various neurotrophins to promote axonogenesis,
such as NGF, BDNF, neurotrophin-3 (NT3), and NT4/5 that
activate the process via the tyrosine kinase receptors expressed in
nerve terminals (16). Another group of molecules proved to play a
role in axonogenesis are semaphorins, the family of chemorepulsive
axon guidance molecules, and their primary receptors, neuropilins
and plexins (76, 183). Interestingly, Semaphorin 4F-NF-kB
interactions, resulting in neurogenesis in prostate cancer,
facilitate metastasis formation (184). In ACC, EphA2/ephrin
A1 expression has been found to be correlated with PNI and
vascular invasion (38). Also, their overexpression was associated
with an increased potential for metastasis development and poor
clinical outcome (38).

The next molecules involved in axonogenesis are cadherins and
immunoglobulin-like cell-adhesion molecules (Ig-CAM) (7, 185). It
has been shown that NCAM can accelerate PNI and axonogenesis
(7). Also, the Overexpression of NCAM1 can be observed together
with E-cadherin loss during the EMT (57). Controversially, studies
on SCCs of the HN show that NCAM does not take part in PNI
processes (186).

5 Innervation modifications in head and
neck cancers

The autonomic nervous system provides innervation to almost
every organ in the human body. It consists of two functionally
complementary parts - sympathetic and parasympathetic, altogether
playing an active role in preserving homeostasis (187). The most
characteristic feature of the innervation in the HN region is the
twelve pairs of cranial nerves, which provide a very rich sensory
innervation (117). Given the rich innervation of the HN region,
cancers arising in this area have substantial opportunities to exploit
the nervous system for enhanced development.

The HN region exhibits significant site-specific variations in
nerve types, which can markedly influence the biology of cancers in
these areas. For instance, sensory nerves, primarily via the trigeminal
nerve, are more prominent in the oral cavity and tongue, while
parasympathetic nerves dominate in the parotid gland, and a mixed
innervation is found in the larynx and nasopharynx (189–190).
Understanding these differences is essential for elucidating how
nerve-cancer interactions vary across different HNCs, potentially
guiding more targeted therapeutic approaches.

Importantly, the involvement of distinct parts of the autonomic
nervous system can lead to various effects during carcinogenesis.
The influence of sympathetic, parasympathetic, and sensory nerves
on HNCs will be discussed in detail below.

The distinct involvement of various components of the
autonomic nervous system can lead to diverse effects during
carcinogenesis. The roles of sympathetic, parasympathetic, and

sensory nerves in the progression of HNCs will be discussed in
detail below.

5.1 Sympathetic innervation

5.1.1 Background
Sympathetic innervation arises from the cervical sympathetic

chain, formed by the neurons from spinal cord segments (from T1 to
L2). In the cervical part - superior, middle, and inferior - cervical
ganglia are formed (191, 192). In general, preganglionic neurons
synapse and activate nicotinic receptors on postganglionic neurons
utilizing primarily acetylcholine (ACh), while postganglionic fibers
predominantly use norepinephrine (NE) to influence the target
organs. Both adrenaline and NE bind to and activate adrenergic
receptors, further subdivided into α1-, α2-, β1-, and β2-
adrenoreceptors. In addition to the main quick-acting
transmitter, cotransmitters with a prolonged effect like ATP and
neuropeptide Y (NPY), are secreted (193, 194).

Sympathetic nerves are implicated in promoting tumorigenesis
across various malignancies, including prostate cancer, pancreatic
cancer, and HNCs (16, 196–197). Adrenergic nerves release NE,
which interacts with different adrenergic receptors to drive and
modulate multiple processes related to carcinogenesis (16, 59,
195–199). For instance, NE-mediated upregulation of the β2-
adrenoreceptor in endothelial cells induces angiogenesis in
prostate cancer (16, 195). In an orthotopic murine breast cancer
model, NE promoted migration and metastasis through β2-
adrenergic activation of CREB and NF-kB family transcription
factors (196, 197). Similarly, in pancreatic cancer, NE derived
from sympathetic nerves causes overexpression of NGF and
MMPs, leading to PNI development (200).

5.1.2 Clinical observations and contrasting effects
of sympathetic nerves in HNCs

Patients with HNCs exhibit higher plasma NE and adrenaline
levels than patients without cancer (199). Importantly, stress
hormones (NE and cortisol) were shown to promote DNA
damage in oral keratinocytes, thus predisposing them to cell
malignant transformation (201). In salivary ACC, a tissue
concentration of NE and density of β2 receptor on cancer cells
surface correlated with higher cells’ migration by stimulating the
upregulation of N-cadherin and metalloproteinases, and
downregulation of E-cadherin (39). Moreover, β2-receptor
overexpression is associated with a higher TNM stage and PNI in
this malignancy (39). In oral SCC, the overexpression of β2 receptors
has been correlated with a higher clinical stage of the disease and
with preoperative lymphatic metastasis (202). Furthermore, in a
breast cancer model, sympathetic innervation was also shown to
take part in tumor outgrowth and suppression of adaptive immune
cells (198).

In contrast to the abundant cancer-promoting findings, Bravo-
Calderón et al. demonstrated that NE can enhance the anti-
proliferative and anti-invasive properties of cancer cells via the
β2-adrenoreceptor activation in the oral SCC model (203).
Consistently, novel findings revealed a cancer-protective function
of sympathetic nerves during the development and progression in
the murine model of pancreatic cancer mediated by the local
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suppression of cancer-promoting and immunosuppressive CD163+
macrophages in the TME (204).

5.1.3 α-Adrenergic receptors and HNCs
When it comes to the α-adrenergic receptors, various reports

indicate that α-adrenergic stimulation exerts pro-survival effects in
several cancers (46–49). As for the role of α-adrenoreceptors in
HNCs, data are scarce. Nevertheless, a single report revealed that the
α1-adrenergic receptor can serve as a potential diagnostic biomarker
in oral SCC (50). In their study, Gholizadeh et al. reported a higher
concentration of α1-adrenoreceptors in saliva samples of patients
with cancer of the tongue, buccal mucosa, and gingiva in
comparison to healthy controls (50).

5.1.4 Impact of sympathectomy and β-blockers
on HNCs

While it is becoming increasingly evident that β receptors
exhibit a versatile role in cancer biology, it is worth exploring
whether β-blockers may be beneficial in cancer treatment. For
instance, in oral, laryngeal, nasal, and pharyngeal cancer cell
lines, propranolol, a non-selective β-adrenergic blocker,
significantly decreased the viability and proliferation of cancer
cells (210). In rat model, propranolol consumption reduced the
occurrence of oral SCC, its invasiveness, and the release of pro-
inflammatory cytokines (40). It also inhibited cell proliferation,
migration, and metastasis in HPV-associated HN SCC (41), and
selective β2-blockers improved survival in the orthotopic oral SCC
murine model (202). Contrarily, prior administration of propranolol
abolishes the anti-tumorigenic effects of NE in oral SCC cell lines
(203). Similarly, propranolol administration and chemical
sympathectomy attenuated the antitumor activity mediated by
the enriched environment in the rodent pancreatic cancer model
(42). In clinical studies concerning HNC patients, β-blocker use was
associated with worse OS, DSS, and DFS (211–214). Finally, β-
blockers appear to have no preventive effect on HNCs (214).

These observations raise the question about the possible
utilization of sympathectomy as a potential treatment or at least
a method to suppress cancer development. To date, conflicting
findings regarding the effects of sympathectomy have been
reported (51, 52, 204, 205). For instance, sympathectomy inhibits
tumor growth, invasiveness, and density of lymph vessels in tongue
carcinoma in rats (51, 52). Contrarily, a recent study revealed
accelerated tumor growth, increased metastatic spread, and
poorer disease outcomes in sympathectomized mice with
pancreatic cancer (204). Moreover, the outcome of the
sympathetic denervation is likely time-dependent (204, 205). The
heterogeneous effects of sympathetic denervation could be explained
by the existence of distinct subtypes of sympathetic nerve fibers
within the TME, taking part in different signaling pathways, either
cancer-promoting or tumor-suppressing (206–209). As the presence
of molecularly distinct sympathetic nerve fibers in a cancer-specific
context has not been well-characterized, it is of great significance to
investigate this matter.

5.1.5 Conclusion
In summary, the crosstalk between sympathetic output, HNCs,

and its molecular mechanisms are not fully elucidated (Figure 3). It
is possible that sympathetic nerves, at the same time, play a Janus-

like role by limiting and promoting the development and
progression of HNCs. Given that the adjuvant use of non-
selective beta-blockers in cancer therapy has yielded ambiguous
results and that it is also burdened with cardiovascular side effects,
their use as part of the combination therapy on a wider scale could be
clinically unacceptable (215). Future research should focus on
identifying distinct sympathetic nerve subtypes within the tumor
microenvironment and their specific effects on cancer progression.
Additionally, exploring the timing and selective targeting of β-
blockers, along with alternative therapeutic strategies, may offer
more effective and safer approaches.

5.2 Parasympathetic innervation

5.2.1 Background
The HN region receives parasympathetic innervation from four

nuclei situated within the brainstem. After exiting the brain, the
parasympathetic fibers from each nuclei synapse in the peripheral
ganglia near the target organ. Postganglionic neurons use ACh as the
effector neurotransmitter acting on muscarinic (M1-M5) receptors
and nicotinic receptors, consisting of numerous homomeric and
heteromeric pentameric structures, made by α and β subunits (209,
216). Regarding cotransmitters, vasoactive intestinal polypeptide
(VIP) and ATP are concurrently released from parasympathetic
nerve fibers along with ACh (193, 194). Cholinergic transmission is
regulated by cholinesterases effectively hydrolysing ACh, hence
terminating its activity (217). There are two types of
cholinesterases in humans - acetylcholinesterase (AChE), existing
in three isoforms, and butyrylcholinesterase (BChE) (218, 219).
They are present in various tissues, including synapses.

Numerous studies have reported the role of neuronal-derived
acetylcholine in cancer growth, progression, and development of
distant metastasis (220–222). In general, ACh produced by the
parasympathetic nerves is able to enhance cell proliferation,
migration, EMT, angiogenesis, and other malignant
characteristics (182, 198). A growing body of research indicates
that different receptors are involved in these processes (198,
222–224). Also, cancer cells are believed to have evolved diverse
strategies to maintain appropriate ACh concentrations within the
TME (225). The current overview and future perspectives of
cholinergic signaling in HNCs will be presented in this section.

5.2.2 Role of nicotinic receptors in HNCs
Various studies investigated the role of nicotinic receptors in

HNCs. For instance, tobacco-derived nitrosamines and nicotine
activate nicotinic acetylcholine receptors (nAChRs), facilitating
carcinogenic processes (216, 226). Shimizu et al. recently
demonstrated that nicotine, through activation of α7 nAChR, one
of the most crucial cancer-stimulating nicotinic receptors (227),
stimulates phosphorylated-EGFR accumulation and protein kinase
B activation, therefore causing increased cell proliferation and
migration in HN SCC cells (228). Moreover, nicotine-mediated
stimulation of this receptor resulted in lymph node metastasis
formation in the murine model (228). Also, α7 nAChR activation
by nicotine promotes the oral SCC cells’ proliferation and migration
through EGFR-mediated MEK/ERK and phosphatidylinositol-3
kinase/AKT pathways (229). Nicotine stimulation of the
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α7 subunit can also activate the JAK2/STAT3 axis (230).
Interestingly, metformin and dextromethorphan can inhibit
α7 nAChR/JAK2/STAT3/SOX2-mediated esophageal SCC
progression (231). It should be noted that widespread
STAT3 overexpression correlates with the aggressiveness of
HNCs (53, 232–234). Besides, as STAT3 signaling contributes to
chemoradiotherapy resistance and immune escape in numerous
epithelial cancers (235, 236), it may constitute a promising target
for novel resistance overcoming and immunity-boosting cancer
treatments. A growing body of evidence links nicotinic
stimulation of α7 nAChR with resistance to various
chemotherapeutic agents. For instance, nicotine-mediated
α7 nAChR stimulation may contribute to cetuximab, (an anti-
EGFR monoclonal antibody) resistance in HN SCC (228) and
cisplatin-resistance in oral SCC (237). Also, α7 nAChR mediates
resistance to sorafenib in hepatocellular carcinoma (238) and
paclitaxel in triple-negative breast cancer (239). In addition to
these findings, α5 nAChR-mediated E2F signaling pathway
activation may lead to radioresistance among patients with oral
SCC (240). Therefore, novel subunit-specific inhibitors targeting
nAChRs (including α7 nAChR) could help achieve an increased
sensitivity to therapeutic regimens in various HNCs.

In The Cancer Genome Atlas (TCGA) cohort data, among
plenty of upregulated nAChRs, highly expressed α5, α9, and
β4 subunits were associated with poor prognosis in smoking
patients with HN SCCs (224). Moreover, a novel prognostic
signature based on the expression of these three subunits proved
to be an independent prognostic factor for OS (224). Surprisingly, a
small study suggested that α3, α5, and α7 subunits might have no
prognostic value in HNCs (223). Interestingly, one study reported a
possible uneven distribution of nAChRs within malignant tissues of
the HN region (241). Moreover, overexpression of α1 and
downregulation of α3 and α7 at the mRNA level were detected in
laryngeal SCC (241). Interestingly, Chuang et al. recently suggested
that inhibition of the β4 nAChR with varenicline, an FDA-approved
medication used for smoking cessation and a potential β4 subunit
inhibitor, could reduce metastasis in smoking HN SCC patients with
upregulated β4 nAChR (54). In a Brazilian population study, the
polymorphism in the gene encoding α5 nAChR subunit was

associated with the intensity of cigarette consumption, indirectly
influencing the HNC risk (242).

5.2.3 Muscarinic receptors and HNCs
In contrast to nicotinic AChRs, the role of muscarinic receptors

in HNC tumorigenesis remains understudied. In some
malignancies, muscarinic receptors have been described as the
proliferation activating factor (222, 243, 244). The most
extensively studied mAChR with regard to cancer research is the
muscarinic M3 receptor (244–246). M3 receptor plays a crucial role
in tumorigenesis in various cancers, including gastric, colorectal,
and lung malignancies (247, 248). Hence, the utilization of
M3 mAChR as a potential drug target has been proposed
(249–251). The expression of the M3 receptor was elevated in
HN SCC and ACC cell lines, with higher M3 mAChR expression
in SCC cells than in ACC cells (249). In contrast, salivary gland
adenocarcinoma and submandibular cancer cells exhibited
decreased M3 mAChR expression levels via hypermethylation of
CpG islands located in the promoter region of the gene encoding
M3 mAChR protein (252). Interestingly, Sun et al. revealed that
acacetin, a plant-derived flavonoid compound, may induce cell
apoptosis of HN SCC cells in vitro by cytochrome c-mediated
caspase 3 activation and M3 mAChR-related calcium signaling
(249). Also, high expression levels of M5 and M1 mAChRs have
been described in submandibular cancer cells (253). Their activation
leads to the proliferation of submandibular cancer cells via
stimulation of phospholipase C/nitric oxide synthase/arginase and
phospholipase A2/cyclooxygenase pathways (253). In addition to
these findings, the M4 mAChR activation may induce migration of
oral SCC cells via stimulation of the Src family kinases/extracellular
signal-regulated kinase 1/2 axis (254).

5.2.4 Cholinesterases and ACh levels in HNCs
Since ACh promotes cancer, it is reasonable to assume that its

levels should be maintained in the TME through increased synthesis
and reduced activity of ACh-degrading enzymes (219).
Consequently, increased ACh levels can cause excessive activation
of ACh receptors (221). Reduced AChE activity has been observed in
laryngeal SCCs, while both AChE and BChE activity were decreased

FIGURE 3
The influence of sympathetic nerves on development and progression of head and neck cancers. EMT, epithelial-to-mesenchymal transition; HNCs,
head and neck cancers; NE, norepinephrine; PNI, perineural invasion; SCC, squamous cell carcinoma.
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in HN SCCs (13, 221) with tobacco and alcohol use linked to
diminished activity of AChE in laryngeal SCC (13). Moreover,
smokers with HN SCCs showed diminished mRNA expression of
ACh-degrading enzymes (221). Lower AChE activity in HN and
laryngeal SCCs correlated with poorer prognosis, shorter OS, and
may act as an independent prognostic marker, suggesting that
lifestyle factors may decrease ACh-hydrolyzing enzymes’ levels,
worsening outcomes (13, 221). In oral SCC, findings on ACh-
degrading enzymes have been mixed (254–258). Most studies
report decreased BChE serum levels (254–256), whereas one
found elevated BChE levels in blood (257). In addition, BChE
activity appears to decline with the advancement of tumor stage
in oral SCC (254, 255). Noteworthy, BChE serum levels could also
serve as a potential prognostic biomarker in HNC patients
undergoing radiotherapy (256).

5.2.5 Non-neuronal sources of Ach
Unlike traditional assumptions that cholinergic signaling

requires parasympathetic innervation, novel findings indicate that
ACh can be secreted from non-neuronal tissues, including immune
cells, within the oral SCC microenvironment (257). In an orthotopic
oral SCC models investigating the role of ACh-secreting CD8+

T cells, impaired ACh-muscarinic signaling led to accelerated
tumor growth and reduced tumor-infiltrating lymphocytes (TILs)
in the TME (257). Moreover, it has been suggested that Ach-
muscarinic axis is crucial in promoting CD8+ T cell infiltration
and maintaining memory T cells in the TME, thereby facilitating
sustained anti-tumor immune responses in oral SCC (257).

5.2.6 Conclusion
Taken together, ACh-activated muscarinic and nicotinic AChRs

are related to carcinogenesis, and some particular types of them
could become potential markers of clinical prognosis (Figure 4).
Investigating how ACh affects immune cells within the TME could

reveal new strategies to enhance anti-tumor immunity and
overcome immune evasion. Given ACh’s role in promoting
cancer cell growth, further research into ACh-degrading enzymes
and their impact on carcinogenesis is warranted. Developing
selective inhibitors for cholinergic receptors and evaluating their
clinical effectiveness could provide new therapeutic options.
Additionally, the discovery of non-neuronal sources of ACh
suggests the need for research into how these sources influence
tumor progression and immune responses. Identifying biomarkers
related to cholinergic signaling for predicting disease outcomes and
treatment responses could also enhance personalized treatment
strategies.

5.3 Sensory innervation

5.3.1 Background
The HN region is richly innervated by sensory nerve fibers. The

two main cotransmitters taking part in the modulation of sensation
transmission are calcitonin gene-related peptide (CGRP) and
substance P (SP) (194). SP contributes to neuroinflammation
(261), whereas CGRP has a well-documented anti-inflammatory
effect (262). Moreover, capsaicin activates type C and type A small
capsaicin-sensitive sensory fibers via the transient receptor potential
vanilloid 1 (TRPV1) and ankyrin 1 (TRPA1) receptors (263, 264).
These fibers contribute to pain sensation and neuroinflammation by
releasing SP and CGRP (265, 266). Also, these nerves take part in
immune responses and promote tissue repair (267, 268).

Apart from the recognized role of parasympathetic and
sympathetic nerve fibers within the TME, some studies have also
reported the participation of the sensory fibers in carcinogenesis (36,
269). Nevertheless, the role of sensory nerves is unclear, and, it is
thought that depending on the stage of development or the tumor
aggressiveness, sensory input can either enhance or inhibit the

FIGURE 4
The influence of parasympathetic nerves on development and progression of head and neck cancers. ACC, adenoid cystic carcinoma; AChE,
acetylcholinesterase; BChE, butyrylcholinesterase; EGFR, epidermal growth factor receptor; HNCs, head and neck cancers; HNSCC, head and neck
squamous cell carcinoma; mAChR, muscarinic acetylcholine receptor; nAChR, nicotinic acetylcholine receptor; NNK, Nicotine-derived
nitrosamine ketone.

Oncology Reviews frontiersin.org12

Rutkowski et al. 10.3389/or.2024.1514004

https://www.frontiersin.org/journals/oncology-reviews
https://www.frontiersin.org
https://doi.org/10.3389/or.2024.1514004


tumor outgrowth (117). To date, CGRP and SP seem to be the most
prominently reported sensory-related molecules influencing the
cancer microenvironment.

During cancer development and PNI, sensory fibers become
damaged and degenerated through disorganization and loss of
myelin and axons (262, 270). Concurrently, cancer stimulates the
generation of new morphologically altered neurons, which can
contribute to abnormal nerve activity and increased pain
sensitivity (271–273). In recent studies it has been shown that
patients with peripheral nervous system infiltration experience
increased pain (23, 273, 274). Interestingly, studies on gastric and
pancreatic malignancies and bone metastasis described the
inhibition of carcinogenesis and lesser pain sensation after the
destruction of sensory fibers (255, 274).

As previously noted, HPV- tumors are more densely innervated
than HPV + HN SCCs (21, 31). Intriguingly, patients with HPV-
negative HNCs have a higher prevalence of pain compared to
patients with HPV-related tumors (37, 275). Importantly,
TRPV1-expressing nociceptive sensory fibers constitute the
majority of intratumoral nerves in both HPV+ and HPV- HN
SCCs (117). Also, α-CGRP-positive sensory nerve fibers may
comprise approximately 10% of all nerves found in the TME of
HN SCCs (276). Madeo et al. demonstrated a probable mechanism
contributing to tumor innervation, where cancer-derived exosomes
can induce an outgrowth of TRPV-positive sensory nerves in HN
SCCs (21). Noteworthy, intratumoral fibers present within the TME,
with a significant share of TRPV1-expressing nerves, establish
potential functional connectivity, leading to increased electrical
activity in the tumor bed (271). In a murine oral SCC model,
sensory nerves differentiated into adrenergic neo-neurons
through loss of TP53, leading to tumor progression (17).
Parallelly, sensory neural input can contribute to the
immunosuppressive microenvironment in HNCs through the
release of CGRP (277). At the same time, surgical ablation of
sensory nerves was demonstrated to abrogate tumor growth (17)
but also to improve the efficacy of anti-PD-1 immunotherapy
through downregulated TGFβ signaling and decreased PD-L1
expression in HN SCCs (278).

5.3.2 Calcitonin gene-related peptide
CGRP is the predominant neurotransmitter in trigeminal

ganglia neurons innervating the tongue (278). It exists in two
isoforms: α-CGRP, produced from the CALCA gene, is the
primary form present in both the central and peripheral nervous
systems, while β-CGRP, derived from the CALCB gene, is
predominantly found in the enteric nervous system. CGRP
secreted from nerve endings exerts paracrine effects, leading to
the enhancement of vasodilation-mediated tumor angiogenesis in
oral SCC (280). Some studies reported that CGRP could stimulate
cancer development through metabolic reprogramming (14, 281).
Importantly, α-CGRP produced by melanoma-innervating nerves
derived from cancer-induced axonogenesis may induce an
immunosuppressive TME, which leads to impaired function of
CD4+ and CD8+ T cells (14, 272, 273). Moreover, melanoma-
infiltrating TRPV1+ nociceptors overexpressing CALCA and Trka
- a high-affinity receptor for NGF - may promote cancer-induced
pain hypersensivity (272, 275). Recent findings also reveal that
nociceptive TRPV1-positive nerves infiltrating an adenosine-rich

oral SCC microenvironment release α-CGRP upon stimulation of
adenosine A2A receptor on trigeminal ganglia, thereby contributing
to tumor progression (282). Noteworthy, using istradefylline, a
clinically available A2A receptor antagonist, could block the oral
SCC-promoting nerve-cancer crosstalk.

In oral SCC, CGRP-driven immunosuppression has correlated
with unfavorable patient prognosis (283). Of note, Zhang et al.
demonstrated a positive correlation between elevated α-CGRP
concentration in blood plasma and the presence of PNI and
lymph node metastases among patients with oral cancer (31,
284). α-CGRP levels were also higher in cancer tissue with
evidence of PNI and lymph node metastases, in comparison to
surrounding non-cancerous tissues and cancer tissue with the
absence of PNI (284). In the oral SCC murine model, cancer
cells induce CGRP receptor (CGRPR) overexpression in
trigeminal ganglion neurons, which results in mechanical cancer
allodynia (276, 285). Additionally, receptor activity-modifying
protein 1 (RAMP1), a key component of CGRP receptors,
overexpressed in oral cancer cells, may potentially be associated
with the promotion of oral cancer (285). Importantly, the addition of
olcegepant, the CGRPR antagonist, suppressed the degree of
nociception in mice (285). Various cells within the oral TME
express the CGRPR, among which fibroblasts and immune cells
constituted the most frequent CGRPR-positive inhabitants of the
tumor milieu (285). It is also possible that the occurrence of α-
CGRP-positive nerves within the TME is associated with pain
sensation (285). In addition to these findings, oral cancer cells
make use of the TME to thrive in nutrient-poor environments, as
nutrient-poor conditions drive cancer cell-derived NGF secretion,
which promotes the release of CGRP from nociceptive nerves,
eventually stimulating cytoprotective autophagy in cancer
cells (256).

Recent studies also highlight that specific neuronal changes
correlate with patient-reported and functional outcomes in
surgically treated HPV-associated oropharyngeal SCC (OPSCC)
patients (286). Enrichment of adrenergic (TH+), CGRP+ sensory,
and immature cholinergic (choline acetyltransferase - ChAT+,
doublecortin - DCX+) nerves, was associated with poorer
swallowing outcomes in OPSCC survivors (286). Murine models
further confirmed that CGRP+ and immature cholinergic nerves are
linked to radiation-induced dysphagia (286).

5.3.3 Substance P
The importance of substance P and its neurokinin-1 receptor

(NK-1R) axis has recently gained interest for its possible role in
carcinogenesis (287, 288). A recent meta-analysis demonstrated that
SP and NK-1R are upregulated in pre-malignant and cancerous HN
lesions compared to benign lesions (288). Therefore, SP/NK-1R axis
appears to be an early event in humanHN oncogenesis (288). Across
HNCs, diverse expression patterns of SP/NK-1R were detected. It
was demonstrated that SP/NK-1R is upregulated in laryngeal
carcinomas and oral SCCs, whereas this axis shows no
overexpression in malignant tumors of the salivary gland (288).
As SP/NK-1R overexpression correlates with Ki-67 (a cellular
marker for proliferation) upregulation, uncontrolled proliferation
may be the SP/NK-1R axis contribution to carcinogenesis in HNCs
(288). Especially in HN SCCs, SP/NK-1R activation enhances cell
proliferation and migration ability (289). In addition, via
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interactions with factors such as NF-kB, ERK 1/2, and HIF1-α, SP/
NK-1R axis activation leads to transformation to the more mobile
and invasive phenotype of cancer cells, resulting in cancer invasion
and metastasis in numerous cancers, including HNCs (290–292).

5.3.4 Conclusion and future directions
In essence, sensory nerves contribute to the development of

HNCs, and more importantly, their fatal relationship with cancer
cells results in increased pain sensation, leading to a decline in
quality of life among cancer patients (23, 32, 293, 294) (Figure 5). In
some HNC patients, adequate pain control cannot be achieved with
conventional analgesic therapies (295–299). Promisingly, targeting
both A2AR-CGRP circuit and SP/NK-1R-related pathway may help
improve pain management in patients with HNCs. Moreover,
eliminating CGRP transmission could enhance anti-tumor
immunity. Finally, to effectively address swallowing impairments
in cancer survivors and enhance anti-tumor immunity, there is a
significant potential for early therapeutic interventions and the
application of neurology-related drugs, such as CGRP blockers.

6 Discussion

In recent years, TME has gained tremendous attention in cancer
research. Various nerve fibers, including sympathetic,
parasympathetic, and sensory nerves, infiltrate the TME and are
considered its essential components. Interaction between cancer
cells and neurons manifesting as PNI, axonogenesis, neurogenesis,
and nerve reprogramming are beginning to emerge as key
contributors at various stages of tumorigenesis. Abundant
evidence indicates that cancer cells have the ability to hijack
locoregional nerves. As a result, the primary tumor receives
many factors needed for local development and formation of

distant metastases. Nerve-cancer crosstalk is complex and not
fully understood. Therefore, future research should focus on
elucidating the molecular mechanisms underlying the role of
neural components in carcinogenesis. Hopefully, with a better
understanding of nerve-cancer interactions, novel possible drug
targets will be identified, thus leading to the development of
novel clinically relevant targeted therapies.

Novel data indicate that cancers harbor higher electrical activity
as compared to benign or normal tissues (289). Furthermore, both
sympathetic and sensory nerves presumably contribute to increased
intratumoral electrical activity, exhibiting sex-specific patterns in
neural activity within tumors (289, 300, 301). In HN SCCs, tumor-
infiltrating nerves likely establish functional connections with tumor
cells, suggesting the possible formation of synapses or synapse-like
structures within HNCs (289). To date, functional synapses between
cancer cells and neurons have been described in gliomas, breast-to-
brain metastasis, and small cell lung cancers (302). It is not known,
however, whether functional bona fide synapses between neurons
and other malignancies are formed.

Another relevant aspect in cancer neuroscience is the definition
of PNI. As multiple studies have demonstrated that reporting PNI in
a dichotomous fashion (present or absent) might not be accurate
enough to divide cancer patients into distinct prognostic subgroups
(104, 105, 109), further consensus should be reached regarding the
description of PNI to provide more clinically relevant information.
Several histologic parameters of PNI, including the focality of nerve
invasion and depth of the nerve infiltration are reliable predictors of
patients’ survival (44, 105–107). Therefore, more appropriate
descriptions of PNI could potentially support the decision-
making process for optimal cancer treatment. Advanced
technologies like radiomics and AI-based approaches hold
promise for reducing variability in PNI assessment, improving
detection rates, and accelerating diagnosis, particularly in HNCs

FIGURE 5
The influence of sensory nerves on development and progression of head and neck cancers. CGRP, calcitonin gene-related peptide; HNC, head and
neck cancer; HNSCC, head and neck squamous cell carcinoma; NE, norepinephrine; NK-1R, neurokinin-1 receptor; PNI, perineural invasion; SP,
substance P; TG, trigeminal ganglion; TRPV1, transient receptor potential vanilloid 1.
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(86–89). Additionally, the potential integration of PNI into the
TNM classification system or the development of a specific PNI
staging system could further refine risk stratification and treatment
planning (303, 304).

Undoubtedly the peripheral nervous system is acknowledged as
a contributor to the development and progression of HNCs, due to
the abundant innervation in the HN region (51, 52, 198, 202, 216,
253). Although the vast majority of studies reported that the
sympathetic nervous system exerts cancer-promoting effects in
HNCs (39, 51, 52, 198, 202), novel findings suggest a potent
cancer-protective role of sympathetic nerves in these cancers
(203, 204). A potential explanation for the double-edged sword
role of sympathetic nerves in the carcinogenesis of HNCs might be
the existence of several molecularly diverse subtypes of sympathetic
neurons within the TME, involving different signaling pathways
(206–209). Eventually, using more selective drugs inhibiting
sympathetic activity could lead to better outcomes for HNC
patients in the future.

On the other hand, parasympathetic nerves are likely to
promote HN tumorigenesis (52, 209, 227, 253). Recent studies
highlighted the role of muscarinic and nicotinic AChRs in the
development and progression of HNCs. For instance, α7 nAChR
may be a promising predictive biomarker of response to the
frequently used chemotherapeutic drugs in HNCs (227,
236–239). Also, pharmacological modulation of the
α7 nAChR-mediated signaling could be beneficial among
patients with HNCs. Therefore, future research should focus
on the development of novel, highly specific nAChRs
inhibitors, as their clinical use could improve the therapeutic
effects of currently available anti-cancer agents used in the
treatment of HNCs. In addition, further studies should explore
the clinical significance and utility of ACh-degrading enzymes in
patients with HN malignancies.

The risk of developing HNCs is strongly associated with
smoking (23, 25, 26). As tobacco-derived nitrosamines and
nicotine can contribute to cancer development due to the
activation of nAChRs (216, 225), quitting smoking should be
encouraged whenever feasible. Given that smoking cessation after
diagnosis improves survival in patients with HNC, lung cancer and
breast cancer, interventions to support smoking cessation are of
paramount importance. (305–309).

Patients with HNmalignancies frequently experience high levels
of pain, a symptom related to the spread of the primary tumor or to
its multimodal treatment (23, 32, 294, 295). The involvement of
sensory nerve fibers in pain sensation has recently gained the
attention of researchers (21, 117, 271, 283, 285, 287–289). In
some HNC patients, pain cannot be controlled using
conventional pain-relief drugs (296–299). The association of
cancer-related pain with gender is still unresolved (309), with
some data suggesting that women with HNCs experience pain
more frequently than men (309). Novel findings obtained from
the mouse model indicate that females may have more sensory
neurons innervating the tongue than males, with different
percentages of TRPV1-positive lingual neurons between the two
sexes (310). Therefore, sex-dependent differences should be taken
into account to optimize cancer pain management. It is also worth
exploring whether certain groups of patients with HNCs (for

instance, HPV-positive vs. HPV-negative, male vs. female)
require different pain management.

HPV status plays a critical role in the innervation and
progression of HNCs. While HPV-negative tumors are typically
more densely innervated, partly due to TP53 mutations, which may
contribute to their more aggressive nature and increased pain, HPV-
positive tumors, although less densely innervated, promote tumor
growth through mechanisms such as CCND1 amplification and the
release of exosomal oncogenes like E6 and E7 (21, 31, 123, 124, 126,
275). Understanding these distinct patterns of innervation and their
underlying molecular mechanisms could lead to more targeted
treatments and improved outcomes for HNC patients based on
their HPV status.

Recent research highlighted the role of cancer-associated
nerves in immune regulation (118, 273). It has been
demonstrated that cancer-induced nerve damage is associated
not only with consequent inflammation but also with resistance
to immune checkpoint inhibitors in cutaneous SCC (120).
Furthermore, both denervation and blockade of pro-
inflammatory IL-6 significantly enhanced anti-PD-1 efficacy
in the murine model (120). In HN SCCs, response rates to
immune checkpoint blockade therapies are typically low (10%–

20%) (120, 121, 191). Therefore, it is of great significance to
clarify whether the addition of targeted anti-inflammatory
agents to treatment with immune checkpoint inhibitors can
boost the response to immunotherapy. It should be also
investigated if surgical or pharmacological denervation could
represent a novel approach to improve the response to immune
therapies in various neurotrophic cancers, such as prostate and
pancreatic malignancies. Translating denervation approaches
in cancer patients, although promising from a theoretical
standpoint, poses significant challenges. Especially in
malignancies of head and neck region (such as tongue or
oropharyngeal cancers), surgical denervation can be
associated with serious side effects (311). Therefore, more
selective and innovative approaches (surgical,
pharmacological, or genetic) are needed to minimize side-
effects of denervation while maintaining its efficacy.

In conclusion, the interplay between cancer and the nervous
system is complex and multidimensional, engaging numerous
factors. Although our understanding of cancer has significantly
improved over time, it is only recently that the role of nerves in
carcinogenesis has been given notable attention. Further studies are
needed to elucidate the underlying molecular mechanisms of
cancer-related nerve phenomena. Eventually, novel insights into
the nerve-cancer crosstalk might lead to a potential application of
nerve-targeting strategies in oncology.
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Glossary
ACC adenoid cystic carcinoma

ACh acetylcholine

AChE acetylcholinesterase

BChE butyrylcholinesterase

BDNF brain-derived neurotrophic factor

CGRP calcitonin gene-related peptide

CHAT choline acetyltransferase

CGRPR calcitonin gene-related peptide receptor

CN cranial nerve

CSCs cancer stem cells

DCX doublecortin

DFS disease-free survival

DSS disease-specific survival

DRG dorsal root ganglia

ECM extracellular matrix

EGFR epidermal growth factor receptor

EMT epithelial-to-mesenchymal transition

ENI endoneural invasion

Gal galanin

GalR galanin receptor

GDNF glial cell-derived neurotrophic factor

GFAP glial fibrillary acidic protein

GFRα1 GDNF Family Receptor-α1

HNCs head and neck cancers

HPV human papillomavirus

Ig-CAM immunoglobulin-like cell-adhesion molecules

IL-6 interleukin 6

mAChR muscarinic acetylcholine receptor

MET mesenchymal-to-epithelial transition

MMPs metalloproteinases

MRI magnetic resonance imaging

nAChR nicotinic acetylcholine receptor

NCAM1 neural cell adhesion molecule 1

NE norepinephrine

NGF nerve growth factor

NK-1R neurokinin-1 receptor

NNK nicotine-derived nitrosamine ketone

NPY neuropeptide Y

NT neurotrophin

OS overall survival

PNI perineural invasion

PNS perineural spread

RET rearranged during transfection

SCC squamous cell carcinoma

SCs Schwann cells

SP substance P

TCGA The Cancer Genome Atlas

TH tyrosine hydroxylase

TME tumor microenvironment

TrkA tropomyosin receptor kinase A

TrkB tropomyosin receptor kinase B

TRPA1 transient receptor potential ankyrin 1

TRPV1 transient receptor potential vanilloid 1

WPNI worst pattern of PNI
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