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Glioma is the most prevalent primary malignant tumor of the central nervous system. While
traditional treatment modalities such as surgical resection, radiotherapy, and
chemotherapy have made significant advancements in glioma treatment, the prognosis
for glioma patients remains often unsatisfactory. Ferroptosis, a novel form of programmed
cell death, plays a crucial role in glioma and is considered to be the most functionally rich
programmed cell death process. Histone deacetylases have emerged as a key focus in
regulating ferroptosis in glioma. By inhibiting the activity of histone deacetylases, histone
deacetylase inhibitors elevate acetylation levels of both histones and non-histone proteins,
thereby influencing various cellular processes. Numerous studies have demonstrated that
histone deacetylases are implicated in the development of glioma and hold promise for its
treatment. This article provides an overview of research progress on the mechanism by
which histone deacetylases contribute to ferroptosis in glioma.
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INTRODUCTION

Glioma is the most prevalent primary malignant tumor of the central nervous system. While
traditional treatment modalities such as surgical resection, radiotherapy, and chemotherapy have
shown progress in glioma management, patient prognosis remains unsatisfactory due to the
extensive phenotypic heterogeneity and plasticity of the tumor [1, 2]. The heterogeneity emerges
as a consequence of the genetic diversity of glioma cells, and its plasticity is manifested in the tumor
cells’ capacity to adapt to environmental alterations [2]. Although immune treatment strategies such
as checkpoint blockade (ICB), immune modulators, and CAR-T cell therapy have shown potential in
other tumors, the immune characteristic of glioma being a “cold tumor” limits the effect of immune
therapy. Therefore there is an urgent need to find ways to enhance the effectiveness of glioma
immunotherapy [3].

Ferroptosis, as a novel form of programmed cell death, is the most functionally diverse process in
glioma and is involved in the immunological microenvironment of glioma, offering new research
avenues for glioma treatment [4, 5]. Acetylation, a crucial post-translational modification,
orchestrates cellular growth and development through modulating gene transcription, with the
fine balance of histone acetylation levels being precisely regulated by the coordinated actions of
histone acetyltransferases (HATs) and histone deacetylases (HDACs) [6, 7]. Histone deacetylase
inhibitors (HDACi) are currently being used alone or in combination to treat certain tumors [8–12].
The acetylation status of histones affects the process of ferroptosis in tumor cells. By using HDACi to
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decrease HDAC activity, the induction of ferroptosis in
adrenocortical cancer cells can be accelerated, inhibiting tumor
growth and proliferation. However, the specific mechanism
underlying this process is not yet fully understood [13].
Therefore, this article primarily reviews research progress on
the mechanism of HDACs in the process of ferroptosis in glioma.

A NEW PERSPECTIVE IN GLIOMA
RESEARCH: FERROPTOSIS AND GLIOMA

Ferroptosis
Iron, an essential trace element in the human body, plays a crucial
role in vital activities such as DNA synthesis, ATP production,
and mitochondrial metabolism [14]. Maintaining iron
homeostasis is important for the normal progression of life
processes. Disruption of iron homeostasis can affect normal
physiological processes and lead to various diseases such as
tumors, aging, and infections. Excessive iron within cells can
lead to the production of reactive oxygen species (ROS) through
the Fenton reaction, triggering oxidative stress responses [15, 16].
Conversely, iron deficiency can impact cell structure in the body
and result in diseases such as anemia, weakened immunity, and
digestive disorders and so on [17–19].

Cells, as the fundamental units of life, are confronted with the
challenge of iron overload during their growth and development.
This involves how cells respond to various oxidative stress
responses, a process that ultimately determines the fate of the
cell. Dixon et al. have identified a novel form of programmed cell
death known as ferroptosis. Ferroptosis is characterized by lipid
peroxidation on the cell membrane, leading to an accumulation of
iron within the cell as a primary manifestation [20]. Unlike
traditional forms of apoptosis (such as apoptosis, pyroptosis,
etc.), ferroptosis is distinguished by mitochondrial shrinkage and
a reduction in the number of mitochondrial cristae [21].
Additionally, certain conditional factors such as synthesis and
peroxidation of polyunsaturated fatty acid phospholipids (PUFA-
PLs), disorder in iron metabolism, and mitochondrial
dysfunction are necessary for the occurrence of ferroptosis
[22]. Cells possess four defense systems against ferroptosis:
GPX4-GSH system, FSP1-CoQH2 system, DHODH-CoQH2
system, and GCH1-BH4 system [21]. When these defense
systems fail to effectively buffer against ferroptosis, it results in
cellular demise. These mechanisms offer potential pathways for
intervening in ferroptosis.

Ferroptosis is a form of cell death associated with various
pathological processes, particularly in tumors,
neurodegenerative, and inflammatory diseases [23–30]. It
holds great potential in tumor therapy. Tumor cells have a
higher metabolic rate and require more oxygen, leading to the
production of reactive oxygen species. This characteristic makes
tumor cells more susceptible to ferroptosis, making it an
important mechanism for tumor suppression. However, tumor
cells can counteract ferroptosis by limiting the synthesis and
peroxidation of PUFA-PLs [31], restricting the availability of
unstable iron [32], and upregulating cellular defense systems
against ferroptosis [33]. These regulatory responses play a key

role in the survival of tumor cells and may pose as obstacles to
treatment. The induction of ferroptosis not only inhibits tumor
growth but may also damage non-tumor cells. Therefore, precise
control over the induction of ferroptosis is currently a focus in
research efforts aimed at primarily affecting tumor cells while
protecting normal cells, especially immune system-related cells.
In this way, ferroptosis is expected to be developed as a new
therapeutic strategy that effectively inhibits tumors while
preserving the body’s immune function—a significant
development in treating various diseases.

The Impact of Ferroptosis on the Blood-
Brain Barrier
The blood-brain barrier (BBB) is a critical protective mechanism
of the central nervous system, regulating the passage of
substances into and out of the brain while maintaining its
stability. Composed of endothelial cells, pericytes, astrocytes,
microglia, and neurons among others, the interaction between
these cells is essential for BBB function [34]. The unique
characteristics of BBB endothelial cells include a flat
appearance, tight junctions, and a higher number of
mitochondria which contribute to regulating and maintaining
BBB function [35]. Lipids are a vital component of cell
membranes and are particularly abundant in the central
nervous system [36]. Lipid peroxidation can alter cell
membrane fluidity and permeability, impacting cell structure
and function. Cyclooxygenase (COX), cytochrome P450
(CYP), and lipoxygenase (LOXs) are the three primary lipid
oxidases involved in iron-dependent lipid peroxidation [37].
Iron accumulation and lipid peroxidation are linked to BBB
dysfunction; understanding the relationship between
ferroptosis and BBB dysfunction offers new avenues for
treating central nervous system diseases.

The p53 protein is responsible for maintaining the
permeability and integrity of BBB cells by reducing the level of
lipid peroxidation [38]. Dysfunction of the BBB is among the
early pathophysiological changes observed in neurodegenerative
diseases and brain injuries, such as stroke, traumatic brain injury
(TBI), Alzheimer’s disease (AD), and Parkinson’s disease (PD)
[39–41]. The BBB serves as the primary barrier for iron to enter
the brain and plays a critical role in maintaining brain iron
balance. Research has indicated that iron chelators can protect
brain microvascular endothelial cells from toxicity and functional
damage, thereby preserving endothelial cell stability [42].
Excessive accumulation of iron can induce the expression of
matrix metalloproteinases (MMPs), which in turn leads to
degradation of vascular basement membrane components,
causing damage to the BBB [43, 44]. Additionally, reactive
oxygen species (ROS) can impact BBB function by altering
intracranial vascular tension, increasing platelet aggregation,
and endothelial cell permeability; ultimately resulting in focal
lesions on the endothelial cell membrane [45]. The interaction
between ROS and MMPs may ultimately lead to dysfunction of
the BBB [46]. Although initial progress has been achieved in
comprehending the connection between BBB dysfunction and
ferroptosis, the current literature is still inadequate in uncovering
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the molecular mechanism of their interaction, and there is a
shortage of conclusive experimental data to substantiate it.
Additionally, existing studies have not comprehensively
expounded the universality and applicability of BBB
dysfunction in various pathological conditions. In light of this,
the research on the BBB is particularly crucial in the process of
ferroptosis. This not only enriches our understanding of the
pathological mechanism of central nervous system diseases but
also holds significant guiding significance for the development of
new treatment strategies and the improvement of
treatment efficacy.

The Role of Ferroptosis in Glioma
In recent years, ferroptosis has garnered widespread attention in
the field of tumor research, particularly demonstrating potentially
significant effects in glioma and the tumor microenvironment [5,
47]. Glioma is a prevalent malignant tumor of the central nervous
system, and its treatment difficulty stems from the resistance of
tumor cells to traditional radiotherapy and chemotherapy, as well
as the limitation of drug delivery imposed by the blood-brain
barrier. The discovery of ferroptosis offers a new perspective and
potential treatment strategy for glioma.

Due to their rapid proliferation and high metabolic activity,
glioma cells have a high demand for iron, making them
potentially vulnerable in terms of iron metabolism. The
induction of ferroptosis is closely related to the disorder of
iron metabolism. Therefore, regulating iron metabolism or
directly inducing ferroptosis may become a new approach to
the treatment of glioma. Studies have shown that certain iron
chelators and ferroptosis inducers can increase the sensitivity of
glioma cells to radiotherapy and chemotherapy, thereby
enhancing the therapeutic effect [48, 49]. ATF3 contributes to
brucine-triggered glioma cell ferroptosis via promotion of
hydrogen peroxide and iron [50]. High levels of
NRF2 sensitize temozolomide-resistant glioblastoma cells to
ferroptosis via ABCC1/MRP1 upregulation [51].
PRMT1 driven PTX3 regulates ferritinophagy in glioma [52].
Gastrodin Inhibits H2O2-Induced Ferroptosis through Its
Antioxidative Effect in Rat Glioma Cell Line C6 [53].
Ibuprofen induces ferroptosis of glioblastoma cells via
downregulation of nuclear factor erythroid 2-related factor
2 signaling pathway. Anticancer Drugs [54]. Pseudolaric acid
B triggers ferroptosis in glioma cells via activation of Nox4 and
inhibition of xCT [55]. TRIM7 modulates NCOA4-mediated
ferritinophagy and ferroptosis in glioblastoma cells [56].
Targeting NQO1/GPX4-mediated ferroptosis by plumbagin
suppresses in vitro and in vivo glioma growth [57]. In
addition, the induction of ferroptosis not only involves
inducing ferroptosis in glioma cells but may also affect the
iron metabolism of related cells in the tumor
microenvironment. The microenvironment of glioma is usually
rich in factors that promote tumor growth, and promoting or
inhibiting ferroptosis may change the balance of these factors,
thus affecting the growth and invasion of the tumor. For instance,
SLC1A5 enhances malignant phenotypes through modulating
ferroptosis status and immune microenvironment in glioma [58].
Within the glioma microenvironment, the ferroptosis inducer

erastin has been shown to enhance the polarization of
macrophages towards the M2 phenotype. Conversely, the
ferroptosis inhibitor ferrostatin-1 has been found to increase
the number of M1-like macrophages and decrease the number
of M2-like macrophages in the glioma microenvironment,
thereby exerting an inhibitory effect on glioma development
[4]. Additionally, an innovative NRF2 nano-modulator has
demonstrated its ability to induce ferroptosis in lung cancer,
leading to a shift in M2macrophage polarization towards M1 and
enhancing anti-tumor immunity [59]. The critical factors
influencing ferroptosis in glioma are presented in Table 1.
However, there are challenges associated with utilizing
ferroptosis for treating glioma. Firstly, a key issue is how to
precisely induce ferroptosis in glioma cells without causing
damage to normal cells. Secondly, effective drug delivery to
the tumor site is hindered by the presence of the blood-brain
barrier. As a result, researchers are exploring various strategies
such as developing new ferroptosis inducers, leveraging
nanotechnology to improve drug penetration, and combining
other treatment methods for comprehensive care.

A NEW TARGET FOR GLIOMA
TREATMENT: HISTONE DEACETYLASES

The level of histone acetylation is jointly regulated by HATs and
HDACs, which influence the structure of chromatin and gene
transcription. There are five families of HATs, including p300/
CBP, GNAT, SRC, MYST, and TAFII250. These enzymes
catalyze the transfer of acetyl-coenzyme A to lysine residues,
promoting chromatin relaxation and gene activation [70, 71]. The
function of HDACs is opposite to that of HATs; HDACs catalyze
deacetylation by hydrolyzing the acetyl groups on lysine residues,
leading to a decrease in histone acetylation levels, which enhances
the interaction between histones and DNA. This results in a more
condensed chromatin state and suppresses gene transcription
[72]. The HDAC family is diverse, with 18 members divided into
four classes. Class I HDACs (HDAC1, HDAC2, HDAC3, and
HDAC8) are related to the yeast RPD3 deacetylase and are
primarily involved in cell proliferation, differentiation, DNA
damage response, and tissue development in the nucleus. Class
II HDACs can be further divided into two subclasses: Class IIa
(HDAC4, HDAC5, HDAC7, and HDAC9) and Class IIb
(HDAC6 and HDAC10), which are homologous to the yeast
Hda1 deacetylase. Class III HDACs (SIRT1, SIRT2, SIRT3,
SIRT4, SIRT5, SIRT6, and SIRT7) share sequence similarity
with the yeast Sir2 protein. Class IV HDAC (HDAC11) has
sequence similarity with Class I and Class II proteins [73]. The
balance of these enzymes is crucial for maintaining
cellular functions.

In glioma, the abnormal activity of HDACs is associated with
tumor growth, invasiveness, and drug resistance [74–77]. HDACs
regulate the expression of related genes by modulating the
acetylation level of histones. These genes may involve iron
metabolism and antioxidant defense systems, thereby
indirectly affecting the process of ferroptosis. Therefore,
HDAC inhibitors (HDACIs), as potential therapeutic agents,
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have become a new direction in the treatment of glioma.
Understanding the role and expression patterns of HDACs in
different subtypes of glioma will help develop more precise and
personalized treatment plans.

THE IMPACT OF ACETYLATION ON
FERROPTOSIS

Acetylation, as an epigenetic modification, orchestrates cellular
processes by influencing the intricate structure of chromatin,
thereby altering protein function, stability, and subcellular
localization. The impact of acetylation on ferroptosis primarily
manifests through its modulation of the antioxidant defense
mechanism, regulation of transcription factors, and control
over iron metabolism-related proteins and signaling pathways.

Acetylation Affects the Antioxidant
Defense Mechanism
Antioxidant enzymes are a critical component of the cellular
antioxidant defense system, protecting cells from oxidative
damage by neutralizing reactive oxygen species (ROS).
Acetylation has been shown to modulate the activity of these
antioxidant enzymes. For example, SIRT3 enhances the activity
and stability of antioxidant enzymes through deacetylation,
thereby enhancing the cell’s antioxidant capacity [69]. The
cystine/glutamate antiporter SLC7A11 (also known as xCT)
plays a significant role in ferroptosis by facilitating the
exchange of cystine and glutamate across the cell membrane.
This process imports cystine for glutathione (GSH) biosynthesis
and supports antioxidant defense. SLC7A11 is also overexpressed
in various human cancers [63]. Recent studies indicate that
overexpression of SLC7A11 partially promotes tumor growth
by inhibiting ferroptosis. Additionally, it has been observed that
knockdown of the TP53 gene increases transcriptional levels of

SLC7A11; conversely, overexpression of TP53 downregulates
SLC7A11 expression and cystine release. These findings
suggest a negative correlation between p53 expression and
SLC7A11 expression, indicating that p53 may suppress the
activity of SLC7A11 directly or indirectly promote ferroptosis
to inhibit glioma cell growth [60]. However, high overexpression
of SLC7A11 can unexpectedly inhibit tumor metastasis [78],
highlighting the dynamic nature of ferroptosis. Although there
is currently no direct evidence supporting acetylation’s regulation
on SLC7A11, it is possible that acetylation may influence its gene
expression by affecting transcription factors such as p53. This
underscores the need for further comprehensive study into
understanding how different regulatory mechanisms impact
ferroptosis dynamics.

Acetylation Regulates the Activity of
Transcription Factors
Acetylation plays a critical role in regulating the activity and
DNA-binding capacity of transcription factors. An example of
this is the impact of acetylation on p53, which in turn affects the
expression of genes related to ferroptosis. As a crucial tumor
suppressor, p53 regulates various biological processes such as cell
proliferation, DNA repair, apoptosis, and autophagy [79]. The
pioneering work of researchers like Wei Gu et al. has confirmed
that the p53 protein can undergo acetylation modification
through a process involving multiple proteins and complex
regulation [80]. While there is functional redundancy in the
acetylation sites of p53, meaning that loss of one or more sites
can be compensated by acetylation at other sites, it has been
observed that loss of the eight primary acetylation sites in human
p53 (the 8 KR mutant) results in diminished transcriptional
activity and hinders its ability to induce cell cycle arrest and/
or apoptosis [61]. This finding challenges previous notions about
functional redundancy and has sparked significant interest in
understanding the functional role of p53 acetylation sites.

TABLE 1 | Critical factors of ferroptosis in glioma.

Critical factors
classification

Critical factors Mechanism

Regulation of Transcription
Factors

NRF2 NRF2 sensitize temozolomide-resistant glioblastoma cells to ferroptosis via ABCC1/
MRP1 upregulation [51]

Regulation of Transcription
Factors

ATF3 ATF3 contributes to brucine-triggered glioma cell ferroptosis via promotion of hydrogen peroxide
and iron [50]

Regulation of Transcription
Factors

p53 The extent of acetylation of p53 impacts the expression of ferroptosis-related genes, potentially
facilitating ferroptosis through the depletion of SLC7A11 levels [60–62]

Regulation of iron metabolism SLC7A11 SLC7A11 is involved in the exchange of cystine and glutamate between the intracellular and
extracellular compartments, and influences glutathione (GSH) biosynthesis [63–65]

Signaling pathways governing NF-κB,STAT3,STAT6 These pathways regulate the ferroptosis process through the expression and activity of iron
metabolism-related proteins [66–68]

The antioxidant defense
mechanism

Antioxidant enzymes (e.g., SIRT3,
GPX4)

GPX4 safeguards cell membranes against oxidative damage and sustains the oxidation-reduction
equilibrium of cells through the reduction of lipid peroxide and the elimination of ROS [56, 68, 69]

Regulation of iron
transportation

SLC1A5 Regulate the immune microenvironment, the state of iron transport in GBM, and enhance the
malignant phenotype [58]

Note. NRF2, Nuclear factor erythroid 2-related factor 2; ATF3, Activating Transcription Factor 3; p53, Tumor Protein p53; SLC7A11, Solute Carrier Family 7 Member 11; NF-κB, nuclear
factor kappa-B; STAT3, Signal transducer and activator of transcription 3; STAT6, Signal transducer and activator of transcription 6; SIRT3, Sirtuin 3; GPX4, Glutathione Peroxidase 4;
SLC1A5, Solute Carrier Family 1 Member 5.
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The acetylation modification also plays an important role in
regulating not only the overall transcriptional activity but also the
site-specific transcriptional selectivity of p53. This precise control
allows for regulation of key biological processes such as cell cycle
arrest, apoptosis, senescence, autophagy, and metabolism
[81–83]. Furthermore, p53 has been shown to inhibit glioma
growth by inducing ferroptosis [84], while a novel histone
deacetylase inhibitor called MPT0B291 has demonstrated
efficacy in suppressing glioma growth both in vitro and in vivo
by increasing the level of p53 acetylation [62]. In conclusion, it is
evident that the acetylation state of p53 is crucial for its function
in inhibiting tumor metabolism and inducing ferroptosis.

Acetylation Regulates Iron
Metabolism-Related Proteins and Cellular
Signaling Pathways
Acetylation plays a significant role in the regulation of iron
metabolism-related proteins. Hepcidin, a small peptide
secreted by the liver, is crucial for maintaining systemic iron
homeostasis. The downregulation of hepcidin expression is
associated with the epigenetic regulation of HDAC3. Hepcidin
controls systemic iron levels by inhibiting intestinal iron
absorption and recycling [85]. Acetylation modification can
participate in the regulation of various signaling pathways,
which may impact the process of ferroptosis. STAT6 has been
found to inhibit ferroptosis and alleviate acute lung injury by
competitively binding to CREB-binding protein, a key
acetyltransferase that regulates the p53/SLC7A11 pathway [66].
The NF-κB and STAT3 pathways also play important roles in
regulating ferroptosis. Activation of the NF-κB pathway can
increase the expression of LCN2, an iron-sequestering cytokine
that may be related to tumor resistance to ferroptosis-inducing
drugs [67]. Additionally, STAT3 can promote
GPX4 transcription by binding to its promoter region.
GPX4 is an essential antioxidant enzyme that protects cells
from ferroptosis. Therefore, inhibition of STAT3 may reduce
GPX4 expression and promote ferroptosis [68]. In summary,
acetylation can influence the process of ferroptosis through
multiple mechanisms, which may play a pivotal role in tumor
development and treatment. Future research needs to delve
deeper into these mechanisms and explore the specific role of
acetylation in ferroptosis to develop more effective therapeutic
strategies.

THE ROLE OF HDAC INHIBITORS IN
FERROPTOSIS IN GLIOMA

HDACi influence various cellular processes by suppressing HDAC
activity, leading to increased acetylation levels of histones and non-
histone proteins within the cell. This ultimately exerts anti-tumor
effects by inducing histone acetylation and regulating gene
transcription [86]. While research on HDACi in the context of
ferroptosis is still relatively scarce, as our understanding of the role of
acetylation in ferroptosis deepens, researchers are beginning to focus
on the role of HDACi in this process.

As epigenetic regulatory molecules, HDACi can modulate the
expression of approximately 5%–20% of genes [87]. For instance,
treatment with quisinostat (a HDACi) in tongue squamous cell
carcinoma cells resulted in an increase in ROS levels, a decrease in
GPX4 protein expression, an increase in p53 protein expression,
and changes in mitochondrial morphology and function were
observed. These findings suggest the occurrence of ferroptosis
[88]. Additionally, a study by Li F et al. demonstrated that
quisinostat could activate p53 and promote ferroptosis by
upregulating the acetylation of p53 [89]. Ines M L Wolf et al.
found that the HDAC inhibitor SAHA specifically inhibits the
expression of SLC7A11 transporter protein, which leads to
increased ROS activity within glioma cells [64]. Furthermore,
research conducted by Zhang T et al. revealed that vorinostat can
reverse tumor cell resistance to ferroptosis by downregulating the
expression of SLC7A11 [65].

Although HDAC inhibitors such as vorinostat, romidepsin,
belinostat, panobinostat, and chidamide have been approved for
the treatment of certain diseases, such as cutaneous T-cell
lymphoma and multiple myeloma, these drugs have issues with
low target specificity and low sensitivity to solid tumors. Therefore,
researchers are developing the next-generation of HDAC
inhibitors and exploring combination therapy strategies.
Curcumin is a natural pan-HDAC inhibitor that has shown
anti-tumor potential. However, its specific mechanism still
requires further research. Curcumin has been found to reduce
the vitality, GSH, and MMP levels in breast cancer cells while
increasing ROS levels, apoptosis rates, and DNA damage. New
drugs based on curcumin also show potential for the treatment of
glioblastoma [90, 91]. In addition to exploring new HDAC
inhibitors, researchers are also investigating combination
therapies. For example, the combined use of HDAC inhibitors
with other drugs like SASP can enhance the effect of ferroptosis.
SASP itself is a known inducer of ferroptosis; when used in
combination with vorinostat it can further promote this process
by targeting SLC7A11 expression which is related to cancer cell
insensitivity to HDAC inhibitors [92]. Furthermore Endri Karaj
et al. have designed a new class of dual-mechanism hybrid
molecules that can induce ferroptosis while inhibiting HDAC
activity. These novel compounds are expected to become new
types of anti-cancer agents that may reduce toxic side effects caused
by ferroptosis [93]. Zille M et al and Paganoni S et al discovered
that HDACi could induce ferroptosis in GBM without causing
neurotoxic side effects [94, 95]. In summary, while research on the
role of HDAC inhibitors in promoting ferroptosis has made
progress, there remains a significant need to explore their
complex mechanisms of action and to conduct a thorough
assessment of the potential side effects in clinical applications.

CONCLUSION

In recent years, ferroptosis has emerged as a novel mechanism of
cell death and has become a prominent topic in the field of tumor
research. Numerous researchers are dedicated to elucidating the
mechanisms of ferroptosis and its association with various diseases,
particularly its potential applications in tumor treatment. Despite
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offering new strategies for tumor treatment, there is currently a lack
of clinical drug trials targeting ferroptosis, which constrains our
ability to assess the safety and efficacy of ferroptosis-inducing
agents in a clinical context [96]. Acetylation, an important post-
translational modification, has been shown to impact the process of
ferroptosis in studies. However, our current understanding of how
acetylation affects ferroptosis is still limited, primarily focusing on
individual key protein acetylation changes, and there is a need for
further research to understand how acetylation influences protein
interactions and its overall role in ferroptosis. This article reviews
the role of histone deacetylases (HDACs) and their inhibitors in
regulating the process of ferroptosis and anticipates future research
directions. It is important to acknowledge the limitations inherent
in this review, including potential publication bias towards positive
findings, a possible overreliance on in vitro studies, and a lack of
comprehensive clinical data to support the translational potential
of HDAC inhibitors in ferroptosis. Additionally, the current body
of research may not fully account for the heterogeneity of tumor
types and stages, the individual variability among patients, or the
long-term effects and safety profiles of HDAC inhibitors. Future
studies should emphasize the role of acetylation in ferroptosis and
explore its impact on tumor development and other diseases to
establish a theoretical basis and experimental evidence for
developing new treatment strategies. It is also crucial to address
these limitations by employing rigorous study designs, seeking
diverse patient populations, and conducting long-term follow-up
studies to better understand the mechanisms and implications of
ferroptosis in disease pathology. With continued deepening
research efforts, we aim to gain a better understanding of the
complex regulatory network involved in ferroptosis and make new

breakthroughs in clinical treatment, while being mindful of the
potential biases and gaps in the current literature.
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