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It is well acknowledged that metabolic disorder binds closely with preeclampsia, 
though some of the causal relationships are still ambiguous. This review systematically 
summarizes the metabolic characteristics of carbohydrates, lipids, amino acids, 
and glycans in preeclampsia, highlighting their roles in oxidative stress, trophoblast 
autophagy, inflammatory response, and vascular tone regulation. Key findings 
include upregulated glycolysis and impaired mitochondrial function contributing 
to ATP deficiency, dysregulated lipid metabolism exacerbating oxidative stress and 
vascular dysfunction, and amino acid imbalances disrupting immune responses 
and redox homeostasis. Emerging therapies, such as metformin and pravastatin, 
demonstrate potential in targeting these pathways for prevention and treatment. 
Here, we reviewed thoroughly the related literature with a view to delineating the 
potential association of nutrient metabolism with preeclampsia, so that we could 
explore a promising therapeutic approach.
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Highlights

 • Metabolism of nutrients is identified as a field in the pathogenesis of preeclampsia.
 • Preeclampsia undergoes metabolic reprogramming of nutrients.
 • Metabolites interact between placental trophoblast and immune cells in preeclampsia.
 • Metabolites can serve as potential prevention and treatment targets for preeclampsia.
 • Validations on metabolites in prenatal diagnosis of preeclampsia are expected.

1 Introduction

Preeclampsia, a serious but mysterious pregnancy disorder syndrome, is characterized by 
newly-onset hypertension which occurs at or after 20-week gestation and terminal organ 
dysfunction in the form of proteinuria, acute kidney injury, liver dysfunction, eclampsia, and 
even death (1, 2). Specific to pregnancy, preeclampsia has an incidence of approximately 3–5%, 
characterized by preterm birth of 15% and maternal death of 42% (3). The problem is that 
there is a lack of effective interventions, since the exact mechanism of preeclampsia is 
unknown; once preeclampsia occurs, only the termination of pregnancy can relieve the 
symptoms. Therefore, it is imperative that research be  conducted on the mechanism of 
preeclampsia, which plays a significant role in its prevention and treatment, thereby 
significantly reducing perinatal adverse outcomes.

Increasingly recognized as a metabolic disease, preeclampsia can be explained by its increased 
susceptibility in pregnant women with higher body mass index (BMI) (4). Studies have shown 
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that metabolic reprogramming in preeclampsia involves significant 
alterations in nutrient metabolism. For example, impaired placental 
mitochondrial function and upregulated glycolysis result in ATP 
deficiency and oxidative stress, contributing to disease progression (5). 
Additionally, dysregulated lipid metabolism, characterized by elevated 
fatty acid levels and lipid peroxidation, has been linked to vascular 
dysfunction and endothelial damage (6). Though the mechanism of 
preeclampsia is scarcely understood, a consensus has been reached that 
it is attributed to oxidative stress, trophoblast cell autophagy, systematic 
inflammation, platelet aggregation and increased vascular tone (7–9). 
Thus, the metabolic changes that are involved in the occurrence and 
development of preeclampsia are worthy of due attention in the clinic.

Metabolism is a general term for a series of chemical reactions that 
occur in living organisms which need to sustain life. Since metabolism 
is a relatively macro concept, we mainly focused on the metabolism of 
nutrients such as carbohydrates, lipids, amino acids and glycans, which 
have disparate metabolic pathways to be connected through certain 
intermediate metabolites, so as to generate energy and synthesize 
substances that maintain normal functions of cells. In the field of 
oncology, up to now, the studies on metabolism catch the spotlight of 
the public, where researchers have found that metabolic 
reprogramming in tumor cells can help their proliferation by despoiling 
nutrients from the microenvironment (10). In the case of preeclampsia, 
currently, the metabolic investigations center on placental energy and 
metabolic intermediates, the alterations of which are caused by 
metabolic reprogramming, ultimately leading to insufficient placental 
energy and perturbation of nutrient synthesis. Although much research 
has been performed in this field, a systematic summary has not been 
made on the overall metabolic changes in preeclampsia. In the current 
review, we  outlined the metabolic characteristics of nutrients 
systematically and completely, based on which we  proposed some 
metabolism-related predictors and therapies for preeclampsia (11).

A comprehensive literature search was conducted using PubMed, 
Web of Science, and Scopus databases. The search included articles 
published in English up to 2023, using keywords such as 
“preeclampsia,” “nutrient metabolism,” “carbohydrates,” “lipids,” 
“amino acids,” and “glycans.” Inclusion criteria were peer-reviewed 
articles that investigated metabolic mechanisms or therapeutic 
approaches related to preeclampsia. Exclusion criteria included studies 
unrelated to nutrient metabolism or lacking experimental/
clinical data.

2 Metabolic features of preeclampsia

The nutrients that can regulate the development of preeclampsia 
include carbohydrates, lipids, amino acids and glycans, which can 
have a principal effect on placental energy supply, inflammatory 
response, vasoconstriction, oxidative stress, trophoblast autophagy 
and vascular tone. As indicated in Figure 1, a category has been made 
of different nutrients and their metabolites, which may contribute to 
or inhibit the progression of preeclampsia through certain pathways.

2.1 Carbohydrates

Carbohydrates, as organic compounds composed of carbon, 
hydrogen and oxygen, exist mostly in nature, with a broad spectrum 

of chemical structure and biological function. The most vital metabolic 
pathway of carbohydrates is central carbon metabolism involving 
glycolysis, pentose phosphate and tricarboxylic acid cycle, as the main 
source of energy for organisms and also as precursor for other 
metabolisms in the human body (12). As early as 1987, researchers 
observed reduced adenosine triphosphate (ATP) production in 
preeclamptic placenta, which was caused by placental ischemia and 
hypoxia, thus impairing energy-dependent placental functions such 
as active transport, i.e., amino acids transfer, and protein synthesis; at 
this point, glycolysis was upregulated to maintain ATP synthesis (13, 
14). This could be explained by the changes in metabolic enzyme 
activity, which is the researchers’ initial understanding of carbohydrate 
metabolic reprogramming. Recent research provided a deeper 
understanding of this notion, revealing that carbohydrate metabolism 
could adapt to the hypoxia condition in mild preeclampsia while a 
decompensation of carbohydrate metabolism reprogramming was 
discovered in severe preeclampsia (11) (Figure 2).

In cells, glycolysis produces a small amount of ATP, while most of 
energy is produced via oxidative phosphorylation in mitochondria. 
Mitochondrial dysfunction and oxidative stress, manifested as the 
increased production of reactive oxygen species (ROS), are known to 
occur in different subtypes of preeclampsia (15). In mild preeclampsia, 
mitochondria may compensate by enhancing oxidative 
phosphorylation and antioxidant activity, and the glycolytic pathway 
is also compensatively activated to replenish ATP (16). Moreover, it 
has been demonstrated in mouse models that the levels of 
2,3-Bisphosphoglycerate (2,3-BPG) derived from 
1,3-Bisphosphoglycerate (1,3-BPG) are significantly increased, which 
bypassed ATP-producing pathway where 1–3 BPG synthesizes 
3-Bisphosphoglycerate (3-BPG) (5). Activation of glycolysis is known 
to lead to a lack of NAD+, resulting in a decrease in the conversion 
from pyruvate to acetyl-CoA where NAD+ act as a coenzyme of 
pyruvate dehydrogenase. Tricarboxylic acid (TCA) cycle, another 
energy-supplying process buttressed by NAD+ as coenzyme, cannot 
proceed smoothly. Acetyl-CoA also has a compensatory pathway, 
coming from fatty acid β oxidation in addition to glycolysis (17). β 
oxidation of fatty acids is likely to produce acetyl-CoA as 
compensation, which can be demonstrated by increased acylcarnitine 
levels (5). Therefore, we hypothesize that in energy production, a 
compensatory increase in ATP production from glycolysis combined 
with mitochondrial oxidative phosphorylation could maintain overall 
ATP levels in mild preeclampsia, and that in terms of substance 
synthesis, the substances that need to maintain the normal function 
of the placenta can be ensured, thanks to the compensatory production 
of acetyl-CoA.

In the case of severe preeclampsia, the bypass pathway from 
1,3-BPG to 2,3-BPG could also be activated, as it brought about ATP 
deficiency (5), a major character of preeclampsia. Mitochondrial 
dysfunction could not be  compensated by increasing oxidative 
phosphorylation, so that it was only compensated by activating the 
glycolytic pathway, which was inefficient at producing ATP (18). A 
loss of bioenergy and biosynthetic homeostasis was reported, which 
could be  explained by significantly reduced concentrations of 
intermediate metabolites such as pyruvate, lactic acid, and pyruvate 
kinase (a key enzyme in glycolysis) in placenta (16). Thus, we propose 
a hypothesis that the former part of glycolysis is activated in severe 
preeclampsia, but bypass the ATP-producing pathway, while the latter 
part is inhibited, resulting in decreased ATP production in glycolysis 

https://doi.org/10.3389/fnut.2025.1560610
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Li et al. 10.3389/fnut.2025.1560610

Frontiers in Nutrition 03 frontiersin.org

along with overall ATP decrease; this process in turn could lead to the 
clinical manifestation of severe preeclampsia, which comprised 
premature birth and fetal growth restriction (11).

2.2 Lipids

To meet the needs of fetal growth and development in normal 
pregnancy, the capacity of intestinal lipid absorption is enhanced 
(19–21); the elevated levels of blood lipid (such as cholesterol and 
triglycerides) lead to increased lipid peroxidation (22, 23). In contrast, 
women with preeclampsia are characterized by higher BMI, higher 
levels of blood lipid and lipid peroxides (24), which can be decomposed 
into more free radicals, thus damaging vascular endothelial cells, 
causing the decrease of prostacyclin (PGI2) by inhibiting PGI2 
synthetase and activating thromboxin (TXA2) synthetase to produce 

TXA2 (25). PGI2/TXA2 ratio thereafter decreases, leading to a series 
of pathophysiological changes of vasospasm and contraction. 
Furthermore, free radicals could cause mitochondrial damages, 
followed by reduced energy production, and increased oxidative stress 
(6, 26). The free radicals induced by oxidative stress actively interact 
with polyunsaturated fatty acids (PUFAs) to produce lipid peroxides, 
forming a vicious cycle (27). Once confirmed in preeclampsia, the 
altered lipid metabolism is likely to be  the result of genetic 
predisposition, which also acts as a risk factor for the development of 
cardiovascular disease in later life.

Although the effect of abnormal lipid metabolism on the classical 
mechanisms of preeclampsia has been well documented, the 
mechanisms of the various abnormalities in lipid metabolism have not 
been clearly elucidated, except for that of fatty acids, the important 
metabolites of fat which are increased in the second and third 
trimesters in normal pregnancy (28). Significantly elevated fatty acids 

FIGURE 1

Pathogeneesis of preeclampsia regulated by nutrients metabolism. Several classic mechanisms of preeclampsia including energy deficiency, oxidative 
stress, increased vascular tone, inflammation, platelet aggregation and trophoblast autophagy can be regulated by metabolites.
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is usually seen in preeclampsia, which can be observed prior to the 
onset of the disease (29), and attributed to decreased activity of 
corresponding metabolic enzymes (30). Gene mutation and 
polymorphism of short-chain acyl-coenzyme A dehydrogenase 
(SCAD, a type of enzyme in charge of fatty acid β oxidation), to name 
a few, are known to relate to the decreased activity of SCAD, thus 

raising the level of short-chain fatty acids, which acts as a risk factor 
in preeclampsia (30). In addition to alternation in genes, disturbance 
of intestinal flora can also leads to the reduction of fatty acid levels in 
the intestine and blood, which is related to the occurrence of 
preeclampsia because fewer fatty acid cracking products are found in 
the feces of pregnant women with preeclampsia (31). Therefore, the 
role of fatty acids in preeclampsia needs further study.

Additionally, the disorder of long chain fatty acid oxidation has 
been found in preeclampsia, which is characterized by the reduced 
level of mRNA and protein expression of long chain omega-3 hydroxy 
CoA dehydrogenase (LCHAD) in the placenta of preeclampsia, which 
leads to lipid deposition. The earlier the onset of preeclampsia, the 
more significant abnormal LCHAD expression and the more lipid 
deposition can be  found (32). The altered activity of SCAD and 
LCHAD working together could lead to the overloaded titers of fatty 
acid in the serum, which could contribute to oxidative stress and 
increased vascular tone through the pathways aforementioned (33). 
The notion of SCAD deficiency has been validated based on a single 
clinical case; therefore, it is important that a large-sample-based 
analysis be  conducted to search for the gene-induced fatty acid 
enzymes to induce irregularities in preeclampsia (30), and that future 
studies focus on the enzymes related to fatty acid metabolism and the 
gene expressions in the activity regulation of enzymes so as to prevent 
the occurrence and development of preeclampsia.

Beyond fatty acids, recent studies have highlighted the role of 
metabolic reprogramming in other major lipid classes, such as 
glycerophospholipids, sphingolipids, and long-chain polyunsaturated 
fatty acids (LCPUFAs), in the pathophysiology of preeclampsia (34). 
For instance, sphingolipids, particularly ceramides, have been 
implicated in trophoblast dysfunction and apoptosis, leading to 
impaired spiral artery remodeling, a hallmark of early-onset 
preeclampsia (35). Similarly, altered glycerophospholipid metabolism 
disrupts endothelial function and inflammatory signaling pathways, 
exacerbating vascular dysfunction (36). LCPUFAs, such as 
docosahexaenoic acid (DHA) and arachidonic acid (AA), are critical 
for maintaining vascular tone and regulating inflammation. 
Disruptions in the DHA/AA balance have been linked to increased 
oxidative stress and endothelial damage in preeclampsia (37).

2.3 Amino acids

The metabolism of the multiple varieties of amino acids, peptides 
and proteins have been newly proposed to correlate with the 
development of preeclampsia. As indicated in Figure 3, a focus has 
been made on glutathione (GSH), tryptophan (Trp), arginine (Arg) 
and homocysteine (Hcy) metabolism, which involve in the classical 
mechanism of preeclampsia, respectively.

2.3.1 GSH
It has been experimentally verified that preeclampsia is responsible 

for oxidative stress, and that GSH is a prominent component of the 
non-enzymatic oxidative defense system (38). GSH is a major 
intracellular antioxidant compound, abundant in the cytoplasm, 
nucleus and mitochondria (39). Capable of bioconversion and 
elimination of biomass, GSH plays an antioxidant role when oxidized 
to glutathione oxidized (GSSG) through the catalysis of glutathione 
peroxidase (GPx) and catalase (CAT) (40). Moreover, GSH contributes 

FIGURE 2

Metabolic reprogramming of carbohydrates in mild or severe 
preeclamptic placenta. In preeclampsia, the glycolytic pathway is 
activated and large amounts of NAD+ are consumed, leading to a 
blockage in the synthesis of vital substances in the placenta. 
Moreover, some of the ATP synthesis pathways are bypassed, ending 
up with less ATP production. Metabolic reprogramming of 
carbohydrates in mild preeclampsia compensates by increasing 
glycolytic intermediates, such as increasing oxidation of fatty acids to 
provide acetyl-coA, whereas in severe preeclampsia a 
decompensation of metabolic reprogramming of carbohydrates has 
been witnessed. The blue arrows represent the direction of 
metabolic reprogramming in mild preeclampsia and the red arrows 
represent decompensation of metabolic reprogramming in severe 
preeclampsia. Solid arrows represent changes that have been 
reported in the literature, dotted arrows represent presumed 
changes, and the number of arrows is proportional to the magnitude 
of the changes.
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to the conversion from H2O2 to H2O, thus alleviating oxidative stress 
where H2O2 acts as a vital type of ROS (41).

The higher level of GPx in the umbilical cord of preeclampsia has 
been observed, which may function as a compensatory mechanism 
against oxidative stress (21). This could explain the similar levels of 
H2O2 in preeclampsia in comparison with normal pregnancies (42, 
43). Though the higher level of GPx has been found in preeclampsia, 
the changing activities of CAT remain controversial. It has been 
suggested that CAT is compensatively increased in preeclampsia (43), 
or that decreased CAT increases the risk of preeclampsia (44).

Additionally, the decreased expression of Glutathione 
S-transferase theta 2 (GSTT2) has been found in preeclampsia, which 
is a major type of enzyme in charge of combining ROS with GSH, thus 
reducing oxidative stress (45). In general, the decompensation of the 
aforementioned enzymes inhibits the scavenging of ROS, which is the 
root cause of redox imbalance in favor of pro-oxidants (43). In view 

of a considerable variety of enzymes involved in the metabolism of 
GSH, their changing activities in redox reaction and their potential 
roles in the prediction and therapeutic significance in preeclampsia 
can be of an intriguing discipline to pursue.

2.3.2 Trp
Trp, an essential amino acid in the human body, is known to have 

two breakdown pathways: the kynurenine (KYN) and the 5-HT 
pathway. It was previously reported that a small part of Trp produced 
5-HT through tryptophan hydroxylase (TPH), whereas about 95% of 
Trp produced KYN through the catalysis of indolamine 
2,3-dioxygenase (IDO) or tryptophan2,3-dioxygenase (TDO) (46).

2.3.2.1 KYN
By depleting Trp, IDO is known to inhibit the function of 

immune cells, including T lymphocyte proliferation, and to 

FIGURE 3

Metabolic pathways of various animo acid and their contributions to preeclampsia. In normal placental blood vessels, a variety of amino acids and their 
metabolites can regulate oxidative stress, vasoconstriction, inflammation and so on. In preeclamptic placentas, changes in the activity of enzymes that 
metabolize certain amino acid can lead to changes in the level of corresponding amino acid, thus having an impact on the above pathways. T, T cells; 
CD4T, CD4T cells; TS, inhibitory T cells.
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potentially downregulate the inflammatory response. IDO inhibits 
the function of immune cells through a specific L-Trp depletion 
pathway, where L-Trp depletion by IDO leads to its dissociation 
with L-Trp tRNA, thus activating general control non-derepressible 
2 (GCN2) due to the presence of its allosteric regulatory site which 
senses free tRNAs (47, 48). Phosphorylated by activated GCN2, the 
activity of eukaryotic translation initiation factor-2α (eIF-2α) is 
weakened, thus inhibiting the transcription of various RNAs and 
the translation of proteins in T cells (27). Moreover, L-Trp 
deficiency can inhibit master amino acid-sensing kinase 1 (GLK1), 
and further inhibit m-TOR signaling molecules, triggering T cell 
impotence and autophagy (27). Additionally, KYN produced by 
IDO is an endogenous ligand of aromatic hydrocarbon receptor 
(AhR). KYN binding to AhR leads to differentiation of immature 
CD4+ T cells into inhibitory T cells; it can also induce IDO 
expression, further suppressing T cell immune response and 
inflammation (49).

In normal pregnancy, plasma KYN/Trp ratio increases with 
gestational age. In preeclampsia, however, a decrease in plasma 
KYN/Trp ratio has been discovered, which can be  attributed to 
decreased placental IDO activity (50). IDO-caused failure of Trp 
depletion was reported to induce excessive inflammatory response 
in preeclampsia (50). On the other hand, a significant increase in 
TDO expression has been found in preeclampsia, but since 
inflammatory response is involved in the pathogenesis of 
preeclampsia, it can be  hypothesized that upregulation of TDO 
cannot fully compensate for the decrease in IDO in this regard. It is 
important that future studies address the differential regulation of 
IDO and TDO in placenta to determine their mechanistic role in 
preeclampsia (51, 52).

2.3.2.2 5-HT
As a metabolite of Trp, 5-HT has been described primarily as a 

potent vasoconstrictor in the placental circulation (52). 5-HT activates 
its receptors on vascular smooth muscle and platelets, thereby 
promoting vasoconstriction and platelet aggregation. Furthermore, 
5-HT synergistically amplifies the effects of other vasoconstricting 
substances (53). Catalyzed by monoamine oxidase (MAO), 5-HT 
metabolizes into 5-hydroxyindole acetic acid (5-HIAA), which is 
excreted from the body in the form of urine (54).

Women with preeclampsia have less 5-HIAA excreted from the 
urine, the evidence that cannot be explained in terms of impaired 
renal function, which is one of the manifestations in preeclampsia 
(55). At the same time, the patients’ level of 5-HT is high (40). The 
increased serum concentration of 5-HT and the simultaneously 
decreased excretion of 5-HIAA can be attributed to the decreased 
activity of MAO (50, 54, 56). Increased 5-HT is known to exacerbate 
the effect of vasoconstriction and platelet aggregation. One piece of 
evidence has shown that the involvement of increased 5-HT in the 
pathogenesis of preeclampsia could be  the therapeutic effect of 
ketanserin, a 5-HT2 antagonist (53). Ketanserin functions as 
antihypertensive and antithrombotic, improving hemodynamics (57). 
Experimental 5-HT infusion in the pregnant animal could cause the 
similar kidney and placental damages as those seen in preeclampsia, 
which can be prevented by ketanserin (50). Even though less is known 
about the reason behind the decreased expression of MAO, MAO 
activity can determine, partially at least, the maternal systemic 
5-HT concentration.

2.3.3 Arg and nitric oxide (NO)
Arg, a non-essential amino acid produced at a slow speed, plays 

an irreplaceable role in the human body as a basic component of 
various proteins. There exist three Arg metabolic pathways, of which 
the one producing NO under the catalysis of nitric oxide synthase 
(NOS) is of the most significance. NO is known to serve as a strong 
vasodilator, playing an effective role in maintaining the constancy of 
vascular tone and regulating the stability of blood pressure (58, 59). 
Studies have shown that NO affects cardiovascular system mainly by 
activating guanylate cyclase (GUC) to increase the concentration of 
guanosine cyclomonophosphate (cGMP) (60–65). As a second 
messenger, cGMP mediates the inhibition of calcium ion flow through 
receptor-mediated calcium channels (53). Activation of GUC 
mediated by NO completes various physiological functions such as 
vasodilation and inhibition of platelet aggregation (66).

In preeclamptic placentas, reduced L-Arg and NO formation 
contributes to the inactivation of GUC-related channel, which may 
be attributed to the increased level of asymmetric dimethylarginine 
(ADMA), down-regulated eNOS and dimethylarginine 
dimethylamine hydrolase (DDAH) expression respectively (2, 67). NO 
produced by eNOS is downregulated through ADMA-caused 
reversible competitive inhibition (68). Since ADMA competes with 
Arg for eNOS, the bioavailability of NO depends on the balance 
between Arg and ADMA, namely the Arg/ADMA ratio; in 
preeclampsia the lower Arg/ADMA ratio contributes to less 
production of NO (69), yet eNOS do not differ significantly between 
the early-onset and late-onset of preeclampsia (70). ADMA itself is 
metabolized to L-citrulline and dimethylamine by DDAH, whose 
reduced activity in preeclampsia can result in increased ADMA level, 
which competes with eNOS for NO and reduces NO production (58). 
The contributing factors aforementioned can cause the overall level of 
NO to decrease, thus inactivating GUC-related channel, hence the 
platelet aggregation and high blood pressure ultimately in 
preeclampsia (71).

According to other researches, nonetheless, women with 
preeclampsia tend to increase the major metabolite of NO in their 
serum and urine, mainly in the form of FeNO (72, 73). Moreover, 
placental eNOS activity is not significantly different between 
preeclampsia and normal pregnancies (74). Evidence has shown that 
the changes in placental NO metabolism are unlikely to be the main 
cause of placental lesions, that the higher level of circulating NO 
metabolites may be to compensate for the vasoconstrictor effect of 
preeclampsia, and that the vascular system of patients with 
preeclampsia may also have some degree of desensitization or 
resistance to the effects of NO (74). Therefore, the exact changes of 
NO in preeclampsia remain to be further investigated.

2.3.4 Hcy
Hcy, a member of the methionine-homocysteine metabolism 

(MHM), is transformed into methionine (MET) (75) by catalyzing 
methyltransferase (MTR), which uses 5-methyltetrahydrofolate 
(5-MTHF) as a methyl donor (76). 5-methyltetrahydrofolate-
homocysteine methyltransferase reductase (MTRR) is capable of 
regenerating functionally active MTR by reducing methylation. 
5,10-methylenetetrahydrofolate reductase (MTHFR) provides 
methyl groups with tetrahydrogen folic acid (THF) into 5-MTHF 
so that MHM receives methyl groups. Using ATP as an adenosine 
donor, MET is transformed into S-adenosylhomocysteine (SAM), 
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which gets rid of a methyl group to transform SAM, which goes 
through the process of deadenylation and changes into Hcy. 
Catalyzed by cystathionine β synthase (CBS), Hcy turns into 
cysteine (Cys) (77).

In the normal pregnant women, plasma concentration of Hcy is 
low during the first trimester, which reaches its lowest level during the 
second half of pregnancy (78). In those who were diagnosed with 
preeclampsia; however, the level is increased, with hyper-
homocysteinemia arising from MHM to cause oxidative stress and 
imbalance of plasma NO/ET level. In preeclampsia, hyper-
homocysteinemia could be ascribed to the alternations of MTHFR 
and CBS, which, from the perspective of gene, are likely to be induced 
by single nucleotide polymorphisms (75). Since MTHFR is a 
polymorphic enzyme (79), the preeclamptic women are broadly 
observed to be homozygous for MTHFR T/T, MTHFR C677T and 
A1298C (80), which thus can lead to an increase in Hcy level. When 
the lower mRNA expression of CBS is found in preeclamptic placenta, 
moreover, a failure may occur in the elimination of Hcy (81).

Even though the changes in single nucleotide polymorphisms of 
MHM enzymes can lead to increased Hcy, MHM can 
be  compensatorily activated in preeclampsia. 2-methoxyestradiol 
(2-ME), a metabolite of 17-𝛽-estradiol synthesized by Catechol-O-
Methyltransferase (COMT), induces the differentiation of the 
endovascular cytotrophoblast cells into its invasive phenotype under 
the condition of hypoxia (75). With COMT being responsible for 
methylating 2-Hydroxyestradiol (2-HE) into 2-ME, it has been 
demonstrated that low activity or expression of this enzyme could 
be  involved in the pathogenesis of preeclampsia (82). MHM, the 
process responsible for supplying COMT with the methyl group 
necessary for 2-ME synthesis, could be compensatorily activated in 
preeclampsia to supply methyl groups enough to sustain adequate 
concentration of 2-ME (83).

The notion that MHM is activated as compensation can 
be justified by the post-transcriptional changes of the related enzymes 
in MHM. In the preeclamptic placentas, RNA expression of MTHFR 
and MTR is elevated, but this change is not reflected in protein 
content, which highlights a potential compensatory mechanism for 
MHM (75). This underlines a possible role of MHM as a compensation 
mechanism in the presence of low 2-ME levels (83).

2.3.5 Changes of amino acids in severe 
preeclampsia

In severe preeclampsia (sPE), oxidative stress, inflammatory 
responses, and endothelial dysfunction collectively contribute to 
significant alterations in various metabolic molecules. GSH, as an 
important endogenous antioxidant, is significantly depleted due to 
elevated oxidative stress, leading to impaired antioxidant defense 
systems (84, 85). Additionally, the level of Trp decreases as a result of 
increased activity of IDO, which metabolizes Trp into KYN, reflecting 
enhanced inflammation and immune activation (86). Arg levels are 
reduced in sPE, primarily due to endothelial dysfunction. Arg, as a 
substrate for NO synthesis, is metabolized by arginase into ornithine 
and urea, further reducing NO bioavailability (87, 88). Additionally, 
Hcy levels increase due to disrupted folate metabolism or deficiencies 
in vitamins B6/B12. The accumulation of Hcy exacerbates oxidative 
stress and endothelial dysfunction, promoting the progression of 
preeclampsia (89, 90). These amino acid alterations in sPE illustrate 
the intricate interplay between oxidative stress, inflammation, and 

endothelial dysfunction, providing valuable insights into the disease’s 
pathophysiology. Figure  4 summarizes the key changes and their 
associated mechanisms.

2.4 Glycan

Glycan, a complex composed of monosaccharides, can covalently 
bind with proteins or lipids, forming such biomolecules as 
glycoproteins, proteoglycans and glycolipids. The complex is known 
to be involved in cell recognition, cell adhesion, cell differentiation, 
immune recognition, and even tumor metastasis. In the placenta, the 
expression of glycan is a dynamic reflection of placental developmental 
and pathophysiological state. In the case of preeclampsia, oxidative 
stress can lead to the excessive production of ROS, which can regulate 
the expression of glycan (26). The higher expression of mannosan, a 
subtype of glycan, can be found at the end of placental villi in the 
early-onset of severe preeclampsia, and it can be  recognized by 
cytotoxic NK cell mannose-receptors, which activate NK cells to make 
systemic inflammatory responses (91). In addition to preeclampsia, 
glycation of trophoblastic cells is also associated with pregnancy-
induced hypertension and fetal growth restriction (92).

As an important “interpreter” of glycan, galectin can bind with 
glycan to act as an “alarm protein-like” molecule signalizing tissue 
damages induced by oxidative stress (91). Since apoptosis results 
partially from oxidative stress, the galectin-glycan circuit acts 
indispensably in regulating pro-survival and pro-apoptosis pathways, 
maintaining homeostasis under microenvironmental damages (92). 
The changes in the glycan of placental villous, caused by excessive 
ROS, can lead to the decreased level of Gal-9, a type of galectins most 
expressed at the maternal fetal interface, whose increased levels 
indicate that the placental cells are susceptible to apoptosis (93). 
Autophagy exists in normal human placenta and is an important 
manifestation of placenta’s normal physiological function. Apoptosis 
is found in normal placental trophoblast, stromal and endothelial 
cells, but mainly in syncytiotrophoblast (94). It has been confirmed in 
animal models that the placenta of mice with autophagy deficiency 
shows typical pathological changes of preeclampsia, that is, superficial 
trophoblast invasion and vascular remodeling failure, affecting the 
normal pregnancy process (95). Given that apoptosis and autophagy 
are mutually inhibited, apoptosis facilitates Gal-9-mediated autophagy 
reduction, which results in the decrease of invasiveness in the 

FIGURE 4

Key amino acid changes and mechanisms in sPE.
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trophoblastic cells, and the obstruction of spiral artery recasting, 
hence placental hypoperfusion (96). Therefore, the dynamic changes 
in the galectin-glycan network associated with oxidative stress may 
play an important role in the pathogenesis of preeclampsia. This local 
stress response can eventually spread throughout the body, resulting 
in the development of preeclampsia (92).

However, the effect of glycosylation on autophagy and reactive 
immune cell regulation in the trophoblast requires further 
investigation, as excessive oxidative stress has been found to reduce 
the expression of GnT-III, a key mannose glycosyl transferase, 
contrary to the previously stated hyper glycan expression in the 
terminal of the placental villus in preeclampsia (97). This may be due 
to different cell lines in different experiments. In conclusion, oxidative 
stress-induced glycosylation of the placental trophoblast cells can 
change their metabolic traits, exerting an impact on the development 
of preeclampsia.

3 Immune cells regulated by nutrient 
metabolism in preeclampsia

Interaction exists between immune cells and trophoblast, as 
manifested by the evidence that CD8 + T cells induce trophoblast to 
express matrix metalloproteinase-2/9 (MMP-2/9) to promote 
trophoblast invasion and facilitate embryo implantation. As 
aforementioned, the high concentration of fatty acid is observed in the 
preeclamptic placenta, as a risk factor. Even though the role of fatty 
acid in the interaction between immune cells and trophoblast cells 
remains obscure, it can be referred to as the microenvironment of 
tumor metabolism, as tumor and trophoblast cells share the common 
character of metabolic reprogramming. In the microenvironment of 
tumor metabolism, the higher levels of fatty acid inhibit CD8 + T cell 
function and promote tumor growth by altering the metabolic pattern 
of tumor cells (98). Tumor and CD8 + T cells appear to reprogram 
fatty acid metabolism differently, for the tumor cells adapt themselves 
by increasing fatty acid utilization, whereas CD8 + T cells do not (98). 
The uptake of fatty acids is enhanced by tumor cells, which may 
contribute to the deficiency of fatty acids in the tumor 
microenvironment of CD8 + T cells, whose normal function is 
impaired (98). Thus, the higher levels of fatty acid exacerbate 
metabolic reprogramming, which can lead to the nutrient availability 
and immune dysfunction altered in the tumor microenvironment.

Therefore, we hypothesize that in the preeclamptic placenta the 
high fatty acid concentrations can be  responsible for metabolic 
reprogramming as in the case of tumor cells, resulting in insufficient 
fatty acid availability for CD8 + T cells and inhibited CD8 + T cell 
function. Decidual CD8 + T cells could recognize human leukocyte 
antigen (HLA)-C expressed by extravillous trophoblast cells (99). 
Recognition of HLA-C by CD8 + T cells may be important to normal 
pregnancy, especially when those who lack killer cell activating 
receptors to interact with HLA-C are more likely to suffer from 
preeclampsia (100). Recognition by decidual CD8 + T cells of HLA-C 
expressed by trophoblasts tend to result in the generation of IL8, 
which has been reported to increase production of both MMP-2 and 
MMP-9 by endothelial cells (101). This can be responsible for the 
vascular remodeling required for the establishment of the placenta 
(98). In other words, CD8 + T cell function, when inhibited, can 
impair trophoblast invasion, which is acknowledged as pathogenesis 

of preeclampsia. In view of this, it is imperative that the metabolite-
mediated immune cell function and its interaction with the 
trophoblast cells be further studied in the future. Apart from the role 
of CD8 + T cell, other types of immune cells are likely to interfere with 
metabolites, which is an intriguing aspect of further investigation.

4 Treatments and preventions related 
to metabolism

Although definitive therapies are unavailable, some metabolism-
related ones have recently been shown to be  promising in the 
prevention and treatment of preeclampsia by interfering with the 
classic mechanisms (Figure 5).

4.1 Metformin

Preeclampsia is thought to be associated with abnormal apoptosis 
of trophoblast cells. As recent studies have suggested that preeclamptic 
trophoblasts are highly likely to undergo glycolytic reprogramming, 
the newly discovered TLR4/NF-κB/PFKFB3 pathway may function as 
a link between metabolic reprogramming and NLRP3 inflammasome 
induced trophoblast apoptosis (102). In this pathway, TLR4/NF-κB 
signaling causes mitochondrial destruction and dysfunction, thus 
reprogramming the glycometabolism to glycolysis with increased 
PFKFB3 expression, which induces NLRP3 inflammasome assisted 
apoptosis (103–105). Activation of TLR4/NF-κB/PFKFB3 pathway in 
preeclampsia causes trophoblast cells to preferentially use glycolysis 
over mitochondrial oxidative phosphorylation, ultimately resulting in 
trophoblast ATP deficiency and increased apoptosis (102).

Metformin (MET), the first-line drug for type II diabetes mellitus, 
has long been clinically administered to regulate glucose metabolism. 
MET can reduce NLRP3-induced apoptosis and restore trophoblast 
metabolism by effectively inhibiting TLR4/NF-κB signaling (102, 106, 
107). Beyond that, MET is partially capable of suppressing apoptosis 
by blocking the binding of the transcription factor NF-κB to PFKFB3 
promoter and reducing PFKFB3 transcription (102).

Metformin is widely used during pregnancy for conditions such 
as gestational diabetes mellitus and polycystic ovary syndrome, with 
studies showing no significant increase in adverse outcomes for 
mothers or neonates. A Phase II clinical trial involving 180 pregnant 
women suggests that metformin (3 g daily dose) can extend the 
gestational weeks of early-onset preeclampsia by about 1 week and 
reduce neonatal hospital stay (108).

However, the long-term physiological effects of metformin 
therapy in pregnancy women without diabetes remains unclear till 
now. Therefore, MET and its long-term effect can have promising 
potential to be explored in preeclampsia.

4.2 Statin

Pravastatin, as a natural compound of statin, is conventionally 
applied to the treatment of primary hypercholesterolemia, type IIa and 
type IIb hyperlipidemia. In the case of preeclampsia, the level of 
LCHAD is found to be decreased, which is explained by the decreased 
level of fatty acid oxidation in this disease (102). Pravastatin comes in 
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to play when the expression of LCHAD is upregulated in the liver and 
placenta, thus significantly decreasing fatty acid levels (109). 
Acting as a competitive inhibitor of 3-hydroxy-3-methylglutarate 
monoacyl-CoA reductase (HMGCR), the rate-limiting enzyme of 
cholesterol synthesis, pravastatin can also reduce the levels of 
cholesterol, low-density lipoprotein, very low-density lipoprotein and 
triacylglycerol in the body in a direct or indirect way, so as to regulate 
blood lipid level (110). Additionally, the potency of pravastatin can 
even be  administered to regulate blood lipid so that the clinical 
manifestations of preeclampsia can be alleviated (111).

Apart from the lipid-regulating properties, pravastatin is capable 
of significantly increasing NOS activity in the placenta, thereby 
promoting NO synthesis (112). Preeclamptic pregnancies are known 
to have low concentrations of Arg in serum, where pravastatin induces 
Arg uptake at low Arg levels, rapidly activating eNOS whose activity 
increases with the supply of substrate (113). Future studies are 
acquired to explore the effect of pravastatin on the unknown levels of 
Arg in preeclamptic placentas and in severity-categorized 
preeclamptic samples.

4.3 Grape juice

As aforementioned, NO acts as a vasodilator in pregnancy. Since 
grape juice is found to interfere with NO production, a recent 
proposal has been made to use it as original add-on therapy for 
preeclampsia (114). Upon an ingestion of grape juice, NO production 
is increased in the serum endothelial cells of preeclampsia patients 
(115), which is recognized to trigger SIRT1-eNOS-NO axis. 
However, grape juice’s ability to increase the production of NO in 
endothelial cells does not appear to rely solely on its major 
antioxidant named resveratrol. In an in vitro PE model, grape juice 
intake appears to have a different effect than resveratrol 
supplementation alone, suggesting that other bioactive molecules in 

grape juice combined with SIRT1-eNOS-NO have therapeutic 
potential in PE (116). This suggests that grape juice can be  of a 
feasible therapy for preeclampsia, although further experiments are 
required to measure its appropriate dose and other effective 
substances apart from resveratrol to better understand its synergistic 
effect along with SIRT1-eNOS-NO axis.

4.4 Vitamin D, natural compounds of plant 
origin and herbal extracts

Recent studies have highlighted the role of vitamin D and natural 
plant-derived compounds in reducing oxidative stress and 
inflammation, which are key contributors to preeclampsia 
pathogenesis. Vitamin D has been shown to regulate immune 
responses and improve endothelial function, with low maternal 
vitamin D levels being associated with an increased risk of 
preeclampsia (117). Supplementation with vitamin D has 
demonstrated potential in reducing preeclampsia risk in randomized 
controlled trials, although further large-scale studies are needed to 
confirm its efficacy (118).

Natural compounds of plant origin, including flavonoids, 
epigallocatechin gallate (EGCG), quercetin, resveratrol, and curcumin, 
have attracted attention for their antioxidant and anti-inflammatory 
properties. For example, curcumin has been reported to modulate 
oxidative stress pathways and inflammation through the inhibition of 
NF-κB signaling (119). Similarly, resveratrol and EGCG enhance 
endothelial function and reduce oxidative damage by activating the 
Nrf2 pathway (120). Quercetin, a potent flavonoid, has shown promise 
in preclinical studies for its ability to reduce vascular inflammation 
and improve placental function (121). These compounds may 
represent complementary therapeutic strategies, but more clinical 
studies are required to evaluate their safety and efficacy in 
pregnancy (122).

FIGURE 5

Several newly proposed therapies for preeclampsia related to nutrient metabolism and their potential effects. Several emerging treatments related to 
nutrient metabolism have been proposed to prevent the occurrence of preeclampsia through multiple regulatory pathways.
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5 Clinical prospects and conclusions

In the pathogenesis of preeclampsia, the alternations of 
carbohydrates, lipids, amino acids and glycans are involved in the 
multiple classic mechanisms, the influence of which is significantly 
extensive. The main reason for the changes in metabolites, which still 
remains unclear though, is focused on the changes of relevant enzymes. 
However, the post-translational modification of proteins or other 
regulatory effects of metabolites have not been fully elucidated. Some 
newly proposed therapies which target nutrient metabolism have been 
shown promising in the prevention and treatment of preeclampsia in 
either animal models or patients. These findings reveal that metabolic 
abnormalities may involve in the pathophysiological mechanism of 
preeclampsia, which suggests that in the future researches, more 
specific metabolic pathways need to be explored in preeclampsia based 
on animals and in vitro models, which is of great significance to the 
development of new metabolic drugs for the alleviation of preeclamptic 
symptoms. Furthermore, large-scale cohort studies are urgently needed 
to validate the role of specific metabolites in prenatal diagnosis. These 
studies would help identify potential pathways and biomarkers critical 
to improving early detection and therapeutic strategies for preeclampsia.
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Glossary

BMI - body mass index

ATP - adenosine triphosphate

ROS - reactive oxygen species

2,3-BPG - 2,3-Bisphosphoglycerate

1,3-BPG - 1,3-Bisphosphoglycerate

3-BPG - 3-Bisphosphoglycerate

TCA - tricarboxylic acid

PGI2 - prostacyclin

TXA2 - thromboxin

PUFAs - polyunsaturated fatty acids

SCAD - short-chain acyl-coenzyme A dehydrogenase

LCPUFAs - long-chain polyunsaturated fatty acids

DHA - docosahexaenoic acid

AA - arachidonic acid

LCHAD - long chain omega-3 hydroxy CoA dehydrogenase

GSH - glutathione

Trp - tryptophan

Arg - arginine

Hcy - homocysteine

GSSG - glutathione oxidized

GPx - glutathione peroxidase

CAT - catalase

GSTT2 - Glutathione S-transferase theta 2

KYN - kynurenine

TPH - tryptophan hydroxylase

IDO - indolamine 2,3-dioxygenase

TDO - tryptophan2,3-dioxygenase

GCN2 - general control non-derepressible 2

eIF-2α - eukaryotic translation initiation factor-2α

GLK1 - master amino acid-sensing kinase 1

AhR - aromatic hydrocarbon receptor

MAO - monoamine oxidase

5-HIAA - 5-hydroxyindole acetic acid

NO - nitric oxide

NOS - nitric oxide synthase

GUC - guanylate cyclase

cGMP - guanosine cyclomonophosphate

ADMA - asymmetric dimethylarginine

DDAH - dimethylarginine dimethylamine hydrolase

MHM - methionine-homocysteine metabolism

MET - methionine

MTR - methyltransferase

5-MTHF - 5-methyltetrahydrofolate

MTRR - 5-methyltetrahydrofolate-homocysteine 
methyltransferase reductase

MTHFR - 5,10-methylenetetrahydrofolate reductase

THF - tetrahydrogen folic acid

SAM - S-adenosylhomocysteine

CBS - cystathionine β synthase

Cys - cysteine

2-ME - 2-methoxyestradiol

COMT - Catechol-O-methyltransferase

2-HE - 2-Hydroxyestradiol

sPE - severe preeclampsia

MMP-2/9 - matrix metalloproteinase-2/9

MET - metformin

HMGCR - 3-hydroxy-3-methylglutarate monoacyl-CoA reductase

EGCG - epigallocatechin gallate
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