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Background: While the role of specific nutrients in cancer is established, 
associations between comprehensive between dietary nutrient intake and 
cancer presence remain underexplored. This cross-sectional study investigates 
global dietary nutrient profiles in relation to solid and blood cancers.

Methods: A total of 42,732 mobile adults from the National Health and Nutrition 
Examination Survey (NHANES, 2001–2023) were enrolled in this study. The 
potential associations of dietary intakes of 34 nutrients and 4 common trace 
components with cancer presence were investigated by weighted logistic 
regression and restricted cubic spline.

Results: Higher intake of saturated fatty acid (OR = 1.1082, 95% CI: 
1.0110–1.2146), β-carotene (OR = 1.0431, 1.0096–1.0777) and vitamin K 
(OR = 1.0370, 1.0094–1.0654) was positively associated with overall cancer 
presence, while phosphorus intake (OR = 0.9016, 0.8218–0.9892) showed 
a protective association. For solid tumors, dietary intakes of saturated fatty 
acid (OR = 1.1099), α-carotene (OR = 1.0353), β-carotene (OR = 1.0484), and 
vitamin K (OR = 1.0405) exhibited positive associations. Retinol intake was linked 
to blood carcinoma (OR = 1.0935, 1.0222–1.1698). Dose–response analyses 
revealed linear relationships without non-linear thresholds.

Conclusion: Specific dietary nutrients, notably saturated fats, carotenoids, and 
vitamin K, are associated with increased cancer presence, whereas phosphorus 
intake is associated with the reduced cancer presence. Due to the cross-
sectional nature of the study and the measurement of dietary intake after 
cancer diagnosis, a causal relationship could not be established. These findings 
underscore the need for longitudinal studies to establish causality and inform 
dietary interventions in cancer management.
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Introduction

Cancer is the second leading cause of death on a global scale (1), with projections 
indicating a rising cancer-related disease burden over the coming decades (2). In 2024, the 
United States anticipates 2,001,140 new cancer cases and 611,720 deaths (3). By 2040, annual 
global cases may reach 29.9 million, with 15.3 million fatalities (4). Despite therapeutic 
advances, cancer biology remains complex (5), and the tumor microenvironment dynamically 
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supports progression (6), complicating treatment. Diet critically 
influences tumor metabolism (7, 8), as nutrient adjustments alter 
tumor resource availability (9). Cancer cells adapt to nutrient scarcity 
by disrupting host homeostasis (10). Nutrient-deprivation therapies 
show broad efficacy (11–14), but benefits are short-lived due to tumor 
metabolic plasticity—for example, recruiting nerves to sustain growth 
under nutrient stress (14).

Solid tumors (e.g., breast, colorectal cancers) exploit stromal 
interactions and angiogenesis in nutrient-poor settings (14, 15). 
Conversely, blood cancers (e.g., leukemia, lymphoma) utilize systemic 
nutrients via bone marrow and circulation (16). Leukemia cells 
depend on lipid metabolism (17), while solid tumors reprogram 
glucose/glutamine pathways (18). These differences suggest cancer-
specific nutritional strategies. Importantly, both cancer types share 
oxidative stress modulation and metabolic flexibility during dietary 
changes (19). Saturated fatty acids drive progression in solid tumors 
(breast, prostate, and colorectal) (20) and leukemia (21), urging cross-
category dietary studies. Thus, understanding how combined nutrients 
regulate cancers is a translational priority.

Studies have investigated isolated nutrients: dietary fiber (22, 23), 
fatty acids (20, 24–26), β-carotene (27, 28), vitamin D (29–31), 
vitamin K (32, 33), caffeine (34, 35), selenium (36, 37), and others 
(38–40). Meta-analyses confirm nutrient-cancer links (41), but 
mechanisms lack consensus. Three gaps persist: First, research favors 
solid tumors (24, 42), neglecting blood cancers. Second, most studies 
focus on single nutrients, not dietary patterns. Third, cross-cancer 
analyses are methodologically limited—e.g., 30-nutrient studies on 
gynecological cancers (43), 15-micronutrient assessments in 
endometrial cancer (44), or 150-factor machine learning models in 
cervical cancer (45). While revealing specific associations, these lack 
systematic comparisons between solid and blood cancers.

In the present study, we sought to explore the association of global 
dietary nutrient intake with the presence of cancer, solid cancer, and 
blood cancers. To this end, the National Health and Nutrition 
Examination Survey (NHANES, 2001–2023) was utilized as a 
database, as it is recognized as an internationally authoritative, 
population-based survey. The analysis focused on the relationship 
between dietary nutrient intake and cancer among participating 
American populations. Furthermore, we  sought to refine our 
understanding of the relationship between specific dietary nutrients 
and the presence of cancer, taking into account global dietary intake. 
A comprehensive understanding of the relationship between dietary 
nutrient intake and cancer, particularly solid and blood cancer, will 
provide a critical adjunct to subsequent cancer treatment.

Methods

Study population

The National Health and Nutrition Examination Survey 
(NHANES) is a nationally representative U.S. health survey that 
annually collects demographic, dietary, and clinical data from 
approximately 10,000 mobile adults (46). For this analysis, a total of 
42,732 participants (2001–2023 cycles) meeting three criteria: For 
this analysis, we  included 42,732 participants (2001–2023 cycles) 
meeting three criteria: (1) age ≥ 20 years; (2) complete cancer 

diagnosis records and dietary assessments; (3) full covariate data 
[including age, sex, race, immigration status, education level, poverty-
income ratio (PIR), marital status, health insurance, Smoking status, 
BMI, physical activity level, and total energy intake]. Individuals 
lacking critical information were excluded. Study reporting followed 
STROBE guidelines (47), with participant selection detailed in 
Figure 1.

Dietary assessment

Nutrient intake was assessed using two consecutive 24-h dietary 
recalls from NHANES questionnaires (48). The geometric mean of 
both recordings was calculated to account for day-to-day variability 
(49). The first recall occurred in-person at Mobile Examination 
Centers (MEC), followed by a telephone-administered second 
recall (50).

Initially, the NHANES data from 2001 to 2023 was merged 
(comprising a total of 11 cycles). Subsequently, subjects were 
subjected to a multifaceted screening process, stratifying them based 
on their cancer-related information, dietary intake data, socio-
demographic characteristics, lifestyle habits, and BMI. This 
comprehensive approach ultimately resulted in the enrollment of 
42,732 subjects.

We analyzed 38 dietary components categorized as: 
Macronutrients: Protein, Carbohydrate, Total sugars, Dietary fiber, 
Total fat, Saturated fatty acids (SFA), Monounsaturated fatty acids 
(MUFA), Polyunsaturated fatty acids (PUFA), Cholesterol; Vitamins: 
Vitamin E, Retinol, Vitamin A, α-carotene, β-carotene, 
β-cryptoxanthin, Lycopene, Lutein + zeaxanthin, Thiamin (B1), 
Riboflavin (B2), Niacin, Folate, Vitamin B12, Ascorbic acid (C), 
Vitamin K; Minerals: Calcium, Phosphorus, Magnesium, Iron, Zinc, 
Copper, Sodium, Potassium, Selenium; Other: Caffeine, Theobromine, 
Moisture, Alcohol.

Assessment of solid cancer and blood 
cancer

The presence of carcinoma was determined by the question: ‘Have 
you  ever been told by a doctor or other health professional that 
you had cancer or a malignancy of any kind?’. The question ‘What 
kind of cancer was it?’ was used to determine whether the cancer was 
solid or blood. Participants reporting blood-related malignancies 
(‘Blood’, ‘Leukemia’, or ‘Lymphoma’) were classified as blood cancer 
cases (51). All other cancer types were categorized as solid tumors 
based on standardized classifications (52, 53).

Covariates

We adjusted for covariates spanning three domains: 
Demographics: Age, sex, race/ethnicity (Hispanic, non-Hispanic 
White, non-Hispanic Black, other), and immigration status; 
Socioeconomic: Education level (<high school, high school, >high 
school), PIR (<1, 1–3, >3), marital status, and health insurance; 
Lifestyle/Clinical: Smoking status (never/former/current), BMI, 
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physical activity level (sedentary/moderate/vigorous), total 
energy intake.

Statistical analysis

We performed weighted logistic regression to evaluate 
associations between nutrient intakes and the presence of cancer 
calculating adjusted odds ratios (ORs) with 95% confidence intervals 
(CIs). NHANES dietary weights were applied to ensure national 
representativeness. To explore potential non-linear relationships, 
restricted cubic splines (RCS) with four knots were modeled for 
significant nutrients. Continuous variables were summarized as 
median (interquartile range) and categorical variables as frequency 
(%). Between-group comparisons used Pearson’s χ2 test for categorical 
data and Kruskal–Wallis test for non-normally distributed continuous 
variables. Analyses were conducted using SPSS 29.0 (descriptive 
statistics), Stata/MP 18.0 (regression modeling), and R 4.4.2 (RCS 
analysis), with statistical significance set at two-tailed p < 0.05.

Results

Baseline information and dietary nutrient 
intakes of the study participants

The baseline sociodemographic characteristics of all 
participants are summarized in Table 1. During the nearly 20-year 
period under consideration, the prevalence of cancer in the US 
population was 10.16% (4,342/42,732), with 9.85% (4,207/42,732) 
for solid cancers and 0.31% (135/42,732) for blood cancers. 
Compared with participants without cancer, those with cancer were 
more likely to be older (p < 0.001), to have lower energy intake 
(p < 0.001), to be  female (p < 0.001), to be non-Hispanic White  
(p < 0.001), to live in the United States (p < 0.001), were more likely 
to be married or living with a partner (p = 0.012), had a higher 
proportion of PIR >3 (p < 0.001) and insurance (p < 0.001), were 
former smokers, and had moderate physical activity or sedentary 
habits (p < 0.001). These trends were almost identical for solid and 
blood cancers.

FIGURE 1

Flowchart for the inclusion of participants.
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TABLE 1 Characteristics of participants stratified by any “Cancer Diagnosis,” “Solid Cancer Only” and “Blood Cancer Only.”

Characteristic Any cancer diagnosis Solid cancer only Blood cancer only

Yes 
(N = 4,342)

No 
(N = 38,390)

P-value2 Yes 
(N = 4,207)

No 
(N = 38,525)

P-value Yes (N = 135) No 
(N = 42,597)

P-value

Age (years), median (IQR)1 65(53, 74) 44(32, 57) <0.001 65(54, 74) 44(32, 57) <0.001 53(40, 68) 46(33, 60) 0.005

BMI (kg/m2), median (IQR) 28(25, 33) 28(24, 33) 0.2 28(25, 33) 28(24, 33) 0.2 28(25, 32) 28(24, 33) 0.3

Energy (kcal), median (IQR) 1,842(1,462, 2,357) 1,988(1,528, 2,579) <0.001 1,842(1,454, 2,347) 1,988(1,528, 2,579) <0.001 1,772(1,579, 2,544) 1,974(1,520, 2,551) 0.4

Male, n (%) 2,021(43%) 18,485(49%) <0.001 1,948(43%) 18,558(49%) <0.001 73(51%) 20,433(48%) 0.6

Race <0.001 <0.001 0.022

  Hispanic 467(4.8%) 9,446(15%) 448(4.7%) 9,465(15%) 19(7.3%) 9,894(14%)

  Non-Hispanic White 3,084(86%) 16,749(66%) 2,996(86%) 16,837(66%) 88(80%) 19,745(68%)

  Non-Hispanic Black 567(5.2%) 8,250(12%) 547(5.1%) 8,270(12%) 20(7.8%) 8,797(11%)

  Others 224(4.0%) 3,945(7.8%) 216(4.0%) 3,953(7.7%) 8(4.5%) 4,161(7.4%)

Immigrant (vs. Indigenous) 516(7.2%) 9,997(17%) <0.001 501(7.1%) 10,012(17%) <0.001 15(8.5%) 10,498(16%) 0.068

Education level, n (%) <0.001 <0.001 0.4

  <High school 801(12%) 8,743(15%) 778(12%) 8,766(15%) 23(10%) 9,521(15%)

  High school 938(21%) 8,835(24%) 904(21%) 8,869(24%) 34(23%) 9,739(24%)

  >High school 2,603(68%) 20,812(61%) 2,525(68%) 20,890(61%) 78(67%) 23,337(62%)

PIR <0.001 <0.001 0.028

  <1 561(9.2%) 7,874(15%) 542(9.1%) 7,893(15%) 19(11%) 8,416(14%)

  1 to 3 1,803(33%) 15,826(36%) 1,756(33%) 15,873(36%) 47(25%) 17,582(35%)

  >3 1,978(58%) 14,690(50%) 1,909(58%) 14,759(50%) 69(63%) 16,599(50%)

Married/Living with partner (vs. others), n (%) 2,593(65%) 23,010(63%) 0.012 2,516(66%) 23,087(63%) 0.011 77(63%) 25,526(63%) >0.9

Insurance, (Yes, n, %) 4,113(95%) 30,449(82%) <0.001 3,990(95%) 30,572(82%) <0.001 123(92%) 34,439(84%) 0.037

Smoking, n (%) <0.001 <0.001 0.4

  Never 1,991(47%) 21,533(56%) 1,914(47%) 21,610(56%) 77(60%) 23,447(55%)

  Former 1,731(38%) 8,928(23%) 1,692(38%) 8,967(23%) 39(27%) 10,620(25%)

  Current 620(15%) 7,929(20%) 601(15%) 7,948(20%) 19(14%) 8,530(20%)

Physical activity, n (%) <0.001 <0.001 0.11

  Sedentary 2,108(41%) 15,093(35%) 2,042(41%) 15,159(35%) 66(44%) 17,135(36%)

  Moderate 1,371(35%) 10,395(27%) 1,335(35%) 10,431(27%) 36(31%) 11,730(28%)

  Vigrous 863(24%) 12,902(38%) 830(24%) 12,935(38%) 33(25%) 13,732(36%)

1Median (Q1, Q3); n (unweighted) (%).
2Design-based Kruskal–Wallis test; Pearson’s X^2: Rao and Scott adjustment.
“Any Cancer Diagnosis”: Participants with any cancer type (including both solid and blood cancers); “Solid Cancer Only”: Participants diagnosed exclusively with solid tumors; “Blood Cancer Only”: Participants diagnosed exclusively with hematologic malignancies.
Lutein and zeaxanthin (p < 0.001), vitamin C (p = 0.016), vitamin K (p < 0.001), caffeine (p < 0.001). Bold indicates statistically significant. 
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As illustrated in Table 2, a clear distinction emerges in the dietary 
nutrient intake patterns between cancer and non-cancer participants. 
Compared to non-cancer participants, patients with cancer 
consumed lower amounts of protein (p < 0.001), carbohydrates 
(p < 0.001), total sugars (p < 0.001), total fat (p < 0.001), SFA 
(p = 0.001), MUFA (p < 0.001), PUFA (p < 0.001), cholesterol 
(p = 0.001), lycopene (p < 0.001), vitamin B1 (p < 0.001), niacin 
(p < 0.001), vitamin B6 (p < 0.001), calcium (p < 0.001), phosphorus 
(p < 0.001), magnesium (p = 0.036), zinc (p < 0.001), sodium 
(p < 0.001), selenium (p < 0.001), and moisture (p < 0.001), whereas 
higher intakes of retinol (p < 0.001), vitamin A (p < 0.001), 
α-carotene (p < 0.001), β-carotene (p < 0.001), β-cryptoxanthin 
(p < 0.001),

Associations between dietary nutrient 
intake and cancer presence

Cross-sectional associations between 38 dietary nutrient intakes 
and cancer are presented in Table 3 and Supplementary Table S1. 
Following adjustment for all potential confounding variables, 
significant positive associations were observed for intakes of SFA 
[OR, 95% CI; 1.1082(1.0110, 1.2146), p = 0.028], β-carotene 
[1.0431(1.0096, 1.0777), p = 0.011], and vitamin K [1.0370(1.0094, 
1.0654), p = 0.008] with the presence of cancer, whereas phosphorus 
intake [0.9016(0.8218, 0.9892), p = 0.029] was negatively associated 
with cancer presence. In addition, data analysis showed that intakes 
of SFA [1.1099(1.0113, 1.2180), p = 0.029], α-carotene 
[1.0353(1.0033, 1.0683), p = 0.030], β-carotene [1.0484(1.0146, 
1.0833), p = 0.005], and vitamin K [1.0405(1.0098, 1.0722), 
p = 0.009] were all positively associated with the presence of solid 
cancers. For blood cancer, retinol intake [1.0935(1.0222, 1.1698), 
p = 0.009] demonstrated a positive association with the presence of 
blood cancer. These associations between specific nutrient intakes 
and the presence of cancer were also confirmed in the 
non-standardized data (Supplementary Table S1). There were no 
statistically significant associations between intake of other dietary 
nutrients and the presence of cancers, solid tumors and blood 
cancers (p > 0.05).

To further investigate the relationship between specific nutrient 
intake and cancer presence, curve fitting was performed after 
adjustment for all possible confounding factors. Figure 2 shows the 
trends of cancer, solid cancer and blood cancer presences with the 
intake of specific candidate nutrients according to the results of the 
correlation analyses. The intakes of SFA (cancer: p overall <0.0001, p 
for non-linear = 0.3895; solid cancer: p overall <0.0001, p for 
non-linear = 0.2235), β-carotene (p overall <0.0001, p for 
non-linear = 0.1009; p overall <0.0001, p for non-linear = 0.2730), and 
vitamin K (p overall <0.0001, p for non-linear = 0.8518; p overall 
<0.0001, p for non-linear = 0.7397) were overall positively associated 
with the presence of cancer and solid cancer, and no non-linear 
association was observed. Phosphorus intake (p overall <0.0001, p for 
non-linear = 0.1099) is negatively associated with cancer presence. 
Additionally, α-carotene intake (p overall <0.0001, p for 
non-linear = 0.6883) was positively associated with the presence of 
solid cancers, and retinol intake (p overall = 0.0003, p for 
non-linear = 0.6687) was also positively linked with the presence of 
blood cancers.

Discussion

This study aimed to systematically evaluate associations between 
38 dietary nutrients and cancer presence, with particular focus on 
differential effects in solid tumors versus blood cancers. By analyzing 
comprehensive NHANES data, we sought to overcome limitations of 
prior single-nutrient or single-cancer-type studies, thereby identifying 
potential pan-cancer dietary risk modifiers. Our study provides novel 
evidence linking six dietary components—saturated fatty acids (SFA), 
retinol, α-carotene, β-carotene, vitamin K, and phosphorus—to cancer 
presence when analyzed through a comprehensive nutrient intake 
framework. Dose–response analyses revealed positive associations 
between elevated SFA, retinol, carotenoids, and vitamin K with cancer 
presence, while adequate phosphorus intake exerted protective 
associations. To our knowledge, this represents the first population-
level investigation evaluating integrated dietary patterns across both 
solid and blood cancers.

Existing literature primarily examines isolated nutrients. Recent 
cohort data associate high SFA intake with colorectal cancer (54), 
corroborated by meta-analyses linking SFA to breast, prostate, and 
colorectal malignancies (20)—aligning with our observed 
SFA-cancer associations. Intriguingly, while meta-analyses suggest 
β-carotene inversely correlates with a reduced presence of breast 
cancer (55), null associations emerge for gastric cancer (56). Our 
findings contrast by demonstrating positive α/β-carotene-cancer 
links, paralleling a Singaporean case–control study showing elevated 
serum carotenoids with prostate cancer (57). These discrepancies 
likely stem from: (1) Cancer type specificity: Site-specific vs. 
pan-cancer analyses; (2) Exposure assessment: Serum biomarkers 
vs. dietary intake quantification; (3) Study design limitations in prior 
single-nutrient approaches. Resolving these contradictions requires 
large-scale RCTs integrating multi-omic biomarkers with 
longitudinal dietary monitoring.

Our analysis further identifies vitamin K intake as positively 
associated with both overall and solid cancer presence—a finding 
that contrasts with observational studies suggesting anti-cancer 
benefits of vitamin K supplementation (32, 58–61). Notably, a 
U.S. cohort study may align with our findings, reporting increased 
breast cancer incidence and mortality with higher vitamin K intake 
(62). This paradox may stem from: (1) source differentiation: 
Supplemental vs. dietary vitamin K forms (phylloquinone vs. 
menaquinones); (2) Cancer stage specificity: chemoprotective 
effects in early carcinogenesis vs. pro-tumor impacts in established 
malignancies. Regarding phosphorus, we  observed protective 
associations at moderate intake levels, consistent with Zhu et al.’s 
(43) gynecological cancer findings. Preclinical studies further 
support phosphorus derivatives as promising anticancer 
nanocarriers (63), though epidemiological evidence remains 
conflicting (64, 65). The inverse association between phosphorus 
and cancer mirrors preclinical evidence of phosphate restriction 
slowing tumor growth (39, 66), suggesting a therapeutic avenue for 
dietary modulation. Mechanistic studies should clarify whether 
phosphorus exerts direct antineoplastic effects or serves as a 
biomarker for calcium-phosphate homeostasis.

The complex interplay between dietary nutrients and cancer 
likely operates through multiple synergistic biological pathways. 
Antioxidant nutrients such as vitamin C, vitamin E, and β-carotene 
exert protective effects by neutralizing reactive oxygen species 
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TABLE 2 Baseline information on dietary nutrients intake.

Nutrient types Cancer Solid cancer Blood cancer

Yes 
(N = 4,342)

No 
(N = 38,390)

P-value1 Yes 
(N = 4,207)

No 
(N = 38,525)

P-value Yes (N = 135) No 
(N = 42,597)

P-value

Protein (g) 71(54,91) 77(58, 101) <0.001 71(54,91) 77(57,101) <0.001 68(54,95) 76(57,100) 0.2

Carbohydrate (g) 218(164,278) 235(176,310) <0.001 218(164,278) 235(176,310) <0.001 218(181,286) 233(174,307) 0.6

Total sugars (g) 91(61,130) 98(64,143) <0.001 91(62,129) 98(64,143) <0.001 84(60,140) 97(64,142) 0.5

Dietary fiber (g) 16(11,21) 15(10,21) 0.2 16(11,21) 15(10,21) 0.2 15(11,19) 15(11,21) 0.6

Total fat (g) 73(52,96) 76(55,103) <0.001 73(52,96) 76(55,103) <0.001 75(51,99) 76(54,103) 0.7

SFA (g) 23(17,32) 24(17,34) 0.001 23(17,32) 24(17,34) 0.001 22(16,34) 24(17,34) 0.6

MUFA (g) 25(18,34) 27(19,37) <0.001 25(18,34) 27(19,37) <0.001 26(18,36) 26(19,37) 0.8

PUFA (g) 16(11,22) 17(11,23) 0.017 16(11,22) 17(11,23) 0.013 18(11,24) 17(11,23) 0.8

Cholesterol (mg) 234(145,363) 248(156,385) 0.001 234(145,362) 248(155,385) 0.001 229(128,401) 247(155,383) 0.3

Vitamin E (mg) 7.2(5.1,10.4) 7.2(4.9,10.5) 0.7 7.2(5.1,10.4) 7.2(4.9,10.5) 0.6 6.9(4.7,10.3) 7.2(4.9,10.5) 0.5

Retinol (μg) 370(224,559) 342(200,547) <0.001 371(224,560) 342(200,546) <0.001 337(205,542) 345(202,548) 0.8

Vitamin A (μg) 567(369,849) 524(321,805) <0.001 568(373,852) 524(321,805) <0.001 531(275,750) 529(325,810) 0.6

α-carotene (μg) 115(29,543) 73(21,422) <0.001 117(29,546) 73(21,422) <0.001 63(16,262) 76(22,433) 0.2

β-carotene (μg) 1,409(534,3,287) 1,058(427,2,734) <0.001 1,422(542,3,342) 1,056(427,2,733) <0.001 969(327,2,400) 1,093(435,2,790) 0.3

β-cryptoxanthin (μg) 44(16,112) 38(13,102) <0.001 45(16,112) 38(13,102) <0.001 33(8,100) 39(13,103) 0.5

Lycopene (μg) 2,149(517,6,100) 2,585(660,6,882) <0.001 2,125(515,6,129) 2,585(660,6,875) <0.001 2,351(839,5,569) 2,544(638,6,796) 0.7

Lutein and 

zeaxanthin (μg)
970(515,1,875) 832(443,1,623) <0.001 971(518,1,875) 832(443,1,623) <0.001 907(440,1,775) 847(449,1,650) >0.9

Vitamin B1 (mg) 1.42(1.06,1.86) 1.47(1.08,1.98) <0.001 1.42(1.06,1.85) 1.47(1.08,1.98) <0.001 1.53(1.04,1.97) 1.47(1.08,1.97) 0.8

Vitamin B2 (mg) 1.93(1.45,2.54) 1.94(1.40,2.63) 0.5 1.93(1.45,2.54) 1.94(1.40,2.63) 0.6 1.83(1.37,2.53) 1.94(1.41,2.61) 0.6

Niacin (mg) 21(16,28) 23(17,31) <0.001 21(16,28) 23(17,31) <0.001 23(18,30) 23(17,31) >0.9

Vitamin B6 (mg) 1.71(1.25,2.34) 1.81(1.28,2.52) <0.001 1.71(1.25,2.35) 1.81(1.28,2.52) <0.001 1.63(1.27,2.29) 1.80(1.28,2.50) 0.3

Food folate (μg) 193(142,267) 197(138,272) 0.5 193(142,268) 197(138,272) 0.6 196(133,247) 196(139,272) 0.5

Vitamin B12 (μg) 4.0(2.6,6.0) 4.0(2.5,6.3) 0.11 4.0(2.6,6.0) 4.0(2.5,6.3) 0.087 4.1(2.5,6.1) 4.0(2.5,6.3) 0.7

Vitamin C (mg) 67(32,112) 61(28,114) 0.016 67(32,113) 61(28,114) 0.012 64(32,103) 61(29,114) 0.9

Vitamin K (μg) 83(49,141) 74(43,130) <0.001 83(49,141) 74(43,130) <0.001 68(45,114) 75(44,131) 0.5

Calcium (mg) 819(585,1,107) 851(591,1,192) <0.001 819(587,1,108) 851(591,1,192) <0.001 810(511,1,027) 848(590,1,185) 0.10

Phosphorus (mg) 1,226(932,1,533) 1,276(962,1,668) <0.001 1,229(933,1,533) 1,276(962,1,667) <0.001 1,154(929,1,538) 1,271(959,1,651) 0.2

Magnesium (mg) 274(206,351) 278(208,365) 0.036 274(205,353) 278(208,365) 0.036 272(221,335) 278(208,364) 0.9

(Continued)
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(ROS) and reducing oxidative DNA damage—a hallmark of 
carcinogenesis (67–69). Selenium complements this defense by 
enhancing glutathione peroxidase activity, mitigating lipid 
peroxidation and genomic instability (70). However, 
pro-inflammatory dietary components like saturated fats may 
counteract these benefits by activating NF-κB signaling, which 
upregulates angiogenic cytokines (e.g., IL-6, TNF-α) to fuel tumor 
progression (71). Beyond direct oxidative mechanisms, nutrients 
modulate epigenetic landscapes: folate regulates DNA methylation 
patterns critical for tumor suppressor gene expression (72), while 
vitamin D induces cell cycle arrest through vitamin D receptor 
(VDR) activation (73). Dietary fibers further contribute to cancer 
prevention via gut microbiota-derived metabolites like butyrate, 
which selectively induce apoptosis in precancerous colonic cells 
(74, 75).

At the metabolic level, high saturated fat intake has been 
shown to epigenetically reprogram oncogenic pathways and 
activate pathological lipid metabolism in preclinical models (54). 
Vitamin K’s dual roles—modulating oxidative stress and regulating 
apoptosis through steroid/xenobiotic receptors—may explain its 
context-dependent associations with cancer outcomes (33, 76). 
Phosphorus’s potential anticancer effects, possibly mediated 
through redox balance restoration in the tumor microenvironment, 
remain mechanistically elusive but clinically suggestive (63). The 
paradoxical associations of carotenoids (α/β-carotene) with cancer 
could stem from their biphasic effects on inflammatory signaling, 
warranting single-cell resolution studies to delineate tissue-specific 
impacts (77–79). These mechanisms converge on cancer’s 
metabolic vulnerabilities. Emerging evidence suggests that 
strategic nutritional modulation—such as retinol’s regulation of 
ferroptosis (80) or phosphorus-mediated redox modulation—
could enhance conventional chemotherapy by disrupting tumor 
metabolic dependencies (81, 82). Nevertheless, definitive causal 
attribution requires innovative models, particularly patient-
derived organoids, to isolate nutrient effects from confounding 
lifestyle variables.

Furthermore, it is critical to recognize that cancer and its 
treatments may reciprocally alter nutrient intake patterns. 
Chemotherapy and radiation commonly induce anorexia, taste 
alterations (e.g., dysgeusia), and gastrointestinal toxicities (e.g., 
mucositis), significantly reducing dietary diversity and calorie 
consumption (83, 84). For instance, majority of patients report 
chemotherapy-induced taste changes that persist beyond 
treatment, preferentially reducing protein and vegetable intake (85, 
86). Additionally, malignancies like pancreatic or gastrointestinal 
cancers directly impair nutrient absorption through mechanical 
obstruction or metabolic dysfunction (87, 88). These treatment- 
and disease-driven nutritional deficits may partly explain the lower 
macronutrient intake observed in cancer patients (Table 2). Recent 
clinical guidelines emphasize proactive nutritional support to 
mitigate these effects, highlighting the need for longitudinal 
studies disentangling causative dietary influences from 
treatment sequelae.

While this study identifies significant associations between 
nutrient profiles and cancer presence, several limitations warrant 
cautious interpretation. A primary constraint stems from the 
cross-sectional design, where dietary data collection occurred 
post-diagnosis. Cancer therapies—including chemotherapy and T
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radiation—often reduce appetite and alter taste perception, likely 
contributing to observed nutritional disparities (e.g., lower 
macronutrient intake in cancer patients) rather than reflecting 
pre-disease dietary habits. Furthermore, self-reported cancer 
histories may introduce recall bias, and while NHANES protocols 
ensure methodological rigor, two 24-h dietary recalls might 

inadequately represent long-term consumption patterns. 
Critically, the temporal ambiguity inherent to observational 
designs prevents distinguishing whether dietary patterns 
influence cancer development or result from disease progression. 
Unaccounted interactions between nutrients and therapies further 
complicate causal attribution.

TABLE 3 Odds ratios (ORs) and 95% CIs of standardized dietary nutrient intakes associated with the presence of cancer, solid cancer, and blood cancer.

Nutrient types Cancer OR (Cl) p-value Solid cancer OR 
(Cl)

p-value Blood cancer OR 
(Cl)

p-value

Protein (g) 0.9275(0.8446,1.0186) 0.115 0.9374(0.8520,1.0314) 0.185 0.7433(0.5078,1.0882) 0.127

Carbohydrate (g) 0.9593(0.8567,1.0741) 0.471 0.9499(0.8463,1.0662) 0.383 1.2030(0.7564,1.9133) 0.435

Total sugars (g) 1.0102(0.9379,1.0880) 0.789 1.0091(0.9353,1.0887) 0.815 1.0303(0.7618,1.3933) 0.847

Dietary fiber (g) 0.9988(0.9370,1.0648) 0.972 1.0070(0.9436,1.0747) 0.833 0.8047(0.6092,1.0630) 0.126

Total fat (g) 1.0870(0.9971,1.2168) 0.147 1.0881(0.9700,1.2205) 0.150 1.0392(0.6090,1.7735) 0.888

SFA (g) 1.1082(1.0110,1.2146) 0.028* 1.1099(1.0113,1.2180) 0.029* 1.0319(0.6492,1.6404) 0.894

MUFA (g) 1.0460(0.9523,1.1490) 0.347 1.0457(0.9502,1.1509) 0.360 1.0470(0.6901,1.5885) 0.829

PUFA (g) 1.0078(0.9340,1.0875) 0.840 1.0071(0.9317,1.0886) 0.858 1.0238(0.7618,1.3759) 0.876

Cholesterol (mg) 1.0284(0.9643,1.0968) 0.394 1.0334(0.9678,1.1034) 0.326 0.9088(0.6829,1.2093) 0.512

Vitamin E (mg) 0.9864(0.9333,1.0425) 0.627 0.9920(0.9379,1.0493) 0.779 0.8434(0.6471,1.0992) 0.208

Retinol (μg) 0.9845(0.9319,1.0402) 0.578 0.9679(0.9166,1.0220) 0.240 1.0935(1.0222,1.1698) 0.009**

Vitamin A (μg) 1.0261(0.9714,1.0839) 0.356 1.0214(0.9653,1.0808) 0.463 1.0758(0.9525,1.2151) 0.239

α-carotene (μg) 1.0310(0.9974,1.0658) 0.071 1.0353(1.0033,1.0683) 0.030* 0.7089(0.4567,1.1004) 0.125

β-carotene (μg) 1.0431(1.0096,1.0777) 0.011* 1.0484(1.0146,1.0833) 0.005** 0.7594(0.5479,1.0524) 0.098

β-cryptoxanthin (μg) 0.9559(0.9037,1.0111) 0.115 0.9617(0.9094,1.0170) 0.171 0.7553(0.5481,1.0408) 0.086

Lycopene (μg) 0.9533(0.9052,1.0039) 0.070 0.9574(0.9083,1.0091) 0.105 0.8524(0.6860,1.0592) 0.150

Lutein and zeaxanthin (μg) 1.0346(0.9932,1.0778) 0.102 1.0375(0.9964,1.0803) 0.074 0.9177(0.7260,1.1601) 0.473

Vitamin B1 (mg) 0.9874(0.9219,1.0575) 0.717 0.9800(0.9138,1.0510) 0.572 1.1451(0.8875,1.4773) 0.297

Vitamin B2 (mg) 0.9516(0.8749,1.0350) 0.247 0.9544(0.8762,1.0396) 0.285 0.9099(0.6163,1.3435) 0.635

Niacin (mg) 0.9349(0.8514,1.0267) 0.159 0.9327(0.8466,1.0277) 0.159 0.9945(0.8177,1.2096) 0.956

Vitamin B6 (mg) 0.9747(0.9051,1.0497) 0.498 0.9804(0.9093,1.0569) 0.605 0.8363(0.6359,1.0998) 0.201

Food folate (μg) 1.0129(0.9413,1.0900) 0.731 1.0191(0.9469,1.0967) 0.614 0.8615(0.6194,1.1984) 0.376

Vitamin B12 (μg) 0.9860(0.9365,1.0381) 0.592 0.9800(0.9297,1.0332) 0.454 1.0672(0.9801,1.1621) 0.134

Vitamin C (mg) 0.9871(0.9274,1.0506) 0.682 0.9901(0.9289,1.0552) 0.759 0.9093(0.7414,1.1152) 0.361

Vitamin K (μg) 1.0370(1.0094,1.0654) 0.008** 1.0405(1.0098,1.0722) 0.009** 0.8206(0.5784,1.1641) 0.268

Calcium (mg) 0.9550(0.8953,1.0187) 0.162 0.9626(0.9015,1.0279) 0.255 0.7865(0.5720,1.0815) 0.140

Phosphorus (mg) 0.9016(0.8218,0.9892) 0.029* 0.9106(0.8287,1.0006) 0.052 0.7325(0.4717,1.1373) 0.165

Magnesium (mg) 0.9668(0.8967,1.0424) 0.380 0.9684(0.8967,1.0459) 0.414 0.9613(0.7214,1.2811) 0.788

Iron (mg) 1.0080(0.9427,1.0778) 0.817 1.0046(0.9377,1.0763) 0.896 1.0836(0.8808,1.3331) 0.448

Zinc (mg) 0.9606(0.9057,1.0188) 0.181 0.9632(0.9079,1.0219) 0.214 0.8980(0.6148,1.3118) 0.578

Copper (mg) 0.9807(0.9283,1.0360) 0.486 0.9754(0.9216,1.0323) 0.388 1.0582(0.9850,1.1367) 0.122

Sodium (mg) 1.0067(0.9197,1.1019) 0.885 1.0168(0.9279,1.1143) 0.721 0.7915(0.5025,1.2466) 0.313

Potassium (mg) 0.9815(0.9014,1.0687) 0.667 0.9849(0.9028,1.0744) 0.731 0.9255(0.6852,1.2502) 0.614

Selenium (μg) 0.9468(0.8746,1.0249) 0.176 0.9459(0.8723,1.0257) 0.178 0.9822(0.7047,1.3691) 0.916

Caffeine (mg) 0.9731(0.9243,1.0245) 0.299 0.9700(0.9218,1.0208) 0.242 1.0909(0.7996,1.4884) 0.583

Theobromine (mg) 0.9957(0.9484,1.0453) 0.861 0.9903(0.9418,1.0413) 0.704 1.1064(0.9791,1.2503) 0.105

Alcohol (g) 1.0024(0.9435,1.0651) 0.937 1.0060(0.9458,1.0700) 0.850 0.9175(0.7147,1.1777) 0.499

Moisture (g) 1.0282(0.9711,1.0886) 0.340 1.0346(0.9760,1.0966) 0.253 0.9140(0.7153,1.1679) 0.472

ORs, odd ratios; CIs, confidence interval; *p < 0.05, **p < 0.01, ***p < 0.001. Bold indicates statistically significant.
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Despite these limitations, three key strengths bolster the findings’ 
validity: (1) Multivariable adjustments minimized confounding by 
sociodemographic, lifestyle, and energy intake variables; (2) restricted 
cubic spline analyses revealed non-linear dose–response relationships 
between specific nutrients (e.g., vitamin K, β-carotene) and cancer 
presence; (3) the nationally representative NHANES cohort (N = 42,732) 
offers robust statistical power and relevance to contemporary U.S. dietary 
practices. Future research should prioritize longitudinal designs with 
pre-diagnosis dietary assessments and clinical trials targeting nutrients 
showing threshold effects (e.g., vitamin K reduction trials), which could 
clarify causality and therapeutic applications. By evaluating 38 nutrients 
across cancer types, this study advances beyond reductionist approaches 
to reveal context-dependent dietary associations. The distinct 
associations for solid vs. blood cancers (e.g., retinol’s hematologic 

specificity) underscore the need for precision nutrition strategies tailored 
to cancer biology.

Conclusion

Our findings reveal significant nutrient-cancer associations, 
though the causal direction remains unclear due to potential 
treatment-induced dietary changes. While these patterns highlight 
promising targets for nutritional interventions, their clinical 
translation requires rigorous validation through multi-center 
longitudinal studies tracking pre-diagnosis diets across diverse 
populations. Priority should be given to randomized trials testing 
therapeutic modulation of threshold-effect nutrients (e.g., vitamin 

FIGURE 2

Dose–response curves between intake of candidate nutrients and the presence of cancer, solid cancer, and blood cancer. (a–i) The association 
between specific nutrient intake and cancer presence, subsequent to adjustment for all covariates. OR, odd ratio; 95% CI, confidence interval; SFA, 
saturated fatty acid.
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K reduction) before integrating such strategies into adjuvant 
therapies. This evidence hierarchy will determine whether observed 
associations reflect modifiable risk factors or secondary 
disease manifestations.
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