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Background: Gut microbiota is reported to be  related to the onset of insulin 
resistance (IR) and type 2 diabetes mellitus (T2DM). The dietary index for gut 
microbiota (DI-GM) is a novel index for reflecting gut microbiota diversity. 
We aimed to evaluate the association of DI-GM with T2DM and IR.

Methods: This cross-sectional research comprised 10,600 participants aged 
≥20 from the National Health and Nutrition Examination Survey (NHANES) 
2007–2018. We employed weighted multivariable linear and logistic regression 
models to examine the correlation of DI-GM with T2DM and IR. Linear 
or nonlinear relationships were examined by restricted cubic spline (RCS) 
regression. Additionally, subgroup and sensitivity analyses were performed to 
ensure the reliability of the results. Mediation analysis explored the roles of body 
mass index (BMI) and inflammatory factors in these associations.

Results: Higher DI-GM were inversely associated with T2DM (OR = 0.93, 95%CI: 
0.89–0.98) and IR (OR = 0.95, 95%CI: 0.91–0.99) after adjusting for confounders. 
DI-GM ≥ 6 group showed significantly lower risks of T2DM (OR = 0.74, 95%CI: 
0.60–0.91) and IR (OR = 0.77, 95%CI: 0.62–0.95). RCS demonstrated a linear 
relationship between DI-GM and T2DM, as well as IR. DI-GM was also inversely 
correlated with the risk markers of T2DM. Mediation analysis showed that BMI 
and the systemic inflammation response index partly mediated the association 
of DI-GM with T2DM and IR, while the systemic immune-inflammation index 
mediated only the association with T2DM.

Conclusion: DI-GM is inversely associated with T2DM and IR, with BMI and 
inflammatory markers partly mediating this association.
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1 Introduction

The high incidence of diabetes has become a critical health 
problem worldwide. The global incidence is estimated at 9.3% of the 
adult population in 2019, with projections indicating a significant 
increase (1). Type 2 diabetes mellitus (T2DM) represents the 
predominant form of diabetes, the burden of T2DM extends beyond 
its health implications, imposing significant economic challenges 
on healthcare systems worldwide (2). Diabetes care accounts for 
one-quarter of healthcare expenditures, with 61% directly 
attributable to the disease in the U.S. (3). Additionally, insulin 
resistance (IR) is a pathological condition marked by reduced 
cellular responsiveness to insulin. IR is typically accompanied by 
hyperinsulinemia and is closely linked to the onset of T2DM (4). 
Therefore, early detection and timely management of T2DM and IR 
are imperative.

In recent years, studies of the gut microbiota have already 
become a hotspot, and its association with T2DM has been widely 
discussed. Multiple studies suggested that the gut microbiota was 
associated with the occurrence and progression of T2DM and 
could represent a promising therapeutic target (5, 6). Furthermore, 
several studies suggested that modulating gut microbiota 
through dietary interventions is a promising approach to 
improving host health (7). The dietary index for gut microbiota 
(DI-GM) is a new tool developed by Kase et al. (8) for reflecting 
the diversity of gut microbiota. They identified 14 dietary 
components, having a positive or a negative effect on gut 
microbiota by systematically reviewing the literature and using 
these components to calculate the DI-GM. Additionally, they 
demonstrated that DI-GM was significantly related to urinary 
enterolignans, highlighting an association with gut microbiota 
diversity. This tool may help to design effective dietary patterns 
to prevent or alleviate dysbiosis-related diseases. Currently, a few 
studies have explored the relationship between DI-GM and other 
medical conditions (9, 10). There is a lack of studies discussing 
the association of DI-GM with T2DM and IR. Therefore, it’s 
necessary to explore if healthy gut microbiota dietary pattern 
identified by DI-GM was associated with a reduced risk of 
T2DM and IR.

Obesity is a major T2DM risk factor, visceral fat 
accumulation leads to adipokines and pro-inflammatory 
cytokines secretion, which contributes to systemic inflammation 
and IR (11, 12). Chronic low-grade inflammation is usually 
regarded to play a crucial role in the progression of IR and 
T2DM (13). Studies indicated that gut microbiota disorders 
leading to increased intestinal permeability can trigger 
low-grade systemic inflammation, this is a crucial risk 
factor in the onset of IR and obesity, leading to T2DM development 
(14). Therefore, we  hypothesized that following a promoting 
healthy gut microbiota dietary pattern identified by DI-GM could 
mitigate T2DM and IR risk by reducing obesity and 
systemic inflammation.

This study aimed to investigate the correlation of DI-GM with 
T2DM and IR by utilizing data from the National Health and 
Nutrition Examination Survey (NHANES) and to investigate the 
mediation of BMI and inflammatory markers in this relationship. 
This study may offer new perspectives for the prevention and 
control of T2DM.

2 Materials and methods

2.1 Data sources and study population

All data obtained in this research is from the NHANES, which 
employs a cross-sectional, multistage, stratified, and subgroup 
probability sampling design to evaluate the nutritional and health 
conditions of the U.S. population.

We pooled six NHANES cycles data from 2007 to 2018 for this 
study, involving 34,770 participants aged ≥20 years. The exclusion of 
participants was determined based on the following criteria: (1) 
missing data on the diagnosis of T2DM (n = 19,429) and IR (n = 350); 
(2) missing information on DI-GM (n = 987); (3) participants were 
pregnant (n = 142); (4) participants with a weight of 0 (n = 835); (5) 
missing data on covariates (n = 2,427). Finally, 10,600 eligible 
participants were enrolled. The specific processes are shown in 
Figure 1.

2.2 Evaluation of the DI-GM

The dietary data are jointly gathered by the National Center for 
Health Statistics (NCHS) and the U.S. Department of Agriculture 
(USDA) through the What We Eat in America (WWEIA) survey 
(15). Trained surveyors utilize the computer-assisted USDA 
Automated Multiple-Pass Method to conduct irregular dietary 
recalls, asking participants about their consumption of beverages, 
foods, and dietary supplements from the previous day (16). An 
additional dietary recall was administered by telephone 
approximately 3–10 days following the initial assessment. An 
average of the values from both days was calculated for each 
diet component.

The DI-GM was constituted of 14 food items or nutrients, 
following the evaluation standards outlined in the article by Kase 
et  al., including coffee, green tea, fermented dairy, avocado, 
broccoli, chickpeas, cranberries, fiber, whole grains, and soybean as 
beneficial elements, while unfavorable elements included processed 
meat, red meat, a high-fat diet (≥ 40% energy from fat), and refined 
grains (8). Participants whose consumption was exceeding the 
sex-specific median for beneficial elements or below the sex-specific 
median for unfavorable elements were assigned a score of 1. 
Conversely, a score of 0 was given for consuming below the 
sex-specific median for beneficial elements or exceeding the 
sex-specific median for unfavorable elements. DI-GM is obtained 
by summing the scores for each element, yielding a range from 0 to 
14. Specific details are given in the Supplementary Table S1. Based 
on previous research, DI-GM scores were divided into three group: 
0–3, 4–5, and ≥ 6 points (9).

2.3 Outcomes

T2DM, IR, and associated risk markers, including fasting blood 
glucose (FBG, mmol/L), fasting serum insulin (FSI, μU/ml), and 
homeostasis model assessment of insulin resistance (HOMA-IR) (17, 
18) were considered as outcome variables.

In our study, T2DM was diagnosed as any of the following 
criteria: (1) participants with a self-reported diabetes diagnosis; 
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(2) FBG level ≥ 7.0 mmol/L; (3) 2-h oral glucose tolerance test 
(OGTT) plasma glucose ≥11.1 mmol/L; (4) a glycosylated 
hemoglobin A1c (HbA1c) level ≥ 6.5% (19). Although the 
NHANES database does not provide explicit information on the 
specific types of diabetes, this study likely enrolled a majority of 
T2DM subjects since the proportion of type 1 diabetes mellitus 
(T1DM) in adulthood is low.

IR was evaluated by HOMA-IR (HOMA-IR = FSI (μU/ml) * FBG 
(mmol/L) / 22.5). Based on previous studies, the values greater than 
or equal to the 75th percentile were diagnosed as IR 
(HOMA-IR > 4.53 in our study) (20).

2.4 Definitions of mediating variables

The determination of the anthropometric, complete blood 
count test and basic biochemical characteristics of the participants 
in NHANES have been reported in previous publications (21–24). 
Inflammatory markers included the Systemic Immune 
Inflammation Index (SII), the Systemic Inflammation Response 
Index (SIRI). SII and SIRI were widely used in research to quantify 
systemic inflammation, calculated by neutrophil count (NEUT), 
platelet count (PLA), lymphocyte count (LYM), and monocyte 
count (MONO). The calculation formulas are as follows: 

FIGURE 1

Participant screening flow chart.
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SII = (NEUT × PLA) / LYM, SIRI = (NEUT × MONO) / LYM 
(24–26).

BMI was calculated through the standard formula: BMI = weight/
height2 (27).

2.5 Covariates

Covariates were selected based on some published studies (9, 17, 
28). Therefore, we  included the following covariables: age, race, 
gender, education level, poverty-to-income ratio (PIR), marital status, 
smoking status, drinking status, physical activity (PA), BMI, whether 
they have hypertension, hyperlipidemia, hyperuricemia and 
cardiovascular disease (CVD). The definition and measurement of the 
covariates are shown in the Supplementary Appendix.

2.6 Statistical analysis

All analyses considered the fasting subsample weights 
(WTSAF2YR) and were divided by six to obtain pooled weights across 
six survey cycles, as this constituted the smallest subsample of the 
study, according to NHANES analysis guidelines.

Continuous variables are presented as mean ± standard deviation 
(SD) or median (interquartile range, IQR), and other variables are 
reported as weighted percentages (%). Differences between 
participants grouped by DI-GM scores (0–3, 4–5, ≥6) were analyzed 
using a weighted t-test (for continuous variables) and a weighted 
chi-square test (for categorical variables). Pairwise comparisons (eg, 
0–3 vs 4–5, 0–3 vs ≥ 6, and 4–5 vs ≥ 6) were considered to 
be statistically significant if the corresponding unadjusted pairwise 
p ≤ 0.017 (ie, < 0.05/3 for Bonferroni correction).

Multivariable weighted logistic and linear regression models were 
utilized to investigate the association of DI-GM with T2DM, IR, and 
the risk markers of T2DM (FBG, FSI, and HOMA-IR). The Odds 
ratios (ORs), Beta (β) values, and 95% confidence intervals were 
calculated, respectively. DI-GM was analyzed as a continuous variable 
and a grouped variable (0–3, 4–5, ≥6). Model 1 was unadjusted. 
Model 2 was adjusted by age, gender, and race. Model 3 was adjusted 
for PIR, marital status, education level, BMI, smoking status, drinking 
status, PA, hypertension, hyperlipidemia, hyperuricemia, and CVD 
based on Model 2.

Linear or non-linear associations of DI-GM with T2DM and IR 
were investigated by restricted cubic splines (RCS), adjusting for all 
confounding variables in model 3. Additionally, we  performed 
interaction and subgroup analyses to investigate potential confounders 
affecting the association of DI-GM with T2DM and IR. Subgroup 
analyses were detected by stratifying by sex, age, race, BMI, PA, 
hypertension, hyperuricemia, hyperlipidemia, and CVD. Mediation 
analyses (1,000 bootstraps) were conducted to assess the mediation 
effect of BMI and inflammatory markers on the association of DI-GM 
with T2DM and IR. To explore the potential inflammatory pathways, 
we also conducted mediation analyses on white blood cells (WBC) 
and the inflammatory cells included in the two indicators (NEUT, 
LYM, and MONO).

Sensitivity analyses were conducted to evaluate the reliability of 
the results. First, we applied multiple imputation (MI) by chained 
equations to input the missing data on covariates (9, 28). Subsequently, 

the imputed dataset was transferred to weighted multifactor regression 
analysis. Second, unweighted regression analyses were conducted. 
Third, further adjustments were made for liver and kidney function 
(alanine aminotransferase, aspartate aminotransferase, γ-glutamyl 
transpeptidase, alkaline phosphatase, serum creatinine, blood urea 
nitrogen) and total energy intake (kcal/day) to evaluate whether these 
factors influenced the association of DI-GM with T2DM and 
IR. Finally, given the close association between CVD, hyperuricemia 
and T2DM, we performed regression analyses again after excluding 
participants who had CVD or hyperuricemia at baseline.

All statistical analyses were completed with R software version 
4.2.2 and Free Statistics software version 2.0. A two-sided p < 0 0.05 
was considered as statistically significant.

3 Results

3.1 Participants characteristics

The baseline characteristics of participants stratified by the 
DI-GM scores are shown in Table 1. The mean age of the participants 
was 47.10 ± 16.71 years. The proportion of participants diagnosed 
with T2DM was 15.01%, while 21.22% were defined as having 
IR. Compared with the group with the lowest DI-GM level, 
participants in the highest DI-GM group were predominantly older, 
predominantly female, Non-Hispanic White, and more likely to 
be married or living with a partner. Additionally, this group exhibited 
higher levels of physical activity, education, and PIR. They also had a 
lower BMI, were less likely to smoke or engage in heavy drinking, and 
had a lower prevalence of T2DM and IR.

3.2 Associations of DI-GM with T2DM and 
IR

Table  2 illustrates the associations of DI-GM with T2DM and 
IR. The results of analysis when including DI-GM as a continuous 
variable have shown that DI-GM is inversely correlated with T2DM 
occurrence (OR = 0.93, 95% CI = 0.90, 0.97), the association remained 
robust after adjustment (OR = 0.93, 95% CI = 0.89, 0.98), and so was the 
association of DI-GM with IR (OR = 0.95, 95% CI = 0.91, 0.99). 
Moreover, after grouping DI-GM, DI-GM ≥ 6 group participants were 
inversely associated with the risk of T2DM, compared to those in the 
lowest DI-GM group in model 3 (OR = 0.74, 95% CI = 0.60, 0.91), and 
the trend test was significant (P for trend = 0.006). Meanwhile, the 
relationship between DI-GM and IR was also significantly negative 
(OR = 0.77, 95% CI = 0.62, 0.95) with the P for trend = 0.014 in model 3.

Figure  2 illustrates a visual representation of the relationship 
between DI-GM and T2DM as well as IR. The RCS revealed a linear 
association between DI-GM and T2DM (non-linearity: p = 0.953), as 
well as IR (non-linearity: p = 0.277) in the fully adjusted models.

3.3 Relationship between DI-GM and risk 
markers of T2DM

Table  3 presents the relationship between DI-GM and risk 
markers for T2DM. The DI-GM was inversely associated with FBG 
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TABLE 1 Weighted characteristics of participants grouped by the DI-GM values.

Variables Overall 0–3 4–5 ≥6 p-value

n 10,600 2,602 5,036 2,962

Age (years), mean ± SD 47.10 ± 16.71 45.31 ± 16.59b 46.35 ± 16.75 c 49.66 ± 16.47 <0.001

Gender (%) 0.006

  Male 50.00 53.20b 50.06 47.44

  Female 50.00 46.80 49.94 52.56

Race (%) <0.001

  Non-Hispanic Black 10.36 14.19a, b 10.83c 6.65

  Non-Hispanic White 69.38 65.74 66.93 76.00

  Mexican American 8.07 8.55 9.33 5.74

  other 12.20 11.52 12.91 11.61

Education level (%) <0.001

  Less than High school 14.77 17.99a, b 16.09c 10.21

  High school grad or 

equivalent
22.68 29.48 22.00 18.50

  College or above 62.55 52.53 61.91 71.29

Marital status (%) 0.001

  Married or living with 

partner
64.18 62.04b 63.04c 67.62

  Other 35.82 37.96 36.96 32.38

PIR (%) <0.001

  <1.3 20.76 24.54a, b 23.09c 14.21

  1.3–3.5 36.18 40.94 35.27 33.91

  >3.5 43.06 34.53 41.64 51.88

BMI (kg/m2) (%) <0.001

  <25 29.71 24.65a, b 29.05c 34.63

  ≥25 70.29 75.35 70.95 65.37

Smoking status (%) <0.001

  Never 55.51 54.79b 55.23c 56.49

  Former 25.46 23.58 23.97 29.25

  Current 19.03 21.63 20.80 14.26

Drinking status (%) <0.001

  Never 10.13 10.20b 10.94c 8.79

  Former 38.44 34.01 36.29 45.21

  Mild 17.71 17.82 17.45 18.04

  Moderate 21.37 24.76 22.60 16.85

  Heavy 12.35 13.22 12.72 11.11

PA (%) <0.001

  No 24.98 27.25b 26.18c 21.34

  Yes 75.02 72.75 73.82 78.66

Hypertension (%) 0.727

  No 62.34 61.44 62.59 62.64

  Yes 37.66 38.56 37.41 37.36

Hyperlipidemia (%) 0.792

  No 29.47 28.96 29.35 30.04

  Yes 70.53 71.04 70.65 69.96

(Continued)
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(β = −0.03, 95% CI = −0.05, 0.00), FSI (β = −0.19, 95% CI = −0.34, 
−0.04), and HOMA-IR (β = −0.10, 95% CI = −0.16, −0.04) as a 
continuous variable after adjusting for all confounders. Moreover, 
when used as a categorical variable, the lowest DI-GM group was used 

as a reference, the associations of DI-GM ≥ 6 with FBG (β = −0.16, 
95% CI = −0.27, −0.06), FSI (β = −0.86, 95% CI = −1.66, −0.06), and 
HOMA-IR (β = −0.48, 95% CI = −0.81, −0.15) were also significant 
negative, with all P for trend <0.05 in the full adjusted model.

TABLE 1 (Continued)

Variables Overall 0–3 4–5 ≥6 p-value

Hyperuricemia (%) 0.402

  No 79.32 78.82 78.89 80.38

  Yes 20.68 21.18 21.11 19.62

CVD (%) 0.460

  No 91.29 91.13 90.98 91.92

  Yes 8.71 8.87 9.02 8.08

T2DM (%) 0.004

  No 84.99 82.81b 84.95 86.74

  Yes 15.01 17.19 15.05 13.26

IR (%) <0.001

  No 78.78 75.72b 77.56c 83.06

  Yes 21.22 24.28 22.44 16.94

FBG (mmol/L), mean ± SD 5.91 ± 1.65 6.06 ± 1.94a, b 5.89 ± 1.61 5.83 ± 1.47 <0.001

HbA1c (%), mean ± SD 5.62 ± 0.92 5.69 ± 1.06a, b 5.62 ± 0.90 5.57 ± 0.82 <0.001

FSI (μU/ml), median [IQR] 9.45 [6.00, 15.38] 10.16 [6.46, 16.85] b 9.63 [6.12, 15.77] c 8.55 [5.48, 13.67] <0.001

HOMA-IR, median [IQR] 2.39 [1.43, 4.12] 2.65 [1.58, 4.43]a, b 2.45 [1.46, 4.23] c 2.12 [1.33, 3.68] <0.001

Mean ± SD and Median (IQR) for continuous variables, p-value was calculated by weighted t-test. % for categorical variables, p-value was calculated by weighted chi-square test.
a0–3 vs 4–5 group, the significance level is based on Bonferroni-adjusted p < 0.017.
b0–3 vs ≥ 6 group, the significance level is based on Bonferroni-adjusted p < 0.017.
c4–5 vs ≥ 6 group, the significance level is based on Bonferroni-adjusted p < 0.017.
DI-GM, dietary index for gut microbiota; PIR, Poverty Income Ratio; PA, Physical Activity; CVD, Cardiovascular Disease; T2DM, type 2 diabetes mellitus; IR, insulin resistance; FBG, fasting 
blood glucose; HbA1c, glycosylated hemoglobin A1c; FSI, fasting serum insulin; HOMA-IR, homeostasis model assessment of insulin resistance; SD, Standard Deviation; IQR, Interquartile Range.

TABLE 2 The associations of DI-GM with T2DM and IR.

Outcomes Model 1
OR (95%CI)

p-value Model 2
OR (95%CI)

p-value Model 3
OR (95%CI)

p-value

T2DM

DI-GM continuous 0.93 (0.90, 0.97) <0.001 0.89 (0.85, 0.93) <0.001 0.93 (0.89, 0.98) 0.005

DI-GM group

  0–3 Reference Reference Reference

  4–5 0.85 (0.74, 0.98) 0.030 0.80 (0.68, 0.93) 0.004 0.85 (0.73, 1.00) 0.047

  ≥6 0.74 (0.62, 0.87) <0.001 0.60 (0.50, 0.73) <0.001 0.74 (0.60, 0.91) 0.006

P for trend <0.001 <0.001 0.006

IR

DI-GM continuous 0.91 (0.87, 0.94) <0.001 0.90 (0.87, 0.94) <0.001 0.95 (0.91, 0.99) 0.030

DI-GM group

  0–3 Reference Reference Reference

  4–5 0.90 (0.77, 1.06) 0.199 0.89 (0.76, 1.05) 0.161 0.98 (0.82, 1.17) 0.798

  ≥6 0.64 (0.53, 0.77) <0.001 0.62 (0.51, 0.75) <0.001 0.77 (0.62, 0.95) 0.016

P for trend <0.001 <0.001 0.014

Model 1: adjusted for no covariates; Model 2: adjusted for age, gender, race; Model 3: adjusted for all covariates. (age, gender, race, education level, marital status, PIR, smoking status, drinking 
status, PA, BMI, hypertension, hyperlipidemia, hyperuricemia and CVD).
OR, odds ratio; 95% CI, 95% confidence interval.
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3.4 Subgroup analyses

Subgroup and interaction analyses were conducted for the 
association of DI-GM with T2DM and IR based on age, gender, race, 
BMI, PA, Hypertension, Hyperuricemia, Hyperlipidemia, and 
CVD. As shown in Figure 3, subgroup analyses illustrated the stability 
of the results. We saw no significant interaction between DI-GM and 
T2DM (All P for interaction>0.05), nor between DI-GM and IR (All 
P for interaction >0.05).

3.5 Mediation analyses

We conducted the mediation analyses to explore the mediating 
effect of BMI and inflammatory markers. As shown in Figure 4, BMI 
significantly mediated the associations of DI-GM with T2DM and IR, 
explaining 9.08%, and 26.5%, respectively (p < 0.001). Meanwhile, two 
inflammatory markers had a significant mediation on the association 
between DI-GM and T2DM, SII and SIRI explained 2.07% (p = 0.026), 
and 2.16% (p  = 0.008), respectively. In addition, SIRI partially 
mediated the relationship between DI-GM and IR, with a mediation 
ratio of 2.22% (p = 0.008), and SII had no significant mediating effect 
(p  > 0.05). Further analysis revealed that NEUT mediated 6.31% 
(p < 0.001) of the association between DI-GM and T2DM and 8.07% 
(p < 0.001) of the association with IR. No significant mediation effects 
were observed for other inflammatory cells (all p > 0.05) as shown in 
Supplementary Figure S1.

3.6 Sensitivity analyses

In addition, sensitivity analyses were implemented. Firstly, 
we  used multiple imputation for missing data on covariates, 

multivariable regression analyses were conducted subsequently. The 
results were shown in Supplementary Tables S2, S3, a significant 
inverse correlation between DI-GM and T2DM, IR, and risk markers 
of T2DM was found, which was consistent with the result of the main 
analysis. Secondly, the results of the unweighted multivariate 
regression analyses were similar to the weighted analyses, this further 
illustrates the robustness of the results, as shown in 
Supplementary Tables S4, S5. Thirdly, when further adjusting for the 
liver and kidney function indicators and total energy intake, 
respectively, the results remained unchanged significantly 
(Supplementary Tables S6, S7). Lastly, the results remained robust in 
participants without CVD (Supplementary Tables S8, S9) or 
hyperuricemia (Supplementary Tables S10, S11).

4 Discussion

The results of our study, which included 10,600 participants, 
demonstrated that DI-GM (continuous variable) and DI-GM ≥ 6 
group were significantly inversely correlated with T2DM, IR, and 
the risk markers of T2DM (FBG, FSI, and HOMA-IR), the 
correlation remained significant after adjusting the covariates. RCS 
visualized a linear correlation of DI-GM with T2DM and 
IR. Moreover, subgroup and sensitivity analyses were conducted to 
further validate the reliability of the primary results. Mediation 
analysis showed that BMI and two inflammatory markers (SII and 
SIRI) partly mediated the associations of DI-GM with 
T2DM and IR.

The association between gut microbiota and T2DM has attracted 
much attention recently. Several researches have demonstrated that 
individuals with T2DM frequently exhibit a unique gut microbiota 
composition compared to healthy controls. For example, a study 
conducted on Indian individuals with T2DM identified alterations in 

FIGURE 2

Association of DI-GM with T2DM and IR by RCS. (A) T2DM; (B) IR.
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eubacterial, archaeal, and eukaryotic components, highlighting 
pervasive dysbiosis in newly diagnosed and long-standing diabetic 
patients (29). Furthermore, metagenomic analyses have identified 
specific bacterial taxa associated with metabolic dysfunction in 
individuals with T2DM, such as the increased abundance of Firmicutes 
and diminished levels of butyrate-producing bacteria like the 
Ruminococcaceae (29). The animal experiment indicated significant 
alterations in gut microbial diversity and metabolite profiles, which 
were found to be closely associated with glucose metabolism and IR 
(30). Moreover, Mendelian randomization studies have further 
clarified the possible causality between gut microbiota and T2DM, 
identifying specific genera that may influence the risk of developing 
the disease (31, 32). These findings emphasize the potential for 
targeting gut microbiota as a treatment approach for managing T2DM 
and its associated complications.

DI-GM is a newly developed dietary index to capture dietary 
patterns that are beneficial or harmful to gut health. Our study 
preliminarily established a linear negative relationship between 
DI-GM and T2DM as well as IR. This provides some evidence that 
adhering to a dietary pattern promoting healthy gut microbiota 
identified by DI-GM may reduce the occurrence of T2DM and IR. The 
impact of diet on gut microbiota and its potential role in T2DM 
development is widely discussed. Recent researches have revealed that 
dietary patterns play important roles in affecting the gut microbiota 

composition and function, which can subsequently affect metabolic 
health and the development of conditions such as T2DM (33, 34). For 
instance, high-fiber diets were demonstrated to be  related to 
improvements in gut microbiota diversity and the enrichment of 
beneficial bacteria, which can enhance glucose metabolism and 
reduce systemic inflammation in T2DM patients (35). Additionally, 
the Mediterranean diet, rich in polyphenols and healthy fats, has been 
shown to positively modulate gut microbiota composition, potentially 
lowering T2DM risk (36). Moreover, probiotic supplementation has 
been shown to significantly impact oxidative stress and inflammation 
biomarkers in diabetic patients (37). These findings suggested a 
promising new avenue for dietary interventions in managing T2DM.

Our findings revealed that BMI and inflammation markers (SII 
and SIRI) may mediated the relationship between DI-GM and 
T2DM. It is noteworthy that SII and SIRI mediated only approximately 
2% of this association. However, we should not overlook this finding, 
as it provides theoretical support and direction for future longitudinal 
studies or interventional trials. Gut microbiota dysbiosis was reported 
to result in the excessive leakage of gram-negative bacterial products, 
such as lipopolysaccharides (LPS), which promote systemic low-grade 
inflammation and elevate the risk of metabolic disorders. This process 
leads to local endotoxemia in the small intestine and colon, 
particularly with an influx of gram-negative genera, including 
Bacteroides, Prevotella, and Escherichia. Such microbial changes 

TABLE 3 The association between DI-GM and risk markers of T2DM.

Outcomes Model 1
β (95% CI)

p-value Model 2
β (95% CI)

p-value Model 3
β (95% CI)

p-value

FBG

DI-GM continuous −0.04 (−0.07, −0.02) <0.001 −0.06 (−0.08, −0.03) <0.001 −0.03 (−0.05, 0.00) 0.028

DI-GM group

  0–3 Reference Reference Reference

  4–5 −0.16 (−0.26, −0.07) <0.001 −0.18 (−0.27, −0.09) <0.001 −0.13 (−0.22, −0.05) 0.003

  ≥6 −0.23 (−0.33, −0.12) <0.001 −0.28 (−0.38, −0.18) <0.001 −0.16 (−0.27, −0.06) 0.002

P for trend <0.001 <0.001 0.003

FSI

DI-GM continuous −0.55 (−0.71, −0.39) <0.001 −0.53 (−0.68, −0.37) <0.001 −0.19 (−0.34, −0.04) 0.012

DI-GM group

  0–3 Reference Reference Reference

  4–5 −0.45 (−1.40, 0.50) 0.346 −0.46 (−1.41, 0.49) 0.341 0.03 (−0.84, 0.89) 0.951

  ≥6 −2.30 (−3.13, −1.47) <0.001 −2.22 (−3.04, −1.39) <0.001 −0.86 (−1.66, −0.06) 0.035

P for trend <0.001 <0.001 0.022

HOMA-IR

DI-GM continuous −0.21 (−0.27, −0.15) <0.001 −0.21 (−0.27, −0.15) <0.001 −0.10 (−0.16, −0.04) 0.002

DI-GM group

  0–3 Reference Reference Reference

  4–5 −0.30 (−0.69, 0.09) 0.127 −0.31 (−0.70, 0.07) 0.110 −0.15 (−0.51, 0.22) 0.421

  ≥6 −0.92 (−1.24, −0.59) <0.001 −0.94 (−1.27, −0.61) <0.001 −0.48 (−0.81, −0.15) 0.006

P for trend <0.001 <0.001 0.003

Model 1: adjusted for no covariates; Model 2: adjusted for age, gender, race; Model 3: adjusted for all covariates. (age, gender, race, education level, marital status, PIR, smoking status, drinking 
status, PA, BMI, hypertension, hyperlipidemia, hyperuricemia and CVD).
FBG, fasting blood glucose; FINS, fasting serum insulin; HOMA-IR, homeostasis model assessment of insulin resistance.
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represent a critical risk factor for obesity and IR, ultimately 
contributing to the development of T2DM (14, 38, 39). In addition, 
gut dysbiosis can lead to intestinal barrier disruption, permitting 
excessive leakage of LPS into the bloodstream. This triggers an 
inflammatory response, leading to IR and disrupted glucose 
homeostasis (14, 40, 41). These findings are consistent with our 
results. Our further analysis also revealed a significant mediating role 
of NEUT in the relationship between DI-GM and T2DM or 
IR. Previous studies also suggest that NEUT play an important role in 
the occurrence of IR, via secreted elastase (42). However, due to the 
cross-sectional study design, we need to interpret these findings with 
caution. Further studies are necessary to validate these findings and 
investigate the underlying mechanisms.

This study has several strengths. Firstly, DI-GM is a new novel 
dietary index, we are the first to investigate its correlation with T2DM 
and IR, as far as we  know. Secondly, all data we  used were from 

NHANES, a comprehensive nationally representative database, which 
utilizes a multistage sampling methodology to improve the reliability 
and robustness of the findings. Thirdly, potential confounders were 
adjusted to ensure consistent and reliable conclusions across various 
subgroups. Furthermore, multiple sensitivity analyses were conducted 
to evaluate the stability of the findings.

Several limitations exist in this study. Firstly, the cross-sectional 
design was unable to draw causal relationships. Secondly, although 
a variety of confounders were considered, unknown residual 
confounding factors cannot be excluded. Thirdly, dietary data were 
obtained through self-reported 24-h dietary recalls, which are 
prone to recall bias. However, potential errors were mitigated by 
averaging the results from two 24-h dietary recall interviews. Lastly, 
although our study did not include individuals under the age of 20, 
which would reduce the misclassification of T1DM, the possibility 
of residual inclusion of T1DM cases cannot be eliminated.

FIGURE 3

Subgroup analysis of the association of DI-GM with T2DM and IR. (A) T2DM; (B) IR.
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5 Conclusion

The newly proposed dietary index, i.e., DI-GM, was negatively 
correlated with the prevalence of T2DM, IR, and the risk markers of 
T2DM (FBG, FSI, HOMA-IR). In addition, we found the mediating 

role of BMI and inflammatory markers (SII and SIRI). Our results 
suggest that DI-GM is expected to identify the dietary patterns that 
are beneficial to gut health, thus, reducing the incidence of 
T2DM. Additional studies are required to verify and support 
our findings.

FIGURE 4

The mediation analysis of BMI, inflammatory biomarkers, and NEUT on the association of DI-GM with T2DM and IR. The graphs in (A–D) represented 
the mediating role of BMI, SII, SIRI, and NEUT, respectively.
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