Check for updates

OPEN ACCESS

EDITED BY Aleksandra S. Kristo, California Polytechnic State University, United States

REVIEWED BY Nevena Vidovic, University of Belgrade, Serbia Zhen Wang, Huazhong University of Science and Technology, China Yang Ye, Peking University Third Hospital, China Jiale Zhang, China Science and Technology Development Center for Chinese Medicine, China Chenyang Ji, University of Malaya, Malaysia

*CORRESPONDENCE Xuejiao Lv ⊠ lvxuejiao0311@163.com Yanwei Du ⊠ duyw@jlu.edu.cn

RECEIVED 22 December 2024 ACCEPTED 03 March 2025 PUBLISHED 20 March 2025

CITATION

Jiang R, Wang T, Han K, Peng P, Zhang G, Wang H, Zhao L, Liang H, Lv X and Du Y (2025) Impact of anti-inflammatory diets on cardiovascular disease risk factors: a systematic review and meta-analysis. *Front. Nutr.* 12:1549831. doi: 10.3389/fnut.2025.1549831

COPYRIGHT

© 2025 Jiang, Wang, Han, Peng, Zhang, Wang, Zhao, Liang, Lv and Du. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Impact of anti-inflammatory diets on cardiovascular disease risk factors: a systematic review and meta-analysis

Ruixue Jiang^{1,2}, Ting Wang^{1,2}, Kunlin Han^{1,2}, Peiqiang Peng^{1,2}, Gaoning Zhang^{1,2}, Hanyu Wang^{1,2}, Lijing Zhao², Hang Liang², Xuejiao Lv^{1*} and Yanwei Du^{2*}

¹Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin Province, China, ²Department of Rehabilitation, School of Nursing, Jilin University, Changchun, Jilin Province, China

Introduction: Chronic inflammation, via multiple pathways, influences blood pressure and lipid profiles, serving as a significant risk factor for the onset of cardiovascular disease (CVD). Anti-inflammatory dietary patterns may ameliorate CVD risk factors through the modulation of inflammatory mediators and metabolic factors, potentially leading to improved cardiovascular outcomes. Current findings regarding the relationship between dietary habits and CVD risk factors, such as blood pressure and lipid levels, exhibit considerable variability. We performed a comprehensive systematic review and meta-analysis to explore the possible association between anti-inflammatory dietary patterns (such as the Mediterranean diet, DASH diet, Nordic diet, Ketogenic diet, and Vegetarian diet) and CVD risk factors.

Methods: We conducted a comprehensive search across five databases: PubMed, Web of Science, Cochrane Library, Embase, and China National Knowledge Infrastructure (CNKI). Ultimately, we identified 18 eligible randomized controlled trials (including randomized crossover trials), which were subjected to metaanalysis utilizing RevMan 5 and Stata 18.

Results: A comprehensive meta-analysis of these studies conducted based on random effects model indicated that, in comparison to an Omnivorous diet, interventions centered on anti-inflammatory diets were linked to significant reductions in Systolic Blood Pressure (SBP) (MD: -3.99, 95% CI: -6.01 to -1.97; p = 0.0001), Diastolic Blood Pressure (DBP) (MD: -1.81, 95% CI: -2.73 to -0.88; p = 0.0001), Low Density Lipoprotein Cholesterol (LDL-C) (SMD: -0.23, 95% CI: -0.43 to -0.18; p < 0.00001) and High-sensitivity C-reactive Protein (hs-CRP) (SMD: -0.16, 95% CI: -0.31 to -0.00; p = 0.04). No notable correlations were identified between High Density Lipoprotein Cholesterol (HDL-C) and Triglycerides (TG).

Discussion: The findings indicate that anti-inflammatory diets may lower serum hs-CRP levels and positively influence the reduction of CVD risk factors, such as blood pressure and lipid profiles, thereby contributing to the prevention and progression of cardiovascular conditions. Most of the outcome indicators had low heterogeneity; sensitivity analyses were subsequently conducted on outcome measures demonstrating substantial heterogeneity, revealing that the findings remained consistent.

KEYWORDS

anti-inflammatory diets, cardiovascular disease risk factors, blood pressure, lipids, hs-CRP, meta-analysis

1 Introduction

Cardiovascular Disease (CVD) is a heterogeneous group of disorders affecting the heart and blood vessels, encompassing atherosclerosis (coronary, cerebrovascular, and peripheral artery diseases), structural/functional abnormalities (heart failure, arrhythmias, valvular/congenital defects), and microvascular dysfunction (1). These conditions are marked by inflammation, oxidative stress, cellular proliferation, hypertrophy, and potentially abnormal remodeling of the heart or blood vessels (2, 3). Recent statistics indicate that more than 500 million individuals globally are impacted by CVD, with 20.5 million fatalities linked to CVD in 2021, accounting for nearly one-third of total global mortality (4). Given the persistent increase in CVD incidence and mortality across nearly all nations worldwide, it is imperative to identify modifiable risk factors for CVD prevention.

Inflammation represents the body's immune response to inflammatory triggers or cellular injury (5). Chronic tissue damage leads to the release of pro-inflammatory cytokines, which in turn triggers ongoing systemic inflammation (6), a potential pathological state that could significantly influence the development of CVD (7). Research has indicated that several inflammatory proteins may be linked to the risk of CVD (8). Specifically, hs-CRP has been endorsed by a consortium of specialists from the Centers for Disease Control and Prevention and the American Heart Association as the most reliable clinical assay for evaluating and forecasting the risk of CVD (9, 10). In atherosclerotic lesions, chronic inflammation is closely associated not only to their progression but also plays a role in every phase of the thrombosis process (11). Simultaneously, damage to the vascular endothelium, oxidative stress, and thrombosis could serve as potential mechanisms through which chronic inflammation influences the pathogenesis of atherosclerosis (12). Thrombosis is linked to a heightened risk of acute coronary incidents and subsequently contributes to cardiovascular conditions, including myocardial infarction (MI) and stroke (13). If inflammation continues, macrophages penetrate the compromised endothelial barrier and phagocytize abnormal cholesterol, leading to plaque formation. As endothelial injury exacerbates and lipid accumulation in the arteries progresses, sustained inflammatory stimuli can result in the gradual enlargement of atherosclerotic plaques (14). The disruption of the arterial wall and subsequent thrombus formation can result in obstructions in the cardiovascular system in patients, potentially precipitating coronary artery disease and a range of additional cardiac disorders (15). Simultaneously, inflammatory alterations may facilitate the recurrence of atrial fibrillation (AF) (16), and elevated levels of hs-CRP may heighten the risk of AF recurrence (17, 18).

Hypertension, the most prevalent cardiovascular disorder, is the primary risk factor for cardiovascular conditions, including myocardial infarction (MI) and stroke (19). Research indicates that hypertension triggers oxidative stress within the vascular wall, subsequently facilitating the progression of atherosclerosis (20). Hypertension may also induce left ventricular hypertrophy, which, over time, can advance to both diastolic and systolic heart failure (21). In recent years, the association between inflammation and hypertension has gained significant attention, with research indicating that inflammatory mediators, cellular components, and biomarkers are linked to the onset, progression, and outcomes of hypertension (22).

Blood lipids encompass the aggregate levels of neutral fats, including TG and cholesterol, as well as various lipids such as phospholipids, glycolipids, and sterols present in the plasma. Dyslipidemia serves as a critical risk factor for CVD. A notable correlation exists between lipid concentrations and the incidence of coronary artery disease (23). An accumulation of lipoproteins, particularly LDL-C, occurs in the subendothelial region, where they undergo oxidative modification. These modified lipoproteins are preferentially taken up by macrophages and monocytes, initiating the atherosclerotic process (24, 25). It is projected that around 4.3 million fatalities occur globally each year due to elevated levels of LDL-C, representing 7.7% of global mortality (26). Furthermore, elevated TG levels are associated with an increased risk of CVD. Consequently, to thoroughly evaluate the CVD risk linked to blood lipids, clinical guidelines frequently advocate for a complete lipid profile assessment. Research indicates that the excessive production of specific pro-inflammatory mediators can contribute to the onset of lipid metabolism disorders (27).

The elevated global mortality rate associated with cardiovascular disease (CVD) presents a pressing challenge that necessitates immediate attention. Numerous researchers are concentrating their efforts on the development of effective pharmacological interventions for CVD, alongside investigations into the various risk factors contributing to cardiovascular health. Research indicates that the most significant risk factors contributing to CVD mortality include hypertension at 10.8%, followed closely by low educational attainment at 10.5%, suboptimal dietary habits at 8.3%, tobacco consumption at 7.5%, and exposure to household air pollution at 6.1% (28). A significant proportion of CVD fatalities can be averted by addressing modifiable lifestyle risk factors. Among these, dietary habits represent a crucial yet frequently neglected risk factor for CVD. Antiinflammatory diets were initially introduced by Dr. Barry Sears (29), encompassing dietary models that systemically modulate inflammatory pathways through synergistic nutrient interactions. Currently, several evidence-based anti-inflammatory dietary patterns are prominent in clinical research, including Mediterranean diet, Nordic diet, DASH diet, Ketogenic diet, and Vegan diet. The Mediterranean Diet is characterized by high consumption of extravirgin olive oil (≥60 mL/day), fatty fish (≥2 servings/week), and polyphenol-rich plant foods (fruits, vegetables, and whole grains) (30). The DASH Diet, initially designed for blood pressure control, emphasizes sodium restriction (<2,300 mg/day) combined with potassium-rich foods (such as fruits, vegetables, whole grains, nuts and seeds) and low-fat dairy. The Nordic Diet features locally sourced components including berries (≥100 g/day), cruciferous vegetables, and rapeseed oil. The Vegan Diet relies on legume-based proteins and flaxseed (\geq 30 g/day) to optimize omega-3/6 ratios. The ketogenic diet operates on a distinct metabolic paradigm requiring strict carbohydrate restriction (≤50 g/day) and high fat intake (70-80% of calories), exerting anti-inflammatory effects primarily through β -hydroxybutyrate-mediated NLRP3 inflammasome suppression (31). Presently, the inflammatory potential of dietary patterns can be assessed using the Dietary Inflammatory Index (DII), a tool that quantifies the influence of diet on bodily inflammation by analyzing the balance between pro-inflammatory and anti-inflammatory dietary components (32). A positive DII score indicates a pro-inflammatory dietary pattern, whereas a negative DII score signifies an antiinflammatory dietary pattern (33, 34).

The Mediterranean and Nordic dietary patterns notably prioritize the consumption of beneficial unsaturated fats, including olive oil and omega-3 fatty acids sourced from fish. Current research indicates that diets abundant in olive oil may suppress the nuclear factor-KB (NF-KB) signaling pathway, thereby diminishing the secretion of pro-inflammatory cytokines, including tumor necrosis factor-alpha (TNF- α) and interleukin-6 (IL-6) (35). An abundant intake of vegetables and fruits serves as a significant reservoir of antioxidants, which can counteract free radicals and mitigate inflammation resulting from oxidative stress (36). The consumption of dietary fiber is believed to confer anti-inflammatory effects by enhancing the synthesis of anti-inflammatory short-chain fatty acids and various metabolites derived from the gut (37, 38). The omega-3 polyunsaturated fatty acids found in fish exhibit potent antiinflammatory properties, particularly by the modulation of eicosanoid and resolving production (39, 40). The Ketogenic diet can induce a metabolic state known as ketosis, leading to the production of ketone bodies, including beta-hydroxybutyrate (41). Ketone bodies exhibit anti-inflammatory properties and are capable of inhibiting the NF-KB signaling pathway, thereby diminishing the secretion of pro-inflammatory cytokines (42).

As demonstrated previously, sustained adherence to antiinflammatory diets may lead to a decrease in systemic inflammation markers; however, the definitive effects on CVD risk factors, such as blood pressure and lipid profiles, remain not yet fully established. Our objective is to aggregate robust evidence derived from systematic reviews and meta-analyses to examine the effects of anti-inflammatory diets on cardiovascular risk determinants, including blood pressure (SBP and DBP), lipid profiles (HDL-C, LDL-C, TG, TC), and inflammatory markers (hs-CRP).

2 Methods

We conducted this systematic review and meta-analysis in accordance with the guidelines outlined in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement (43).

2.1 Search strategy

Two independent reviewers performed a systematic literature review utilizing the PubMed, Web of Science, Cochrane Library databases, Embase and China National Knowledge Infrastructure (CNKI), from 2015 to January 25, 2025. Conduct a search in the English and Chinese databases utilizing the title/abstract or MeSH terms. The search strategy incorporated the following terms: (dietary inflammatory index or inflammatory diet or anti-inflammatory diet or dietary score or Mediterranean diet or DASH diet or Vegan diet or Nordic diet or Ketogenic diet or Vegetarian diet or Plant-based diet) and (cardiovascular disease or coronary heart disease or ischemic heart disease or myocardial infarction or stroke or heart attack or hypertension or CVD or CHD or MI or IHD or BP) and (random or placebo or double-blind). Furthermore, the reference lists of all eligible reviews or meta-analyses were meticulously examined to uncover any pertinent studies. Titles and abstracts of the identified papers were evaluated to select potentially relevant studies, and the complete texts of these articles were scrutinized to ascertain whether they contained all the necessary information. Each of these procedures was carried out independently by two reviewers, with any disagreements addressed through consultation with a third reviewer.

2.2 Inclusion and exclusion criteria

Studies that met the following criteria were included: (i) Interventions consisted of dietary patterns that exhibited antiinflammatory properties, including the Mediterranean Diet, DASH Diet, Nordic Diet, Ketogenic Diet, and Vegetarian Diet. Alternatively, these interventions may have focused on dietary patterns that prioritize a synergistic blend of various nutrients and non-nutrients, characterized by a well-rounded nutritional profile that incorporates a higher intake of anti-inflammatory foods such as fresh fruits and vegetables, whole grains, legumes, fish, nuts, and natural spices, while minimizing the consumption of pro-inflammatory foods high in sugar, salt, and unhealthy fats; (ii) reporting CVD risk factor indicators or levels of inflammatory proteins post-intervention; (iii) reporting post-intervention outcome indicators measures should be presented as means and standard deviations, or medians and interquartile ranges; (iv) the study type was randomized controlled trial (RCT) or randomized controlled crossover trial (RCCT). If two or more different anti-inflammatory dietary interventions were present in the included randomized controlled crossover trial, the different antiinflammatory diets were statistically combined to form the intervention group. Omnivorous diets with pro-inflammatory properties at baseline or interventions as pro-inflammatory diets served as control groups; and (v) The publication year of the study fell within the past decade.

Exclusion criteria included: (i) studies that did not measure the inflammatory potential of the diet or where the intervention group did not follow an anti-inflammatory dietary pattern; (ii) studies that did not report indicators of CVD risk factors or inflammatory markers; (iii) studies involving duplicate populations; (iv) study types that are observational (including cohort and case–control studies), crosssectional studies, reviews, conference abstracts, case reports, editorials, letters, and commentaries; and (v) studies were published a decade ago.

2.3 Data extraction

A standardized data extraction form was utilized to collect information from each eligible study. The following details were collected: (i) the name of the first author; (ii) year of publication; (iii) type of study (RCT/RCCT); (iv) country of origin; (v) number of participants at baseline; (vi) age of the study population at baseline; (vii) gender distribution of participants; (viii) duration of the intervention; (ix) study design; (x) health status of participants at baseline; and (xi) outcomes. Data were extracted by two investigators independently. Any disagreement in screening the articles was resolved by discussion between the two investigators. Consultation with a third investigator was performed if necessary.

The intervention in the study involved an anti-inflammatory dietary pattern, which could include Mediterranean diet, DASH diet, Nordic diet, Ketogenic diet, or Vegetarian diet. Alternatively, the intervention may have focused on a dietary approach that emphasizes a combination of various nutrients and non-nutrients, characterized by a well-balanced nutritional profile. This profile includes an increased intake of anti-inflammatory foods such as fresh fruits and vegetables, whole grains, legumes, fish, nuts, and natural spices, while reducing the consumption of pro-inflammatory foods high in sugar, salt, and fat. The control group adhered to an Omnivorous diet with pro-inflammatory characteristics. Consequently, the intervention group was classified as following an anti-inflammatory diet, whereas the control group was categorized as adhering to a pro-inflammatory diet.

2.4 Quality assessment

Two reviewers independently utilized the Cochrane Collaboration's Review Manager 5.3 risk assessment tool to evaluate the quality of the RCTs included in the study. The instrument offers seven criteria to evaluate various forms of bias, including selection bias, implementation bias, attrition bias, measurement bias, reporting bias, and additional biases. These criteria encompass random sequence generation, allocation concealment, participant and personnel blinding, outcome assessment blinding, incomplete outcome data, selective reporting, and other potential biases. To evaluate bias, each item was categorized into one of three options: "low risk," "unclear risk" and "high risk." Discrepancies in quality evaluation between the two reviewers were resolved through deliberation with a third reviewer.

2.5 Statistical analysis

Given the methodological discrepancies observed across the studies, we employed a random-effects model for the quantitative analysis of the outcome indicators. The I² statistic was utilized to evaluate the heterogeneity among the studies (44), representing the proportion of total variation attributable to heterogeneity rather than random variation. We performed subgroup analyses based on study characteristics (such as intervention duration, geographical location, health status) for outcome indicators exhibiting significant heterogeneity in order to explore potential sources of this variability. Sensitivity analyses were conducted by systematically excluding individual studies for outcome indicators exhibiting significant heterogeneity, in order to evaluate the robustness of the findings. The assessment of publication bias was carried out through a visual examination of funnel plots and Egger's test. All analyses were conducted utilizing Review Manager (RevMan) version 5.3 (Nordic Cochrane Center, Cochrane Collaboration Network, Copenhagen, Denmark) alongside Stata 18.

3 Results

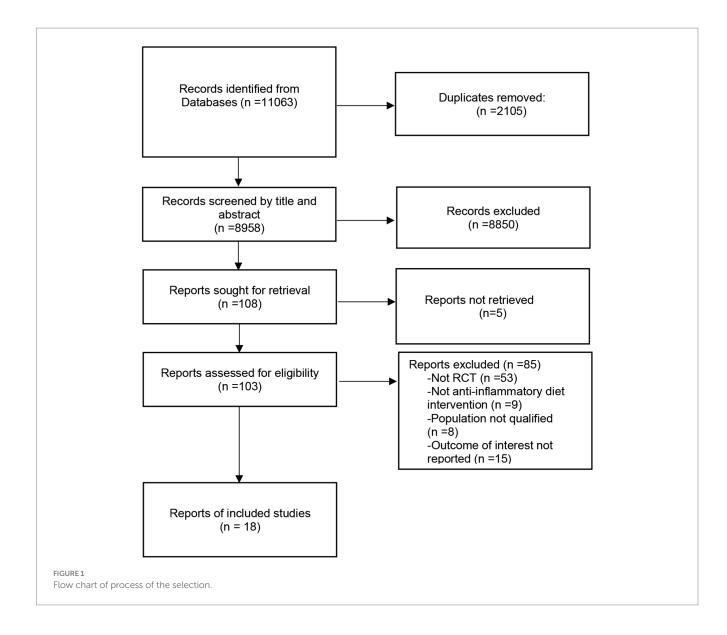
3.1 Study selection

The pertinence of the research was evaluated through the examination of titles, abstracts, and comprehensive texts. The entire procedure for identifying and selecting studies is illustrated in Figure 1. The search methodology yielded a total of 11,063

studies. Of these, 2,105 were eliminated due to duplication, while 8,850 were excluded following a review of titles and abstracts. Additionally, 5 studies were disregarded for failing to retrieve reports, and 85 were excluded after a comprehensive review of full texts, as they did not meet the specified criteria regarding study type, intervention measures, study population, and outcome indicators. Following the screening process, this meta-analysis concentrated on 18 eligible randomized controlled trials, including randomized crossover trials.

3.2 Study characteristics

The studies included a total of 2,602 participants at baseline, with ages spanning from 18 to 85 years (Figure 2). All research indicated impacts on both sexes. Out of the 18 studies, 14 (45–58) were RCTs, while 4 (59–62) were RCCTs. A total of 9 studies featured intervention periods of 6 months or longer, while 8 studies had durations shorter than 6 months. These 18 studies were conducted across various regions, comprising Europe (3), North America (5), Oceania (4), and Asia (6).


3.3 Quality assessment

All studies included in the analysis were evaluated for potential bias utilizing the Cochrane Collaboration's assessment tool, with the specifics of the quality evaluation illustrated in Supplementary Table 1. One study failed to disclose the methodology of randomization, six studies lacked details on allocation concealment, ten studies did not clarify the blinding of participants or researchers, six studies did not specify the blinding of outcome assessment, one study inadequately reported attrition and dropout rates, and two studies exhibited reporting bias.

3.4 Meta-analysis results

3.4.1 Association of anti-inflammatory diets with blood pressure

The aggregated findings from thirteen studies demonstrated that participants adhering to anti-inflammatory diets exhibited reduced blood pressure levels in comparison to those in the control group following the intervention. The substantial heterogeneity $(I^2 = 76\%, p < 0.00001)$ indicated that the SBP was significantly lower in the anti-inflammatory diets intervention group when compared to the control group (MD: -3.99, 95% CI: -6.01 to -1.97, p = 0.0001) (Figure 3). Additionally, the Egger's test was conducted, indicating the absence of publication bias (Supplementary Tables 2, 3). Conducting a sensitivity analysis by systematically excluding individual studies demonstrated that the study by Vasei was the primary source of heterogeneity. Its removal resulted in a reduction of heterogeneity to $I^2 = 49\%$ (p = 0.03), while the effect size remained largely stable (MD: -2.96, 95% CI: -4.44 to -1.49, p < 0.0001). In the presence of moderate heterogeneity $(I^2 = 55\%, p = 0.009)$, the anti-inflammatory diets group exhibited a significant reduction in DBP compared to the control group (MD: -1.81, 95% CI: -2.73 to -0.88, p = 0.0001) (Figure 3). A visual

assessment of the funnel plot revealed no evidence of publication bias (Supplementary Tables 2, 3). When the result from Malar was excluded, heterogeneity decreased to $I^2 = 17\%$ (p = 0.28), while the effect size remained largely consistent (MD: -2.17, 95% CI: -2.87 to -1.47, p < 0.00001).

3.4.2 Association of anti-inflammatory diets with lipids

In these investigations, 16 articles analyzed the effects of an anti-inflammatory diet on TG, 15 studies evaluated the impact of an anti-inflammatory diet on HDL-C, LDL-C, while 13 studies focused on TC. No notable correlation was identified between the anti-inflammatory diet cohort and HDL-C levels compared with the control group (SMD: -0.04, 95% CI: -0.17 to 0.08, p = 0.47) (Figure 4). Nevertheless, moderate heterogeneity was detected across the studies (I² = 52%, p = 0.009). The visual assessment of funnel plots, along with the results from Egger's test, suggested that there is no evidence of publication bias (Supplementary Tables 2, 3). Sensitivity analysis, which involved the exclusion of certain studies, identified Law's result as the primary contributor

to heterogeneity. By omitting this study, heterogeneity was reduced to $I^2 = 18\%$ (p = 0.26), while the effect size remained largely consistent (SMD = 0.00, 95% CI: -0.09 to 0.10, p = 0.96).

With moderate heterogeneity (I² = 72%, p < 0.00001), the antiinflammatory diets group lowered LDL-C compared with the control group (SMD: -0.23, 95% CI: -0.39 to -0.07, p = 0.004) (Figure 4). The visual examination of funnel plots and the Egger's test indicated the absence of publication bias (Supplementary Tables 2, 3). Sensitivity analyses showed that Wang's (57) results were the largest contributor to heterogeneity, and excluding them reduced heterogeneity to I² = 48% (p = 0.02), with essentially unchanged effect sizes (SMD: -0.18, 95% CI: -0.30 to -0.06, p = 0.004).

Additionally, the TC levels were also significantly lower in the anti-inflammatory diets group compared to the control group (SMD: -0.31, 95% CI: -0.43 to -0.18, p < 0.00001) (Figure 4), with low heterogeneity observed (I² = 45%, p = 0.04). Under less heterogeneity (I² = 49%, p = 0.01), no statistically significant relationship was observed between the anti-inflammatory diets cohort and TG levels when compared to the control group (SMD: -0.09, 95% CI: -0.21 to 0.02, p = 0.11) (Figure 4).

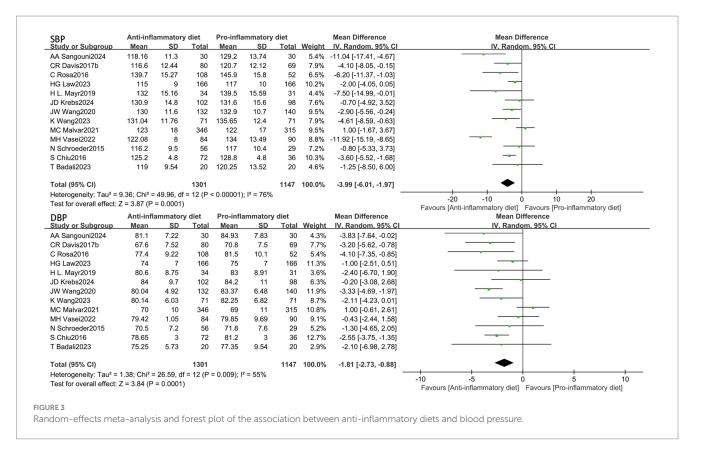
Author, Year	Study Design	Country	Subjects at baseline, n /	Gende r	Interv ention	Intervention	Control	Health status	Outcomes	
Davis et al.2017a*	RCT	Australia	152 / ≥65 y	M F	6m	MedDiet	Habitual diet	healthy	(1) (2) (3) (4) (5) (8) (9) (10) (11)	
Davis et al.2017b*	RCT	Australia	149 / >64 y	M F	6m	MedDiet	Habitual diet	healthy	(6) (7) (12) (13) (14) (15)	
Pagliai et al.2024	RCCT	Italy	52 / 35-62 y	M F	6m	Mediterranean diet/Lacto-ovo vegetarian diet	Baseline	low-to-moderate cardiovascular risk profile	(1) (2) (3) (4) (18)	
Mayr et al.2019	RCT	Australia	65 / 53-71 y	M F	6m	Mediterranean diet	Low-fat diet	Coronary Heart Disease	(2) (3) (4) (5) (6) (7 (9) (18) (19) (20)	
Rosa et al.2016	RCT	Spain	165 / 55–80 y	M F	5y	MedDiet supplemented with extra-virgin olive oil/ nuts	Low-fat diet	type 2 diabetes mellitus or ≥3 of the CVD risk	(1) (2) (3) (4) (5) (6 (7) (9) (18) (21)	
Shah et al.2018	RCT	USA	100 / 53–68 y	MF	8w	Vegan Diet	American heart	coronary artery disease	(1) (2) (3) (4) (5) (9 (10) (14) (21) (22)	
Malvar et al.2021	RCT	Spain	720 / 18–85 y	M F	6m	Traditional Atlantic Diet	Habitual lifestyle	healthy	(1) (2) (3) (4) (5) (6 (7) (9) (13) (14) (18	
Vasei et al.2022	RCT	Iran	90 / 30–70 y	M F	8w	The plant/animal protein-based DASH diet	Baseline	obesity, metabolic syndrome	(1) (2) (3) (4) (6) (7 (14) (22) (28)	
Gardner et al.2022	RCCT	USA	40 / ≥18 y	M F	24w	Well-formulated ketogenic diet/the Mediterranean-plus diet	Baseline	prediabetes or T2DM	(2) (3) (4) (9) (10) (14) (21) (31)	
Badali et al.2023	RCT	Iran	62 / 20 -50 y	M F	52w	DASH group	Low-Calorie Diet group	NAFLD(non-alcoholic fatty liver disease)	(1) (2) (3) (4) (6) (7 (13) (22) (31)	
Sally et al.2016	RCCT	USA	36 / >21 y	M F	9w	DASH diet or High-Fat DASH (HF-DASH) diet	control diet	healthy	(2) (3) (4) (6) (7) (9 (10) (14) (16) (22)	
Schroeder et al.2015	RCCT	USA	31 / 46-64y	M F	12w	Korean diet periods, the DGA periods	Typical American diet	healthy	$\begin{array}{c} (1) (2) (3) (4) (6) (7) \\ (9) (10) \end{array}$	
Law et al.2023	RCT	USA	166 / 18-65 y	M F	10w	DASH diet	average American diet	healthy	(2) (3) (4) (6) (7) (32)	
Sangouni et al.2024	RCT	Iran	60 / 30-60 y	MF	12w	DASH diet	control diet	MetS (Metabolic syndrome)	(1) (2) (3) (4) (6) (7 (13) (14) (22) (31)	
Krebs et al.2024	RCT	New Zealand	200 / 18-70 y	M F	12w	Mediterranean diet	Control diet	healthy	(1) (2) (3) (4) (6) (7 (13) (14) (17) (21)	
Wang et al.2023	RCT	China	142 / 56-79y	MF	12m	DASH diet	Regular dietary	Chronic heart failure	(1) (4) (6) (7) (21) (24) (29) (30)	
Wang et al.2020	RCT	China	272 / 35-63y	M F	9m	DASH diet	Low-salt, low- fat regular diet	healthy	(1) (2) (3) (4) (6) (7 (9) (13)	
Li et al.2020	RCT	China	100 / 40-55y	M F	NA	Mediterranean Diet	Traditional healthy dietary	cardiovascular disease	(5) (18)	

FIGURE 2

Study characteristics. * a and b indicate different studies with the same first author's name. M, male; F, female; y, years; m, months; w, weeks; RCT, randomized controlled trial; RCCT, randomized controlled crossover trial. (1) Total cholesterol TC, (2) low density lipoprotein cholesterol LDL-C, (3) high density lipoprotein cholesterol HDL-C, (4) triglyceride TG, (5) high sensitivity C-reactive protein hs-CRP, (6) systolic blood pressure SBP, (7) diastolic blood pressure DBP, (8) cognitive function, (9) glucose GLU, (10) insulin, (11) F2-isoprostanes F2-IsoPs, (12) flow-mediated dilation FMD, (13) body mass index BMI, (14) body mass, (15) height; (16) the percentage of body fat BFP, (17) BIA fat mass, (18) cytokine CK, (19) adiponectin ADP, (20) malondialdehyde MDA, (21) glycosylated hemoglobin concentrations HbA1c, (22) waist circumference WC, (23) very low density lipoprotein VLDL, (24) quality of life, (25) comprehensive white blood cell-related biomarkers, (26) bioelectrical impedance analysis fat-free mass BIA FFM, (27) urine F2-isoprostane/creatinine ratio, (28) insulin resistance IR, (29) major adverse cardiovascular and cerebrovascular event MACCE, (30) left ventricular ejection fraction LVEF, (31) comprehensive liver function indicators, (32) lipoproteins LP, (33) hip circumference.

3.4.3 Association of anti-inflammatory diets with hs-CRP

In comparison to the control group, the anti-inflammatory dietary intervention demonstrated a significant reduction in hs-CRP (SMD: -0.16, 95% CI: -0.31 to -0.00, p = 0.04) (Figure 5), exhibiting no heterogeneity (I² = 0%, p = 0.50).


3.5 Risk of publication bias

The visual examination of funnel plots and the application of Egger's test indicated an absence of publication bias across all metrics in this analysis (Supplementary Tables 2, 3).

3.6 Subgroup analysis

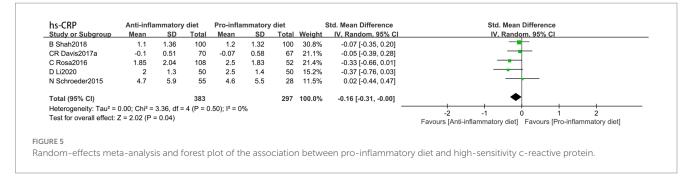
In light of the substantial heterogeneity identified across the studies, we conducted subgroup analyses for SBP, DBP, HDL-C,

LDL-C and TG by stratifying based on intervention duration, geographical location, and health status. The results are depicted in Figures 6-8 and Supplementary Tables 3, 4. For SBP, subgroup analysis revealed model sensitivity to intervention duration, geographical region, and health status, suggesting that the observed heterogeneity may primarily stem from regional disparities. For DBP, the subgroup analysis indicated that the effect model was similarly impacted by intervention duration, geographical region, and health status; thus, the heterogeneity observed in the studies may be attributed to these intervention duration and health condition. Regarding HDL-C, the subgroup analysis revealed that the effect model was likewise influenced by intervention duration, geographical region, and health status; consequently, the heterogeneity in the studies could be associated with the duration of the intervention, geographical location, and health status. In the case of LDL-C, the subgroup analyses indicated that the effect model was affected by factors such as intervention duration, geographical region, and health status; the heterogeneity observed in the studies may stem from the influences of region and health status. Subgroup analyses of triglycerides indicated

that the effect model was affected by the duration of the intervention, geographical region, and health status. Furthermore, the antiinflammatory diets demonstrated efficacy in lowering triglyceride levels among individuals with pre-existing conditions at baseline.

4 Discussion

This systematic review and meta-analysis encompassing 18 RCTs, with an initial cohort of 2,602 participants, indicates that individuals adhering to anti-inflammatory dietary interventions exhibited significantly lower levels of blood pressure (systolic and diastolic), LDL-C, TC, and hs-CRP compared to control groups consuming omnivorous diets. These findings suggest that strategic dietary modifications limiting pro-inflammatory foods (e.g., red meat) while enhancing the consumption of anti-inflammatory elements such as fruits and vegetables may effectively reduce systemic inflammation and CVD risk factors.


Our results align with recent evaluations concerning the DII and its relationship with CVD risk. This suggests that adherence to healthier dietary patterns, specifically anti-inflammatory diets, is associated with reduced incidence of cardiovascular events in both RCTs and observational studies (63–65). The cardioprotective mechanisms of anti-inflammatory dietary patterns may be mediated through the reduction of serum hs-CRP concentrations. As a key inflammatory biomarker, hs-CRP functions as an acute-phase reactant that impairs endothelial progenitor cell differentiation, viability, and functionality by downregulating endothelial nitric oxide synthase (eNOS) expression. This cascade promotes inflammatory cell infiltration and elevates oxidative stress, ultimately accelerating

atherosclerosis progression via oxidative stress-mediated pathways (66, 67). Hs-CRP induces plasminogen activator inhibitor-1 (PAI-1) synthesis in endothelial cells via upregulation of endothelin-1 and IL-6 expression (68). Elevated PAI-1 promotes vascular thrombosis by modulating thrombotic factors (69). Anti-inflammatory dietary patterns demonstrate the capacity to reduce serum hs-CRP levels while improving endothelial function. Endothelial cells constitutively release vasoactive mediators such as prostacyclin (PGI2) and nitric oxide (NO), critical regulators of vascular tone and blood pressure homeostasis (70). These interventions reduce lipid accumulation and inflammatory cell adhesion (70), improving blood lipid profiles. This dietary approach attenuates chronic inflammation through dual mechanisms: oxidative stress reduction and insulin sensitivity improvement. Dietary antioxidants demonstrate anti-inflammatory effects through free radical scavenging and oxidative stress reduction (71). This dietary pattern attenuates chronic inflammation via dual pathways: enhancing insulin sensitivity while mitigating insulin resistance (72).

Furthermore, subgroup analysis findings suggested that, regarding blood pressure and lipid indicators, the regional distribution and baseline health status of participants during the intervention were associated with increased heterogeneity. These findings highlight how geographic distribution, cultural contexts, and baseline health status may modify the associations between anti-inflammatory diets and CVD risk factors. Consequently, it is crucial to investigate both feasibility and implementation challenges of anti-inflammatory dietary patterns considering geographical diversity and cultural traditions. Originating primarily in Mediterranean and Nordic regions, these dietary patterns face documented implementation barriers in other geographical settings, leading to substantially low

Bind of Subsorphic Bind of Subsorphic Bind of Subsorphic Mixed and Subsorphic Mixed and Subsorphic D Generation (2) Signal (2) Signal (2) Signal (2) Mixed and Subsorphic (2) Mixed and Subsorphic (2) D Generation (2) Signal (2)	Bindle & Engange Num B0 Total Near Diff W. Backer, 1950 W. Backer, 1950 D Generation 20 6.8 0.8 7.4 0.9 0.4 0.9 0.4 0.9 0.4 0.9 0.4 0.9 0.4 0.9 0.4 0.9 0.4 0.9 0.4 0.9 0.4 0.9 0.4 0.9 0.4 0.9 0.4 <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>												
Bits Description Num Dir Total Num Dir Total Num Dir Num	Bits & Statement Han		Anti-infl	ammatory	/ diet	Pro-infl	ammatory	diet		Std. Mean Difference	Std. Mean Difference		
Magazatili All 100 100 0.400 100 0.400 100 0.400 100 0.400 100 0.400 100 0.400 100 <	Adsaugeneticity 4233 0.88 0.9 0.48 0.9 0.48 0.9 0.48 0.9 0.48 0.9 0.48 0.9 0.48 0.9												
Bistory 0.0 <	Bit Bit Dill 43 13 130 100 45 130 100 45 130 100 45 130 100 45 130 100 45 130 100 130 100 130 100 130 100 130 100 130 100 130 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>												
2) Balendon 2012 55 61 132 133 64 1164 133 64 55 64 134 65 65 65 66 64 61 144 144 144 144 144 144 144 14	D D D D D D D D D D D D D D D D D D D										-++		
R18400170 107 0.47 70 154 0.02 0.21	Bit												
Biskeding 64 147 100 65 101 100 <	Biskoloni 64 4 174 1 106 64 5 162 1 2 2 9 8 1 005 124 0 021 14 005 124 0 021 14 005 124 0 021 14 005 124 0 021 14 005 124 0 021 14 005 124 0 021 14 005 124 0 021 14 005 124 0 021 14 005 124 0 021 14 005 124 0 021 14 005 124 0 021 14 005 124 0 021 14 005 124 0 021 14 005 124 0 021 14 005 124 0 021 14 021 14 021 14 021 14 021 14 021 14 021 14 021 14 021 14 021 14 021 14 021 14 021 14 021 14 021 14 021 14 021 14 021 14 021 14 021												
Pipeland201 0.94 <td>Brightenzizzité es és és</td> <td></td>	Brightenzizzité es és												
Hol MARCENT D0 10	Hol Langendary 124 - 125												
<pre>14 Lbp_2019 1 125 0 25 3 1 12 0 25 3 1 12 0 25 1 12 0 120 120 120 120 120 120 120 120</pre>	H_M Ng-2019 123 0.29 34 124 0.29 31 0.37 0.03 0.45 0.03 0.45 0.03 0.45 0.03 0.45 0.03												
B c recent per la participa de	Di Denizabiti i 13 di 03 di 02 di 14 di 03 di 04 di 25 di 05												
Windback 13 0.67 13 0.67 14 0.47 0	Willingson 13 0.87 143		1.25	0.29	34	1.24	0.28	31	4.3%	0.03 [-0.45, 0.52]			
Minimized 1 5 5 1407 36 1407 36 1407 36 1407 36 1407 36 1407 36 1407 36 1407 36 140 150 120 <	MCMMan2021 55 1407 346 1407 315 1154 007 [40, 0022] MCMMAN2021 134 012 25 129 1007 120 1007 100	JD Krebs2024	1.3	0.3	102	1.3	0.3	98	8.2%	0.00 [-0.28, 0.28]			
Minimized 9 9 10 7 9 10 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 <td< td=""><td>McMan2020 65 4407 346 4407 315 1154 007 [40,022] McMan2020 133 102 123 102 124 102 124 104 104 McMan2020 133 102 123 102 124 104</td><td>JW Wang2020</td><td>1.3</td><td>0.87</td><td>132</td><td>1.31</td><td>0.65</td><td>140</td><td>9.2%</td><td>-0.01 [-0.25, 0.22]</td><td></td></td<>	McMan2020 65 4407 346 4407 315 1154 007 [40,022] McMan2020 133 102 123 102 124 102 124 104 104 McMan2020 133 102 123 102 124 104	JW Wang2020	1.3	0.87	132	1.31	0.65	140	9.2%	-0.01 [-0.25, 0.22]			
Hit Vand202 43.39 6.39 64 43.59 6.7 70 70% 0.19 (51) 0.481 Schwadzer 0.19 (51) 0.481 0.29 (50) 0.410 7.6% 0.19 (51) 0.481 0.19 (51) 0.481 Mickandzer 0.19 (51) 0.481 0.41 (51) 0.491 0.42 (51) 0.491 0.42 (51) 0.491 0.42 (51) 0.491 Mickandzer 0.10 (51) 0.41 (51	Mit Valescolz 43.93 6.39 6.4 43.95 6.7 model	MC Malvar2021	55	14.07	346	54	14.07	315	11.6%		+-		
48/trodecide1016 45 8 12 5 8 11 12 44 8% -0.28 (17, 0, 10) 6.Madd1021 44.58 9.9 20 11 0.10 22 0.06 (10, 10) 6.Madd1021 144.58 9.9 20 14 0.10 22 0.06 (10, 10) 6.Madd1021 146.5 12 12 12 12 0.06 (10, 10) 10 0.06 (10, 10) <t< td=""><td>Starvasolo 9.85 r. 12 9.86 r.</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>+</td></t<>	Starvasolo 9.85 r. 12 9.86 r.										+		
5 Guldon 1, 348, 0, 92, 72, 1, 14, 0, 12, 36, 55%, 6, 50, 60, 60, 60, 60, 60, 60, 60, 60, 60, 6	5 Dividenti 1, 14, 8 0, 12, 72, 1, 14, 0, 12, 35, 55%, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,												
Bit	Relation 46.85 9.64 2.04 9.74 2.02 9.04 6.16, 1.06 cold 095. C0 -0.03. C0 + 2.03. c0 + 2.03												
tail tail<	Heigh St. 1												
<pre>steerogenery: Tur + 0.03. Chr = 20.5. df = 4 (P = 0.0000; P = 52% to for ovail filter: C = 70.7; P = 0.41 DLC Steeroperiod: 12.58 <u>0.53</u> <u>0.53</u> <u>0.55</u> <u>0.55</u> <u>0.55</u> <u>0.55</u> <u>0.55</u> <u>0.55</u> <u>0.55</u> DEC <u>12.55</u> <u>0.55</u> <u>0.55} 0.55 <u>0.55</u> <u>0.55</u> <u>0.55</u> <u>0.55</u> <u>0.55} 0.55 <u>0.55</u> <u>0.55</u> <u>0.55</u> <u>0.55</u> <u>0.55} 0.55 <u>0.55</u> <u>0.55</u> <u>0.55</u> <u>0.55} 0.55 <u>0.55</u> <u>0.55</u> <u>0.55</u> <u>0.55} 0.55 <u>0.55</u> <u>0.55</u> <u>0.55</u> <u>0.55} 0.55</u> <u>0.55</u> <u>0.55</u> <u>0.55} 0.55 <u>0.55</u> <u>0.55</u> <u>0.55} 0.55 <u>0.55</u> <u>0.55</u> <u>0.55} 0.55 <u>0.55</u> <u>0.55</u> <u>0.55</u> <u>0.55} 0.55</u> <u>0.55</u> <u>0.55</u> <u>0.55} 0.55 <u>0.55</u> <u>0.55</u> <u>0.55} 0.55 <u>0.55</u> <u>0.55</u> <u>0.55} 0.55</u> <u>0.55</u> <u>0.55} 0.55 <u>0.55</u> <u>0.55</u> <u>0.55} 0.55 <u>0.55</u> <u>0.55</u> <u>0.55} 0.55 <u>0.55</u> <u>0.55</u> <u>0.55} 0.55 <u>0.55</u> <u>0.55} 0.55</u> <u>0.55</u> <u>0.55} 0.55 <u>0.55</u> <u>0.55} 0.55 <u>0.55</u> <u>0.55} 0.55</u> <u>0.55</u> <u>0.55} 0.55 <u>0.55</u> <u>0.55} 0.55 <u>0.55</u> <u>0.55} 0.55 <u>0.55</u> <u>0.55} 0.55</u> <u>0.55</u> <u>0.55} 0.55 <u>0.55</u> <u>0.55} 0.55 <u>0.55</u> <u>0.55} 0.55 <u>0.55</u> <u>0.55} 0.55</u> <u>0.55} 0.55 <u>0.55</u> <u>0.55} 0.55 </u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></pre>	telesopensity: Tau* 0.03; Chr = 2.93; di = 14 (P = 0.000); P = 2.25; tato vevali fiete 2 - 0.27 (P = 0.47) CD_C Auti-Infirmatory dir Proinflammatory dir N = Reinflammatory dir N =	F Badali2023	45.85	9.54	20	41.9	7.64	20	2.9%	0.45 [-0.18, 1.08]			
<pre>steerogenery: Tur + 0.03. Chr = 20.5. df = 4 (P = 0.0000; P = 52% to for ovail filter: C = 70.7; P = 0.41 DLC Steeroperiod: 12.58 <u>0.53</u> <u>0.53</u> <u>0.55</u> <u>0.55</u> <u>0.55</u> <u>0.55</u> <u>0.55</u> <u>0.55</u> <u>0.55</u> DEC <u>12.55</u> <u>0.55</u> <u>0.55} 0.55 <u>0.55</u> <u>0.55</u> <u>0.55</u> <u>0.55</u> <u>0.55} 0.55 <u>0.55</u> <u>0.55</u> <u>0.55</u> <u>0.55</u> <u>0.55} 0.55 <u>0.55</u> <u>0.55</u> <u>0.55</u> <u>0.55} 0.55 <u>0.55</u> <u>0.55</u> <u>0.55</u> <u>0.55} 0.55 <u>0.55</u> <u>0.55</u> <u>0.55</u> <u>0.55} 0.55</u> <u>0.55</u> <u>0.55</u> <u>0.55} 0.55 <u>0.55</u> <u>0.55</u> <u>0.55} 0.55 <u>0.55</u> <u>0.55</u> <u>0.55} 0.55 <u>0.55</u> <u>0.55</u> <u>0.55</u> <u>0.55} 0.55</u> <u>0.55</u> <u>0.55</u> <u>0.55} 0.55 <u>0.55</u> <u>0.55</u> <u>0.55} 0.55 <u>0.55</u> <u>0.55</u> <u>0.55} 0.55</u> <u>0.55</u> <u>0.55} 0.55 <u>0.55</u> <u>0.55</u> <u>0.55} 0.55 <u>0.55</u> <u>0.55</u> <u>0.55} 0.55 <u>0.55</u> <u>0.55</u> <u>0.55} 0.55 <u>0.55</u> <u>0.55} 0.55</u> <u>0.55</u> <u>0.55} 0.55 <u>0.55</u> <u>0.55} 0.55 <u>0.55</u> <u>0.55} 0.55</u> <u>0.55</u> <u>0.55} 0.55 <u>0.55</u> <u>0.55} 0.55 <u>0.55</u> <u>0.55} 0.55 <u>0.55</u> <u>0.55} 0.55</u> <u>0.55</u> <u>0.55} 0.55 <u>0.55</u> <u>0.55} 0.55 <u>0.55</u> <u>0.55} 0.55 <u>0.55</u> <u>0.55} 0.55</u> <u>0.55} 0.55 <u>0.55</u> <u>0.55} 0.55 </u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></pre>	Heterogenery: Tur = 0.05; Chi = 2.25, di = 14 (li = 0.0000; li = 2.25; far or verail effect = 2-72 (li = 0.41). Option: State Anti-Informatory dist Discretation State Massimiliary State State Massimiliary State State Massimiliary State Option: State State Massimiliary State												
Teal for versite affects 2: 0 0.2 (P - 0.47) Subjects 2: 0 0.2 (P	Text for overal effect 2: e 0.72 (e 0.47) Diverse of the effect of the	Total (95% CI)			1405			1259	100.0%	-0.04 [-0.17, 0.08]			
Test for cardinal affect 2-0 72 (P - 0.4) Finance 2 (P - 0.4) Finance	Teal for available of the second seco	Heterogeneity: Tau ² =	0.03; Chi ² =	= 29.35, df	= 14 (P	= 0.009); I	² = 52%						
Dj. C. Anti-refinamenatory det The influence The influence The influence The influence M. Sangound2/4 178, 56 28, 24 30 178, 36 200 50%, 000 0000 000 000 000	Dip-C Anti-ordinamenatory det Pro-inflammatory det Boto Tosta Name N	Test for overall effect:	Z = 0.72 (P	= 0.47)									
Number Selection Number Selection Number Selection Number Selection Number Selection Standard Selection Standard Selection Standard Selection Standard Selection Standard Selection Standard Selection Standard Selection Standard Selection Standard Selection Standard Selection Standard Selection Standard Selection Standard Selection Standard Selection Standard Selection Standard Selection Standard Selection Standard Selection Standard Selection Standard Selection Standard Selection Standard Selection Standard Selection Standard Selection Standard Selection Standard Selection Standard Selection Standard Selection Standard Selection Standard Selection Standard Selection Standard Selection Standard Selection Standard Selection Standard Selection Standard Selection Standard Selection Standard Selection Standard Selection Standard Selection Standard Selection Standard Selection Standard Selection Standard Selection Standard Selection Standard Selection Standard Selection Standard Selection Standard Se	Norman Norman Do Total Mann Do Total Weight N. Random, 92%, Cl W. Rand					Der ind				Ctal Mana Differences			
XA.Bangouni2041 128.56 29.34 30 127.43 32.24 30 127.43 33.02 33.02 33.02 33.02 33.02 33.02 33.02 33.02 30.02 <td>M Samponi2024 128.5 28.4 30 02 128.6 28.2 0 30 50% 0.07 (44.6).071 D Gannel/202 108.8 22.4 30 07.7 33.8 33 62% 0.021 (44.6).051 D Gannel/202 108.5 38.6 181 122 32 135 62% 0.021 (44.6).051 D Feguad016 119.6 28.6 28.4 130 07.7 82 7.0% 0.021 (44.6).051 D Feguad016 119.6 28.6 28.4 130 07.7 82 7.0% 0.021 (44.6).051 D Feguad016 119.6 28.7 314 122 128 108 8.4% 0.021 (47.6).051 D Gannel/202 119.8 0.87 334 138 0.04 33 52% 0.051 (44.6).051 D Gannel/202 119.8 0.87 334 138 0.04 33 52% 0.051 (44.6).051 D Gannel/202 119.8 0.87 334 138 0.04 33 52% 0.051 (44.6).051 D Gannel/202 119.8 0.87 334 138 0.04 33 52% 0.051 (44.6).051 D Gannel/202 119.8 0.87 334 138 0.04 33 52% 0.051 (44.6).051 D Gannel/202 119.8 0.87 334 138 0.04 33 52% 0.051 (44.6).051 D Gannel/202 119.7 10.7 16 10.8 0.57 19.0 0.75% 0.021 (47.7).013 D Gannel/202 119.7 10.7 16 10.8 0.57 22.28 0.60 19.7 2.0% 0.021 (47.7).013 D Gannel/202 119.7 10.7 16 0.05 0.7 12.0 12.0 0.000 (); F = 72% Teloroganel/202 2 12.0 0.000 (); F = 72% Teloroganel/202 10 0.05 0.000 (); F = 72% Teloroganel/202 10 0.05 0.000 (); F = 72% Teloroganel/202 10 0.05 0.000 (); F = 40% Teloroganel/202 10 0.000</td> <td></td>	M Samponi2024 128.5 28.4 30 02 128.6 28.2 0 30 50% 0.07 (44.6).071 D Gannel/202 108.8 22.4 30 07.7 33.8 33 62% 0.021 (44.6).051 D Gannel/202 108.5 38.6 181 122 32 135 62% 0.021 (44.6).051 D Feguad016 119.6 28.6 28.4 130 07.7 82 7.0% 0.021 (44.6).051 D Feguad016 119.6 28.6 28.4 130 07.7 82 7.0% 0.021 (44.6).051 D Feguad016 119.6 28.7 314 122 128 108 8.4% 0.021 (47.6).051 D Gannel/202 119.8 0.87 334 138 0.04 33 52% 0.051 (44.6).051 D Gannel/202 119.8 0.87 334 138 0.04 33 52% 0.051 (44.6).051 D Gannel/202 119.8 0.87 334 138 0.04 33 52% 0.051 (44.6).051 D Gannel/202 119.8 0.87 334 138 0.04 33 52% 0.051 (44.6).051 D Gannel/202 119.8 0.87 334 138 0.04 33 52% 0.051 (44.6).051 D Gannel/202 119.8 0.87 334 138 0.04 33 52% 0.051 (44.6).051 D Gannel/202 119.7 10.7 16 10.8 0.57 19.0 0.75% 0.021 (47.7).013 D Gannel/202 119.7 10.7 16 10.8 0.57 22.28 0.60 19.7 2.0% 0.021 (47.7).013 D Gannel/202 119.7 10.7 16 0.05 0.7 12.0 12.0 0.000 (); F = 72% Teloroganel/202 2 12.0 0.000 (); F = 72% Teloroganel/202 10 0.05 0.000 (); F = 72% Teloroganel/202 10 0.05 0.000 (); F = 72% Teloroganel/202 10 0.05 0.000 (); F = 40% Teloroganel/202 10 0.000												
8 Smith 8	3 8 mbc ⁷¹⁸ 6 8 28 9 100 74 25 83 100 7.7 % 0.24 [4.22, 0.6] 3 8 Devide(717, 2.22, 0.77 70 33 0.6 72 67 7.0 % 0.21 [4.29, 0.6] 3 Romanic201 10 37 33 4 105 012 22 31 52 65 56 -0.02 [4.40, 0.6] 3 Romanic202 10 37 34 156 012 22 31 52 65 56 -0.02 [4.40, 0.6] 10 Krebs202 11 9 7 01 48 135 22 8 10 1 98 7.7 % 0.22 [4.40, 0.6] 10 Krebs202 11 9 7 01 48 135 22 8 10 1 98 7.7 % 0.22 [4.40, 0.6] 10 Krebs202 11 12 7 01 48 135 22 8 10 1 98 7.7 % 0.22 [4.40, 0.6] 10 Krebs202 11 12 7 01 48 135 20 1 99 100.% 0.21 [4.40, 0.6] 10 Krebs202 11 12 7 101 48 135 20 1 99 100.% 0.21 [4.40, 0.6] 10 Krebs202 11 12 7 101 48 135 20 1 99 100.% 0.21 [4.40, 0.6] 10 Krebs202 11 12 7 101 48 135 20 1 12 29 150.% 0.22 [4.40, 0.6] 10 Krebs202 11 12 7 101 48 135 20 1 12 29 100.% 0.21 [4.40, 0.6] 10 Krebs202 10 117 701 48 135 20 1 12 29 100.% 0.21 [4.40, 0.6] 10 Krebs202 10 117 701 48 135 20 1 12 29 100.% 0.21 [4.40, 0.6] 10 Krebs202 10 117 701 48 135 20 1 12 29 100.% 0.21 [4.40, 0.6] 10 Krebs202 10 117 701 48 135 20 1 12 29 100.% 0.21 [4.40, 0.6] 10 Krebs202 10 117 701 48 135 20 1 12 29 100.% 0.21 [4.40, 0.6] 10 Krebs202 10 117 701 10 10 10 10 10 10 10 10 10 10 10 10 1										IV. Random. 95% Cl		
2) Gadmach202 2) Gadmach202 2) Gadmach202 2) Gadmach202 2) Gadmach202 2) Gadmach202 2) Gadmach201 1) Gadmach202 2) Gadmach201 1) Gadmach202 2) Gadmach201 1) Gadmach202 2) Gadmach201 1) Gadmach202 2) Gad	2) Gardineticity 1, 1, 2, 2, 2, 2, 1, 2, 3, 2, 4, 2, 3, 3, 9, 8, 3, 3, 8, 3, 5, 2, 6, 7, 7, 6, -0, 2, 1, 0, 6, 1, 2, 0, 6, 1, 2, 2, 0, 6, 1, 2, 2, 0, 0, 1, 1, 2, 2, 2, 2, 3, 4, 7, 7, 1, 2, 3, 4, 7, 7, 1, 2, 3, 4, 7, 7, 1, 2, 2, 1, 2, 2, 2, 3, 4, 7, 1, 2, 7, 6, -0, 2, 1, 0, 6, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1,	AA Sangouni2024	126.56	28.34	30	124.36	36.29	30	5.0%	0.07 [-0.44, 0.57]			
2) Gadmach202 2) Gadmach202 2) Gadmach202 2) Gadmach202 2) Gadmach202 2) Gadmach202 2) Gadmach201 1) Gadmach202 2) Gadmach201 1) Gadmach202 2) Gadmach201 1) Gadmach202 2) Gadmach201 1) Gadmach202 2) Gad	2) 0 Sambardor 2) 0 Sambardor	3 Shah2018	68	23.89	100	74	25.83	100	7.7%	-0.24 [-0.52, 0.04]			
R Deviso 177 2 222 0.77 70 2.30 8 0.72 77 70 0.35 10.55 0.12 Psplau2024 1227 31 4 52 1262 32.51 52 0.33 0.07 12 77 75 0.35 10.65 0.02 Psplau2024 1227 31 4 52 1262 32.51 52 0.33 0.07 12 0.75 0.07 10.46 0.03 1 Psplau2024 1227 31 4 52 1262 32.51 52 0.33 0.07 12 0.75 0.07 10.46 0.03 1 D Cebs203 3 4 0.9 102 35 0.1 98 77 0.02 10.05 0.05 10.05 10 0.	R Deviso 177 2 282 0.77 70 30.8 0.72 07 70 0.02 120 50.02 Pegiadold 123 7 31.4 52 128.02 32.51 52 0.3% 0.07[0.46,0.31] Pegiadold 123 7 31.4 52 128.02 32.51 52 0.3% 0.07[0.46,0.31] 0 femero201 134 0.0 103 123 0.48 0.85 0.01 90 77% 0.021[0.40,0.02] 0 femero201 134 0.0 103 123 0.48 0.85 0.01 90 77% 0.021[0.40,0.02] 0 femero201 134 0.0 103 122 0.21 0.0 49 77% 0.01[0.40,0.02] 0 femero201 134 0.0 40 0.001 12 0.2 0.0 40 90 77% 0.01[0.40,0.02] 0 femero201 134 0.0 40 0.001 12 0.2 0.0 40 90 77% 0.01[0.40,0.02] 0 femero201 141 237 0.6 0.1 48 0.85 0.0 490 7.7% 0.021[0.40,0.02] 0 femero201 141 237 0.6 0.1 48 0.85 0.0 490 7.7% 0.021[0.40,0.02] 0 femero201 141 237 0.6 0.1 48 0.85 0.0 100 7.7 2 0.21 0.0001 17 2.2% 18 ornoadcolf 141 227 76 0.0001 17 2.2% 18 ornoadcolf 143 0.0 0.00 5.0 10 0.00 5.0 10 0.00 5.0 10 0.00 5.0 0.0001 10 0.00 0.0										-+		
Remarkovini 0.06 5 30.05 100 12.3 40.7 52 7.0% 43.6 40.6 40.2 HG Law 2023 103 20 166 155 20 156 56 57 40.6	2 Rom2016 108 5 8005 108 122 3 407 52 70% 0.35 (6.06, 0.02) 5 Polgai0202 103 22 166 115 22 162 6 55% 0.007 (1.40, 0.57) 46 Law2021 103 20 167 132 22 80 0.76 140 81% 0.02 (1.07, 0.57) W Warg202 22 1 0.67 132 22 80 0.76 140 81% 0.02 (1.07, 0.57) 41 Vasco22 81.87 17.01 44 83.65 20.04 90 7.5% 0.01 (0.40, 0.2) 14 Vasco22 81.87 17.01 44 83.65 20.04 90 7.5% 0.02 (0.40, 0.5) 14 Vasco22 81.87 17.01 44 83.65 20.04 90 7.5% 0.02 (0.40, 0.5) 14 Vasco22 81.87 17.01 44 83.65 20.04 90 7.5% 0.02 (0.40, 0.5) 15 Baadron 20 72 2 23 1 0.01 23 8 65% 0.02 (1.00, 0.1) 15 Baadron 20 72 2 23 1 0.01 23 8 65% 0.02 (1.00, 0.1) 15 Baadron 20 72 2 23 1 0.01 23 8 65% 0.02 (1.00, 0.1) 15 Baadron 20 72 2 23 1 0.01 23 8 65% 0.02 (1.00, 0.1) 15 Baadron 20 72 2 23 1 0.01 23 8 65% 0.02 (1.00, 0.1) 15 Baadron 20 72 2 23 1 0.01 23 8 65% 0.02 (1.00, 0.1) 15 Baadron 20 72 2 23 1 0.01 20 72 2 25 8 20 3 30 0.05 0.02 (1.00, 0.1) 15 Baadron 20 72 2 23 1 0.01 20 72 2 25 8 20 3 30 0.05 0.02 (1.00, 0.1) 15 Baadron 20 72 1 0.56 1 40.26 (1.00, 0.1) 15 Baadron 20 72 1 10 10 7 11 0.05 7 11 10 7 11 0.05 7 11 10 70 7 10 7 10 7 10 7 10 7 10 7										-++		
3 Pagliad241 123.7 31.4 6 120.02 32.51 52.8 36.8 -0.07 (4.46, 0.31) 4.1. May2019 1.99 0.47 34 1.99 0.44 31 52.8 0.05 (0.44, 0.50) 4.1. May2019 1.99 0.47 34 1.99 0.44 31 52.8 0.05 (0.44, 0.50) 4.1. May2019 1.94 0.47 31.5 0.38 0.05 (0.44, 0.50) 0.05 (0.44, 0.50) 4.1. May2012 1.43 31.6 0.38 55.6 0.52 (0.47, 0.13) 0.50 (0.44, 0.50) 4.8 brickot2015 1.41 2.27 2.64 0.396 0.02 (0.40, 0.21)	3 Pagliau2024 123.7 31.4 52 120.0 22.5 120.0 22.5 120.0 22.5 120.0 22.5 120.0 22.0 120.0 22.0 120.0 1												
Hollmack203 103 28 116 8.5% -0.44 (-0.66, -0.23) University 3.4 0.9 102 3.6 116 8.5% -0.44 (-0.66, -0.23) University 3.4 0.9 102 3.6 118 8.7% -0.27 (-0.44, 0.53) University 113 2.81 0.37 12 2.80 2.11 0.87 (-0.65) Viversity 114 2.21 0.87 (-0.65) -0.82 (-0.64, 0.53) -0.82 (-0.64, 0.53) Viversity 114 2.81 0.33 2.22 (-0.65, 0.44, 0.53) -0.82 (-0.64, 0.53) Viversity 114 2.81 0.83 (-0.64, 0.54, 0.54) -0.82 (-0.64, 0.54) -0.93 (-0.66, 0.64) Viversity 100 (-0.54) 9.92 (-2.54, 0.54) -0.93 (-0.62, 0.44) -0.93 (-0.66, 0.64) -0.93 (-0.66, 0.64) Viversity 100 (-0.54, 0.64) 100 (-0.56, 0.66) -0.93 (-0.66, 0.66) -0.93 (-0.66, 0.66) -0.93 (-0.66, 0.66) -0.93 (-0.66, 0.66) -0.93 (-0.66, 0.66) -0.93 (-0.66, 0.66) -0.93 (-0.66, 0.66) -0.93 (-0.66, 0.66) -0.93 (-0.66, 0.66) -0.93 (-0.66, 0.66) -0.93 (-0.66, 0.66) -0.93 (-0.66, 0.66) -0.	Holl Jung 2021 103 28 106 8.5 % -0.44 (0.66, 0.22) Un Kerkszülzt 3.4 0.3 102 3.6 115 2.8 0.6 -0.44 (0.66, 0.22) 0.6 -0.44 (0.66, 0.22) 0.6 -0.44 (0.66, 0.22) 0.6 -0.44 (0.66, 0.22) 0.6 -0.44 (0.66, 0.22) 0.6 -0.44 (0.66, 0.22) 0.6 -0.44 (0.66, 0.22) 0.6 -0.44 (0.66, 0.22) 0.6 -0.44 (0.44, 0.53) -0.46 (0.45, 0.53) -0.46 (0.44, 0.53) -0.46 (0.44, 0.53) -0.46 (0.44, 0.53) -0.46 (0.44, 0.53) -0.46 (0.44, 0.53) -0.46 (0.44, 0.53) -0.46 (0.44, 0.53) -0.46 (0.44, 0.53) -0.46 (0.45, 0.53) -0.46 (0.45, 0.53) -0.46 (0.44, 0.53) -0.46 (0.44, 0.53) -0.46 (0.44, 0.53) -0.46 (0.44, 0.53) -0.46 (0.44												
LL Mag 2010 1 99 0.87 34 106 0.84 31 52% 0.05 (0.44 0.63) W Wag 2020 2.21 0.87 132 2.88 0.78 140 8.1% 0.82 (1.07.0.57) W Wag 2020 2.21 0.87 132 2.88 0.78 140 8.1% 0.82 (1.07.0.57) W Wag 2020 2.114 34 46 112 2.88 0.78 140 8.07 140 8.07 140 (0.40, 0.20) Facula (0.85 (0) 1 140 5 129 10.0.% 0.21 (0.40, 0.20) Facula (0.85 (0) 1 140 5 129 10.0.% 0.21 (0.40, 0.20) Facula (0.85 (0) 1 140 5 129 10.0.% 0.21 (0.40, 0.20) Facula (0.85 (0) 1 140 5 129 10.0.% 0.21 (0.40, 0.20) Facula (0.85 (0) 1 140 5 129 10.0.% 0.21 (0.40, 0.20) Facula (0.85 (0) 1 140 5 129 10.0.% 0.21 (0.40, 0.20) Facula (0.85 (0) 1 140 5 129 10.0.% 0.21 (0.40, 0.20) Facula (0.85 (0) 1 140 5 129 10.0.% 0.21 (0.40, 0.20) Facula (0.85 (0) 1 140 5 12 (1.0 - 0.00)) Facula (0.85 (0) 1 140 5 0 140 5 0 120 (0.85 (0) 10 (0.40, 0.20) Facula (0.85 (0) 1 140 5 0 120 (0.76 (0.40) 10 (0	$\begin{split} 1_{L} (M_{SY} Criterio 1 & 90 & 0.87 & 34 & 1.95 & 0.84 & 31 & 5.2\% & 0.05 [-0.44, 0.53] \\ M V M_{SY} Criterio 1 & 14 & 34 & 0.12 & 2.88 & 0.74 & 140 & 8.1\% & 0.82 [-1.07, 0.57] \\ M V M_{SY} Criterio 1 & 14 & 34 & 0.12 & 2.88 & 0.74 & 140 & 8.1\% & 0.82 [-1.07, 0.57] \\ M V M_{SY} Criterio 1 & 14 & 34 & 0.12 & 2.88 & 0.74 & 140 & 8.1\% & 0.82 [-1.07, 0.57] \\ M V M_{SY} Criterio 1 & 14 & 34 & 0.12 & 2.88 & 0.74 & 140 & 8.1\% & 0.82 [-1.07, 0.57] \\ M V M_{SY} Criterio 1 & 14 & 34 & 0.12 & 2.88 & 0.74 & 140 & 9.07] \\ M V M_{SY} Criterio 1 & 140 & 5 & 129 & 10.0.\% & 0.22 [-0.80, 0.21] \\ H V MAUCZZ S & 7.68 & 20.54 & 20 & 9.22 & 2.45 & 20 & 3.9\% & 0.00 [-0.82, 0.42] \\ H M VAROUZZ S & 7.68 & 20.54 & 20 & 9.22 & 2.45 & 20 & 3.9\% & 0.20 [-0.82, 0.42] \\ H M VAROUZZ S & 7.68 & 20.54 & 20 & 9.22 & 2.45 & 50 & 0.05$												
$ \begin{aligned} D (cbis)_{12}^{12} (24) & 34 & 0.9 & 102 & 3.6 & 1 & 98 & 7.75 & -0.21 [0.49, 0.07] \\ d(C Marray Col1 & 114 & 31 & 34 & 112 & 32 & 31 & 5 & 5.35 & 0.06 [0.09, 0.21] \\ d(C Marray Col1 & 114 & 31 & 34 & 112 & 32 & 31 & 5 & 5.35 & 0.06 [0.09, 0.21] \\ d(C Marray Col1 & 114 & 31 & 34 & 112 & 32 & 31 & 5 & 5.35 & 0.06 [0.09, 0.21] \\ d(C Marray Col1 & 114 & 31 & 34 & 112 & 32 & 31 & 5 & 5.35 & 0.06 [0.09, 0.21] \\ d(C Marray Col1 & 114 & 31 & 34 & 112 & 32 & 31 & 5 & 5.35 & 0.06 [0.09, 0.21] \\ d(C Marray Col1 & 2.55 & 0.3 & 7.68 & 20.54 & 20 & 92.22 & 24.55 & 20 & 3.96 & 0.00 [1.00, 0.01] \\ d(C Marray Col1 & 1.46 & 3.25 & 0.1 & 7.68 & 10.05 & 10.05 & 0.01 [1.00, 0.01] \\ d(C Marray Col1 & 1.46 & 3.0 & 0.01 & 1.0 & 0.01 & 1.0 & 0.01 & 0.01 & 0.01 \\ d(C Marray Col1 & 1.05 & 0.10 & 1.0 & 0.01 & 0.01 & 0.01 & 0.01 & 0.01 & 0.01 & 0.01 \\ d(C Marray Col1 & 1.05 & 0.01 & 1.0 & 0.01 $	Di Orbitologia 3,4 0,9 102 3,6 1 18 27,7% -0.21 (0.48, 0.07) Wamg2020 2,21 0,87 112 2,80 10 12 2,8 0,13 15 9,3% 0.06 (0.49, 0.21) Wamg2020 2,11 14 34 36 112 32 315 9,3% 0.06 (0.49, 0.21) Wamg2020 2,21 0,13 12 2,41 0,3 39 0,0% 0,00 (1.00, 0.57) Fiberia 2,80 10 1,2 2,81 0,3 72 2,21 1,0 3 39 0,0% 0,00 (1.00, 0.12) Fiberia 2,81 0,1 2,21 0,2 12 2,21 0,23 39 0,0% 0,00 (1.00, 0.12) Fiberia 2,81 0,1 2,21 0,21 0,22 2,24 50 2,20 10,0% 0,22 (0.2,9, 0.07) Fiberia 2,81 0,1 1,1 0,1 1 - 27, 1 - 28, 1 - 0,00 (1) 1 - 72% Fiberia 2,22 0,1 - 0,000 (1) 1 - 72% Fiberia 2,22 0,1 - 0,000 (1) 1 - 72% Fiberia 2,21 0,1 1,1 0,1 1 - 27, 1 - 28, 1 - 0,000 (1) 1 - 72% Fiberia 2,21 0,1 1,1 0,1 1 -												
$ \begin{aligned} D (cbis)_{12}^{12} (24) & 34 & 0.9 & 102 & 3.6 & 1 & 98 & 7.75 & -0.21 [0.49, 0.07] \\ d(C Marray Col1 & 114 & 31 & 34 & 112 & 32 & 31 & 5 & 5.35 & 0.06 [0.09, 0.21] \\ d(C Marray Col1 & 114 & 31 & 34 & 112 & 32 & 31 & 5 & 5.35 & 0.06 [0.09, 0.21] \\ d(C Marray Col1 & 114 & 31 & 34 & 112 & 32 & 31 & 5 & 5.35 & 0.06 [0.09, 0.21] \\ d(C Marray Col1 & 114 & 31 & 34 & 112 & 32 & 31 & 5 & 5.35 & 0.06 [0.09, 0.21] \\ d(C Marray Col1 & 114 & 31 & 34 & 112 & 32 & 31 & 5 & 5.35 & 0.06 [0.09, 0.21] \\ d(C Marray Col1 & 2.55 & 0.3 & 7.68 & 20.54 & 20 & 92.22 & 24.55 & 20 & 3.96 & 0.00 [1.00, 0.01] \\ d(C Marray Col1 & 1.46 & 3.25 & 0.1 & 7.68 & 10.05 & 10.05 & 0.01 [1.00, 0.01] \\ d(C Marray Col1 & 1.46 & 3.0 & 0.01 & 1.0 & 0.01 & 1.0 & 0.01 & 0.01 & 0.01 \\ d(C Marray Col1 & 1.05 & 0.10 & 1.0 & 0.01 & 0.01 & 0.01 & 0.01 & 0.01 & 0.01 & 0.01 \\ d(C Marray Col1 & 1.05 & 0.01 & 1.0 & 0.01 $	Di Orbitologia 3,4 0,9 102 3,6 1 18 27,7% -0.21 (0.48, 0.07) Wamg2020 2,21 0,87 112 2,80 10 12 2,8 0,13 15 9,3% 0.06 (0.49, 0.21) Wamg2020 2,11 14 34 36 112 32 315 9,3% 0.06 (0.49, 0.21) Wamg2020 2,21 0,13 12 2,41 0,3 39 0,0% 0,00 (1.00, 0.57) Fiberia 2,80 10 1,2 2,81 0,3 72 2,21 1,0 3 39 0,0% 0,00 (1.00, 0.12) Fiberia 2,81 0,1 2,21 0,2 12 2,21 0,23 39 0,0% 0,00 (1.00, 0.12) Fiberia 2,81 0,1 2,21 0,21 0,22 2,24 50 2,20 10,0% 0,22 (0.2,9, 0.07) Fiberia 2,81 0,1 1,1 0,1 1 - 27, 1 - 28, 1 - 0,00 (1) 1 - 72% Fiberia 2,22 0,1 - 0,000 (1) 1 - 72% Fiberia 2,22 0,1 - 0,000 (1) 1 - 72% Fiberia 2,21 0,1 1,1 0,1 1 - 27, 1 - 28, 1 - 0,000 (1) 1 - 72% Fiberia 2,21 0,1 1,1 0,1 1 -	H L. Mayr2019	1.99	0.87	34	1.95	0.84	31	5.2%	0.05 [-0.44, 0.53]			
W Wang2020 2 21 0.67 132 2.88 0.76 140 8.1% 0.82 (107.0.57) W Wang2020 114 34 2.7 16 44 8.3.65 20.04 90 7.5% 0.10 (0.40, 0.21) W Schroeder 2017 12 48 0.3 7 2 2.81 0.2 3 8 0.07 0.00 0.0 0.2 12 0.0 0.0 0 0.2 12 0.0 0.0 0 0.2 12 0.0 0.0 0 0.2 12 0.0 0.0 0 0.2 12 0.0 0.0 0 0.2 12 0.0 0.0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	$ W W_{approx} V W W W_{approx} V W W W W W W W W W W W W W W W W W W$		3.4	0.9	102	3.6		98	7.7%				
AC Maximized 21 114 34 346 112 32 315 9.3% 0.06 [0.40, 0.21] 4 Schwedz015 141 23.7 66 143.3 21 29 5.5% -0.10 [0.40, 0.20] 16 Bradial023 0.78 0.21 [0.40, 0.20] 0.39 5.0% -0.82 [0.40, 0.20] -0.22 [0.42, 0.42] 16 Bradial023 0.78 0.22 [0.43, 0.40] 0.22 [0.43, 0.40] -0.22 [0.42, 0.42] 16 Bradial023 0.78 0.66 [0.40, 0.21] -0.20 [0.42, 0.42] -0.20 [0.42, 0.42] 16 Bradial023 0.78 0.22 [0.43, 0.40] -0.20 [0.42, 0.42] -0.20 [0.42, 0.42] 16 Bradial023 0.76 0.33 [0.46] 0.90 [0.40, 0.20] -0.20 [0.42, 0.42] 16 Bradial023 0.35 0.40 [0.40, 0.20] -0.20 [0.42, 0.42] -0.20 [0.42, 0.42] 16 Bradial023 0.35 0.10 [0.40, 0.20] -0.20 [0.42, 0.40] -0.20 [0.42, 0.40] -0.20 [0.42, 0.42] 17 Grownal Dirth 0.36 [0.41, 0.40, 0.7] 0.36 [0.40, 0.40] 0.36 [0.40, 0.40] 0.36 [0.40, 0.40] 0.36 [0.40, 0.40] 0.20 [0.42, 0.20] -0.20 [0.42, 0.20] -0.20 [0.42, 0.20] -0.20 [0.40, 0.40] <td< td=""><td>MC Max-Wass2021 114 34 446 112 315 9.3% 0.06 [0.09, 21] MV Mass2021 6197 1.70 84 8.32 21 29 5.5% 0.010 [0.40, 0.2] S brucedite 6188 2.03 20 22.22 24.65 0.03 2.107, 0.13] Mass2021 6188 20.4 20 22.22 24.65 0.03 2.9% 0.001 [0.40, 0.2] Mass2021 6186 20.51 0.23 0.9% 0.22 [0.49, 0.07] 10.04 0.20 0.20 0.20 0.20 1.02 0.20</td></td<> <td></td>	MC Max-Wass2021 114 34 446 112 315 9.3% 0.06 [0.09, 21] MV Mass2021 6197 1.70 84 8.32 21 29 5.5% 0.010 [0.40, 0.2] S brucedite 6188 2.03 20 22.22 24.65 0.03 2.107, 0.13] Mass2021 6188 20.4 20 22.22 24.65 0.03 2.9% 0.001 [0.40, 0.2] Mass2021 6186 20.51 0.23 0.9% 0.22 [0.49, 0.07] 10.04 0.20 0.20 0.20 0.20 1.02 0.20												
H4 Vasco22 81.97 17.01 84.83.65 20.04 90 7.5% -0.01 0.40.020 Schuozdzi 26.83 0.3 7.5 24.10 0.3 26.94 -0.00 0.62.042 BindaldZZ 87.68 20.84 20.92 22.84 0.03 3.66 6.05 -0.60 0.62.042 BindaldZZ 87.68 20.84 20.92 22.84 0.03 9.69 0.20.10 6.082.042 BindaldZZ 20.85 C.C.V= #40.80 dist of evaluation of the monentation of	MH Vasco22 81.97 17.01 84 88.88 20.04 90 7.5% -0.10 [0.40, 0.20] S Chuo2016 2.63 0.3 72 2.81 0.3 36 6.0% -0.00 [0.40, 0.20] Field 2.65 0.03 72 2.81 0.3 36 6.0% -0.00 [0.40, 0.20] -0.00 -0.0										+-		
Schwaczie Main Sz. Nu 2016 Main Sz. Nu 2016 Sz. Nu 20	Schwaczyczi 14 23 7 6 148.3 21 29 6.5% -0.02 [2,077, 13] F Badallozza 87.68 20.54 20 92.22 24.65 20 3.9% -0.02 [1,00,01] -0.05 Charlendeensteensteensteensteensteensteenstee												
S Chu2016 2.83 0.3 72 2.81 0.3 36 6.0% -0.00[-10,0.19] Fieldsdieze 37.68 20.54 20.92 22 2.45 0.3 36 6.0% -0.00[-10,0.19] Fieldsdieze 37.68 20.54 20.92 22 2.45 0.3 36 6.0% -0.00[-10,0.19] Fieldsdieze 37.68 20.55 120 100 10 17 72% Fieldsdieze 37.68 20.55 120 100 10 17 72% Fieldsdieze 37.68 20.55 120 100 10 17 72% Std. Mean Difference Std. Mean D	S Chu2016 2.8.3 0.3 7.2 2.81 0.3 36 6.0.9 -0.60 [-10, 0.19] For al (95% CI) 100 Ch ⁻¹ 43.9.4 0.9 (= 14 [P - 0.0001]; P = 72% Teleforgenetics, Tau ² = 0.00; Ch ⁻¹ = 43.9.4 df = 14 [P - 0.0001]; P = 72% Teleforgenetics, Tau ² = 0.00; Ch ⁻¹ = 43.9.4 df = 14 [P - 0.0001]; P = 72% Teleforgenetics, Tau ² = 0.00; Ch ⁻¹ = 43.9.4 df = 14 [P - 0.0001]; P = 72% Teleforgenetics, Tau ² = 0.00; Ch ⁻¹ = 43.9.4 df = 14 [P - 0.0001]; P = 72% Teleforgenetics, Tau ² = 0.00; Ch ⁻¹ = 43.9.4 df = 14 [P - 0.0001]; P = 72% Teleforgenetics, Tau ² = 0.00; Ch ⁻¹ = 43.9.4 df = 14 [P - 0.0001]; P = 72% Teleforgenetics, Tau ² = 0.00; Ch ⁻¹ = 43.9.4 df = 14 [P - 0.0001]; P = 72% Teleforgenetics, Tau ² = 0.00; Ch ⁻¹ = 43.9.3 df = 14 [P - 0.0001]; P = 72% Teleforgenetics, Tau ² = 0.00; Ch ⁻¹ = 43.9.3 df = 14 [P - 0.0001]; P = 72% Teleforgenetics, Tau ² = 0.00; Ch ⁻¹ = 0.00; P = 0.01;												
Bedaul2023 87.68 20.54 20 9.92 24.56 20 3.9% -0.20[-0.82, 0.42] Total (95% C) 104 50 109 129 100.0% -0.22[-0.82, 0.42] Test for overall effect Z = 28 (P = 0.004) Total (95% C) 100.0% -0.23[-0.83, 0.07] 100.0% -0.23[-0.83, 0.07] Study or Studyrouv Mean Sto Total (95% C) Mean Sto Total (95% C) -0.20(-0.0001); P = 72% Study or Studyrouv Mean Sto Total (95% C) Mean Sto Total (95% C) -0.33[-0.81, 0.05] -0.24[-0.7, 0.10] -0.24(-0.7, 0.10] -0.25(-0.20, 0.10]	E Badal2023 87.68 20.54 20 92.22 24.56 20 3.9% -0.20 [0.82, 0.42] Train (9% C) - 49.96, df = 14 (P < 0.0001); P = 72% Test for overall effect Z = 2.87 (P = 0.004) TG (Markan SD Total Mean SD Total Mean Markan SD Total Weight V. Random, 9% C (
Terrorenti effect 2 = 162 (p = 0.01); p = 22% terrorenti effect 2 = 162 (p = 0.01); p = 22% terrorenti effect 2 = 2.87 (p = 0.00); p = 2.85 terrorenti effect 2 = 1.82 (p = 0.00); p = 2.85 terrorenti effect 2 = 1.82 (p = 0.01); p = 4.84 terrorenti effect 2 = 1.82 (p = 0.01); p = 4.84 terrorenti effect 2 = 1.82 (p = 0.01); p = 4.84 terrorenti effect 2 = 1.82 (p = 0.01); p = 4.84 terrorenti effect 2 = 1.82 (p = 0.01); p = 4.84 terrorenti effect 2 = 1.82 (p = 0.01); p = 4.84 terrorenti effect 2 = 1.82 (p = 0.01); p = 4.84 terrorenti effect 2 = 1.82 (p = 0.01); p = 4.84 terrorenti effect 2 = 1.82 (p = 0.01); p = 4.84 terrorenti effect 2 = 1.82 (p = 0.01); p = 4.84 terrorenti effect 2 = 1.82 (p = 0.01); p = 4.84 terrorenti effect 2 = 1.84 (p = 0.01); p	Tada (95% C) 100												
Heterogeneity: Tul* = 0.08; Cub* = 48.98, df = 14 (P < 0.0001); P = 72%	Heterogeneity: Tat" = 0.06; ChP' = 4.98, df = 14 (P < 0.0001); P = 72%. Test for overall effect Z = 2.87 (P < 0.004) TG	F Badali2023	87.68	20.54	20	92.22	24.56	20	3.9%	-0.20 [-0.82, 0.42]			
Heterogeneity: Tul* = 0.08; Cub* = 48.98, df = 14 (P < 0.0001); P = 72%	Heterogeneity: Tar = 0.06; Ch ⁺ = 4.98, df = 14 (P < 0.0001); P = 72% Test for overall effect: Z = 2.87 (P < 0.004) TG Maan SD Shaha201 10 Kebs2024 11 K5 10 Kebs2024 11 K5 11												
FG Anti-Inflammatory diet Pro-Inflammatory diet Std. Mean Difference Std. Mean Difference VB amgouni2024 161.3 64.78 30 207.76 89.06 30 36.% 40.58 10.0 <td< th=""><th>TG And-Inflammatory diet Pro-inflammatory diet Std. Mean Difference Std. Mean Difference MQ or Subgroup2024 161.53 64.78 30 207.76 89.06 30 36% -0.39 [-10.0-07] Shaha2016 93.5 43.5 100 065 46.1 100 7.6% -0.39 [-0.10, 0.07] Product 2022 105.84 40.26 33 118.8 7.41.7 33 4.0% -0.24 [-0.70, 0.27] Product 2023 170.84 108.8 25.2 5.4% -0.01 [-0.43, 0.23] 0.31 -0.44 -0.24 [-0.70, 0.02] Product 2023 170 32.59 166 64 2.6.7 166 9.4% 0.20 [-0.10, 0.42] -0.4<!--</th--><th>Heterogeneity: Tau² =</th><th></th><th></th><th>= 14 (P</th><th>< 0.00001</th><th>); I² = 72%</th><th></th><th></th><th></th><th></th></th></td<>	TG And-Inflammatory diet Pro-inflammatory diet Std. Mean Difference Std. Mean Difference MQ or Subgroup2024 161.53 64.78 30 207.76 89.06 30 36% -0.39 [-10.0-07] Shaha2016 93.5 43.5 100 065 46.1 100 7.6% -0.39 [-0.10, 0.07] Product 2022 105.84 40.26 33 118.8 7.41.7 33 4.0% -0.24 [-0.70, 0.27] Product 2023 170.84 108.8 25.2 5.4% -0.01 [-0.43, 0.23] 0.31 -0.44 -0.24 [-0.70, 0.02] Product 2023 170 32.59 166 64 2.6.7 166 9.4% 0.20 [-0.10, 0.42] -0.4 </th <th>Heterogeneity: Tau² =</th> <th></th> <th></th> <th>= 14 (P</th> <th>< 0.00001</th> <th>); I² = 72%</th> <th></th> <th></th> <th></th> <th></th>	Heterogeneity: Tau ² =			= 14 (P	< 0.00001); I² = 72%						
Stady or Subgroup Mean SD Total Weight W. Random, 95% Cl W. Random, 95% Cl VA Sangouni2019 913.5 43.5 100 108.5 46.1 100 76% -0.35 [-0.10, -0.07] JS Danko 2012 108.84 40.23 78.12 26.46.4 -0.05 [-0.10, -0.07] JR Daviso 2017a 1 0.36 7.0 11.1 0.47 67.6 5.96.4 -0.01 [-0.35, 0.23] S Robuso 2017a 1 0.36 7.0 1.1 0.47 67.6 5.25 6.4% -0.01 [-0.35, 0.23] S Robuso 2017a 11.6 0.76 34 1.3 0.78 31.3 3.9% 0.20 [-0.01, 0.42] S Robuso 2017a 1.6 0.76 34.6 1.3 0.78 0.26 [-0.10, 0.2] -0.25 [-0.35, 0.03] S Robuso 2017a 1.8 0.45 1.52 0.28 0.26 [-1.0, 0.10, 0.2] -0.25 [-1.0, 0.01, 0.2] -0.25 [-1.0, 0.01, 0.2] -0.25 [-1.0, 0.01, 0.2] -0.25 [-1.0, 0.0, 0.2] -0.25 [-1.0, 0.0, 0.2] Fourues [Anti-Inflammatory diel] Fav	Study or Subaroup Mean SD Total Mean SD SD AS Sangun2021 161.53 44.78 30 36.9 -0.59 (1.10.0.07) -0.59 (1.10.0.07) S Dahzo211 11.6 7.0 11.8 7.17 7.6 -0.23 (-0.57, 0.02) -0.41 (-0.50, 0.27) C Deardne 2022 116.6 7.0 11.8 7.7.2 52 6.4% -0.01 (-0.30, 0.37) G Law2023 7.0 2.29 166 4.4% 0.21 (-0.70, 0.27) -0.41 (-0.30, 0.37) H L. May2019 1.6 0.76 34 1.3 0.76 31.3 9% 0.21 (-0.10, 0.42) W Wang2020 1.39 0.45 1.32 1.39 0.26 1.40 0.45 (-0.5, 0.15) W Wang2020 1.39 0.45 1.47 1.55 6.71 0.45 (-0.5, 0.15) W Wang2023 117.05 4.2.16 20 11	тс	Anti-infl	ammatory	diet .	Pro-infl	ammatory	diet		Std Mean Difference			
WA Sangouni2024 161 53 64.78 30 207.76 99.06 30 3.6% -0.59 [-110,-0.07] JD Gardner2022 105.84 40.26 31 118.8 74.17 33 40% -0.21 [-107,0.027] Promaz016 116.2 70.58 108 123.3 78.12 52 5.4% -0.01 [-0.43,0.03] Proglaiz020 108.6 74 52 5.4% -0.01 [-0.43,0.03] -0.44	Av Sangoun2024 (1613) 64.78 30 207.76 89.06 30 36% -0.59[+100.07] 50 harbol 93.5 435 100 (106. 46.1 100 7.6% -0.33[-0.61.0.06] D Gardner 2022 (108.4 40.26 33) 118.8 74.17 33 40% -0.21[-0.70,027] PR Davis2017 1 10.36 70 11. 0.47 76 63% -0.24[-0.57,010] PR Davis2016 116.2 70.58 108 123.3 78.12 52 64% -0.01[-0.30,037] GL Law2023 70 32.59 166 64 22.67 166 94% 0.29[-0.01,042] L May2019 1.6 0.76 34 13 0.76 54 143 0.77 81 39.02 [-0.13,018] D Krobs2024 1.7 0.7 102 1.9 0.9 98 7.6% -0.25[-0.53,0.03] D Krobs2024 1.7 0.7 102 1.9 0.9 98 7.6% -0.25[-0.53,0.03] D Krobs2024 1.7 0.7 102 1.9 0.9 98 7.6% -0.25[-0.53,0.03] D Krobs2024 1.7 0.7 102 1.9 0.9 58 140 8.7% -0.001[-0.30,018] H Vase2022 130.85 30.66 84 155.5 66.72 90 7.1% -0.45[-0.57,0.16] S Chicu2016 1.2.4 0.25 72 12.2 0.24 38 51% 0.016[-0.24,0.56] Fold (195% C)] - 1476 50 116.3 55.2 2 24% -0.031[-0.65,0.59] Fold (195% C)] - 1476 50 116.5 40.5 20 2.7% -0.03[-0.65,0.59] Fold (195% C)] - 1476 50 116.5 40.5 20 2.7% -0.03[-0.65,0.59] Fold (195% C)] - 1476 50 116.5 40.5 20 2.7% -0.03[-0.65,0.59] Fold (195% C)] - 1476 50 116.5 40.5 20 2.7% -0.03[-0.65,0.59] Fold (195% C)] - 1476 50 116.5 40.5 20 2.7% -0.03[-0.65,0.59] Fold (195% C)] - 1476 50 116.5 40.5 20 2.7% -0.03[-0.65,0.59] Fold (195% C)] - 1476 50 116.5 40.5 20 2.7% -0.03[-0.65,0.59] Fold (195% C)] - 1476 50 116.5 40.5 20 2.7% -0.03[-0.65,0.59] Fold (195% C)] - 1476 50 116.5 40.5 20 2.7% -0.03[-0.65,0.59] Fold (195% C)] - 1476 50 116.5 40.5 20 2.7% -0.03[-0.65,0.59] Fold (195% C)] - 1476 50 120 575 12.3 40.8 95% -0.01[-0.40,0.95% -0.11[-0.40,0.95% -0.11] S Chou2017 152.2 3.3 3 3 52 205.4 34.5 52 6.6% -0.07[-0.40,0.31] Fold (195% C)] - 100 1190.3 40.2 22 60.40, 40.5 40.100 T K Daw2024 153.2 3.3 3 52 205.4 34.5 52 6.6% -0.07[-0.40,0.31] Fold (195% C)] - 100.3 40.2 12.7 476 10.5 40.6 10.7% -0.25[-0.50,06] Fold (195% C)] - 100.3 40.2 22 7.76 2.9 6.5 44% -0.31[-0.40,0.31] Fold (195% C)] - 100.3 40.2 2.7 7.6 2.9 6.5 44% -0.35[-0.70,06] Fold (195% C)] - 100.3 40.2 12.9 4.46 12.9 6.5 44% -0.35[-0.												
3 Shah2018 93.5 43.5 100 108.5 46.1 100 7.6% -0.33 [-0.61, -0.65] D Gardner 2022 105.84 40.26 33 118.8 74.17 33 4.0% -0.21 [-0.70.027] RD Davids2017a 1 0.36 70 1.1 0.47 67 6.3% -0.24 [-0.57.0.10] P Paglial2024 116.6 67.4 52 119.3 78.1 25 6.4% -0.10 [-0.43, 0.23] P Paglial2024 116.6 7.6 34 1.3 0.78 31 3.9% 0.29 [-0.10.42] H L May2019 1.6 0.76 34 1.3 0.78 31 3.9% 0.29 [-0.10.42] W Wang2020 1.39 0.45 132 1.39 0.26 140 8.7% 0.00 [-0.24, 0.24] W Wang2020 1.39 0.45 132 1.39 0.26 140 8.7% 0.00 [-0.24, 0.24] W Wang2020 13.9 0.45 132 1.39 0.26 140 8.7% 0.04 [-0.57.0.15] H L May2019 1.6 0.76 34 113 55 6.7.7 16.5% 0.18 [-0.51.0.15] C Mava2021 182 39.26 346 81 47.41 315 11.3% 0.02 [-0.13, 0.18] W Wang2020 13.9 0.45 132 1.2 0.24 36 5.1% 0.04 [-0.24.0.46] U Kang2020 13.08 10.68 48 185 66.7 1 6.5% 0.18 [-0.46, 0.57.0.15] H Schoedr2015 120.3 47.6 56 118.5 46.5 20 2.7% 0.03 [-0.65, 0.59] Fad (9% C)] T 1476 12 0.02; Ch ² = 29.40, df = 15(P = 0.01); P = 49% Tet or overall effect: Z = 1.62 (P = 0.11) TC C Mava2021 194.6 42.52 72 0.17 1.4 0.03 [-0.65, 0.59] Tet or overall effect: Z = 1.62 (P = 0.11); P = 49% Tet or overall effect: Z = 1.62 (P = 0.11); P = 49% Tet or overall effect: Z = 1.62 (P = 0.11); P = 49% Tet or overall effect: Z = 1.62 (P = 0.11); P = 49% Tet or overall effect: Z = 1.62 (P = 0.01); P = 100.3% 0.25 [0.05, 0.59] Tet or overall effect: Z = 1.62 (P = 0.01); P = 49% Tet or overall effect: Z = 1.62 (P = 0.01); P = 49% Tet or overall effect: Z = 1.62 (P = 0.01); P = 49% Tet or overall effect: Z = 1.62 (P = 0.01); P = 49% Tet or overall effect: Z = 1.62 (P = 0.01); P = 0.05; P = 0.01; P = 0.01; P = 0.05; P = 0.02; Ch ² = 0.02; Ch ² = 2.06, 0.06 [0.06, 0.03] To tal Weyby 0 = 0.02; Ch ² = 2.04, df = 15(P = 0.04); P = 0.05; P = 0.02; P = 0.02; Ch ² = 0.02; Ch ² = 0.02; Ch ² = 2.04, df = 10.03; P = 0.03; P = 0.03; P = 0.02; Ch ² = 0.02; Ch ² = 2.04, df = 10.03; P = 0.03; P = 0.03; P = 0.05; P = 0.03; P = 0.05; P	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $										IV. Raildoin, 95% Ci		
$ \begin{array}{c} 20 \; \text{Gardiner2022} & 108.44 40.28 & 33 & 118.8 & 74.17 & 33 & 40\% & -0.21 [-0.70, 0.27] \\ Rescaled to the second s$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $												
R2 Davis2017a 1 0.36 70 1.1 0.47 67 6.3% -0.24 [-6.7, 0.10] Progla0204 116.6 67.4 52 119.3 72.6 52 54.4% -0.01 [-0.30, 0.37] Progla0204 116.6 67.4 52 119.3 72.6 52 54.4% -0.01 [-0.43, 0.23] D Kebs2024 1.7 0.7 34 1.3 0.76 31 39% 0.03 [-0.11, 0.42] D Kebs2020 1.89 0.33 71 1.76 0.45 71 6.5% -0.18 [-0.51, 0.15] UM Wang2020 1.89 0.33 71 1.76 0.45 5.7% -0.03 [-0.51, 0.16] C Matvar2021 120.35 36.06 84 155.5 66.72 90 7.7% -0.04 [-0.24, 0.56] 59 I Schroeder2015 120.3 47.6 5.6 130 100.0% -0.99 [-0.21, 0.02] -	2R Davis2017a 1 0.36 70 1.1 0.47 6.7 6.3% -0.24 [-0.57, 0.10] 2 Rosa2016 116.2 70.58 108 123.3 72.12 52 6.4% -0.01 [-0.30, 0.37] 3 Paglial0204 118.6 67.4 52 119.3 72.6 52 5.4% -0.01 [-0.30, 0.37] 1 Diskebs2024 1.7 0.7 102 1.9 0.9 98 7.6% 0.02 [-0.30, 0.8] 1D Krebs2024 1.7 0.7 102 1.9 0.9 98 7.6% 0.02 [-0.30, 0.8] 1D Krebs20221 10.8 38.06 84 14.1 315 11.3% 0.02 [-0.1, 0.18] VM Wang2023 1.08 38.06 84 155.5 66.72 90 7.1% -0.045 [-0.5, 0.19] VM Schroeder2015 120.3 47.6 5 61.2 2.0 2.7% -0.03 [-0.65, 0.59] Foldi (95% C1) 147.6 1330 100.0% -0.09 [-0.21, 0.02] -2 -1 0 -2 -1 0 -2 -1 0 -2 -2												
$ \frac{2}{16} \frac{2}{16} \frac{116.2}{16} \frac{7}{16} \frac{16}{16} \frac{123.3}{16} \frac{7}{16} \frac{12}{16} \frac{5}{16} \frac{7}{16} \frac{4}{16} \frac{5}{16} \frac{6}{16} \frac{4}{16} \frac{4}{16} \frac{7}{16} \frac{16}{16} \frac{16}{9} \frac{4}{16} \frac{4}{16} \frac{1}{16} \frac{16}{9} \frac{1}{9} \frac{1}{9} \frac{1}{9} \frac{1}{9} \frac{1}{9} \frac{1}{9} \frac{1}{16} \frac{1}{$	$ \begin{array}{c} \operatorname{Rescal016} & 1162 & 70.68 & 108 & 123.3 & 78.12 & 52 & 6.4\% & -0.01 \left[-0.43, 0.23 \right] \\ \operatorname{Falpilai2024} & 1168 & 674 & 52 & 119.3 & 72.6 & 52 & 5.4\% & -0.01 \left[-0.43, 0.23 \right] \\ \operatorname{Falpilai2024} & 1168 & 674 & 52 & 119.3 & 72.6 & 52 & 5.4\% & -0.01 \left[-0.43, 0.23 \right] \\ \operatorname{Falpilai2024} & 170 & 0.76 & 34 & 13.3 & 0.78 & 34 & 33\% & 0.39 \left[-0.01, 0.42 \right] \\ \operatorname{ID Krbss2024} & 1.7 & 0.7 & 102 & 19 & 0.9 & 98 & 7.6\% & -0.25 \left[-0.53, 0.03 \right] \\ \operatorname{Falpilai2024} & 1.69 & 0.33 & 71 & 176 & 0.45 & 71 & 6.5\% & -0.18 \left[-0.51, 0.18 \right] \\ \operatorname{Falpilai2024} & 123 & 32.63 & 346 & 81 & 47.41 & 315 & 11.3\% & 0.02 \left[-0.13, 0.18 \right] \\ \operatorname{Falpilai2024} & 123 & 32.63 & 346 & 81 & 47.41 & 315 & 11.3\% & 0.02 \left[-0.13, 0.18 \right] \\ \operatorname{Falpilai2023} & 17.0 & 54 & 518 & 52.2 & 29 & 4.5\% & 0.04 \left[-0.41, 0.49 \right] \\ \operatorname{Falpilai2023} & 17.0 & 42.16 & 20 & 118.5 & 49.5 & 20 & 2.7\% & -0.03 \left[-0.65, 0.59 \right] \\ \operatorname{Falpilai2023} & 17.76 & 42.16 & 20 & 118.5 & 49.5 & 20 & 2.7\% & 0.09 \left[-0.21, 0.02 \right] \\ \operatorname{Falpilai2023} & 17.76 & 42.16 & 20 & 118.5 & 49.5 & 20 & 2.7\% & -0.03 \left[-0.66, 0.59 \right] \\ \operatorname{Falpilai2024} & 194.6 & 42.52 & 30 & 199.76 & 47.07 & 30 & 4.5\% & -0.03 \left[-0.68, 0.59 \right] \\ \operatorname{Falpilai2024} & 194.6 & 42.52 & 30 & 199.76 & 47.07 & 30 & 4.5\% & -0.03 \left[-0.68, 0.59 \right] \\ \operatorname{Falpilai2024} & 194.6 & 42.52 & 30 & 199.76 & 47.07 & 30 & 4.5\% & -0.02 \left[-0.49, 0.07 \right] \\ \operatorname{Falpilai2024} & 194.6 & 42.52 & 30 & 199.76 & 47.07 & 30 & 4.5\% & -0.01 \left[-0.68, 0.29 \right] \\ \operatorname{Falpilai2024} & 202.3 & 33 & 52 & 204.4 & 34.8 & 52 & 6.5\% & -0.07 \left[-0.48, 0.31 \right] \\ \operatorname{Falpilai2024} & 202.2 & 33 & 35 & 204.4 & 34.8 & 52 & 6.5\% & -0.07 \left[-0.48, 0.31 \right] \\ \operatorname{Falpilai2024} & 202.2 & 152.3 & 3.86 & 41 & 62 & 3.68 & 41 & 60 & 8.5\% & -0.22 \left[-0.50, 0.08 \right] \\ \operatorname{Falpilai2024} & 202.2 & 152.3 & 3.36 & 52 & 20.4 & 34.8 & 52 & 6.5\% & -0.05 \left[-0.48, 0.31 \right] \\ \operatorname{Falpilai2024} & 20.22 & 152.3 & 3.36 & 54 & 40 & 20 & 8.5\% & -0.22 \left[-0.50, 0.05 \right] \\ \operatorname{Falpilai2024} & 20.21 & 20 & 162.38 & 24.63 & 20 & 3.3\% & 0.07 \left[-0.55, 0.69 \right] \\ \operatorname{Falpilai2024} & 20.21 & 20 & 162.38 & 24.63 & 20$	C D Gardner2022	105.84	40.26	33	118.8	74.17	33	4.0%	-0.21 [-0.70, 0.27]			
$ \begin{aligned} Frequency 2 \\ Frequency 2$	B Paglial2024 118.6 67.4 52 119.3 72.6 52 5.4% -001[0.39,0.37] H (LMay2019 16 0.76 34 13 0.78 31 3.9% 0.39[0.10,0.42] H (May2019 16 0.76 34 13 0.78 31 3.9% 0.39[0.10,0.42] D (Wang2020 1.39 0.45 132 1.39 0.26 140 8.7% 0.00[0.24,0.24] W (Wang2020 1.39 0.45 132 1.39 0.26 140 8.7% 0.00[0.24,0.24] W (Wang2021 10.05 38.06 84 155.5 66.72 90 7.1% 0.045 [0.51,0.18] H (Vase2022 110.06 38.06 84 155.5 66.72 90 7.1% 0.045 [0.51,0.18] S Chiu2016 1.24 0.25 72 1.12 0.24 36 5.1% 0.06[0.24,0.24] Total (95% CI) 12.3 17.6 42.16 2.0 118.5 49.5 20 2.7% 0.03[0.66,0.59] Total (95% CI) 12.3 147.6 55 118.3 522 2.29 4.4% 0.04[0.24,0.24] Test for overall effect: Z = 16.2 (D - 0.1); P = 49% Total (95% CI) 147.6 1330 100.0% 0.09[0.21,0.02] Total (95% CI) 147.6 55 07 7.30 4.5% 0.011[0.62,0.39] 3 Shab2018 134.5 28.32 100 141 33.55 107 7.30 4.5% 0.011[0.62,0.39] 3 Shab2018 134.5 28.32 100 141 33.55 107 7.30 4.5% 0.011[0.62,0.39] 3 Shab2018 134.5 28.32 100 141 33.55 107 7.30 4.5% 0.011[0.62,0.39] 3 Shab2018 134.5 28.32 100 141 33.55 107 7.30 4.5% 0.011[0.62,0.39] 3 Shab2018 134.5 28.32 100 141 33.55 107 7.30 4.5% 0.011[0.62,0.39] Total (95% CI) 10.2 12.2 4.76 1.05 140 10.7% 0.045[0.38,0.29] Total (95% CI) 10.2 12.4 2.77 2.78 2.9 5.4% 0.05[0.38, 0.29] H (Vase2022 153.2 33.6 84 162 3.6.84 90 8.9% 0.025[0.50,0.06] H (Vase2022 153.2 33.6 84 162 3.6.84 90 8.9% 0.025[0.50,0.06] H (Vase2022 153.2 33.6 84 162 3.6.84 90 8.9% 0.025[0.50,0.06] H (Vase2022 153.2 33.6 84 162 3.6.84 90 8.9% 0.025[0.50,0.06] H (Vase2022 153.2 33.6 84 162 3.6.84 90 8.9% 0.025[0.50,0.06] H (Vase2022 153.2 33.6 84 162 3.6.84 90 8.9% 0.025[0.50,0.06] H (Vase2022 153.2 33.6 84 162 3.6.84 90 8.9% 0.025[0.50,0.06] H (Vase2022 153.2 33.6 84 162 3.6.84 90 8.9% 0.025[0.50,0.06] H (Vase2022 153.2 33.6 84 162 3.6.84 90 8.9% 0.025[0.50,0.06] H (Vase2022 153.2 33.6 84 162 3.6.84 90 8.9% 0.025[0.50,0.06] H (Vase2022 153.2 33.6 84 162 3.6.84 90 8.9% 0.025[0.50,0.06] H (Vase2022 153.2 33.6 84 162 3.6.84 90 8.9% 0.025[0.50,0.06] H (Vase2022 153.2 33.6 84 162 3.	CR Davis2017a	1	0.36	70	1.1	0.47	67	6.3%	-0.24 [-0.57, 0.10]			
$ \begin{aligned} \begin{array}{lllllllllllllllllllllllllllllllllll$	B Reglial2024 118.6 67.4 52 118.3 72.6 52 5.4% -001 [0.39, 0.37] Fol Law2023 70 32.59 16 64 267 166 9.4% 0.20 [0.01, 0.42] H. May2019 16 0.76 34 13 0.78 31 3.9% 0.39 [0.11, 0.89 ID Krabs2024 1.7 0.7 102 19 0.9 88 7.6% -0.25 [0.50, 0.03] IN Wang2020 1.39 0.45 132 1.39 0.26 140 8.7% 0.00 [0.24, 0.24] Wang2023 1.69 0.33 71 1.75 0.45 71 6.5% 0.18 [0.51, 0.15] S Chiu2016 1.24 0.25 72 1.2 0.24 36 5.1% 0.16 [0.24, 0.56] S Chiu2016 1.24 0.25 72 1.2 0.24 36 5.1% 0.06 [0.24, 0.24] Total (95% CI) 42.6 2.4 118.5 49.5 20 2.7% -0.03 [0.65, 0.59] Total (95% CI) 447.6 133 0 100.0% 0.09 [0.21, 0.02] Total (95% CI) 447.6 10 118.7 30 0.55 67 7.7% 0.03 [0.65, 0.59] Total (95% CI) 41.3 45 22.32 100 141 33.55 100 9.5% 0.21 [0.49, 0.07] A standard 2 2.29 4.48 52 6.6% 0.07 [0.40, 0.07] Total (95% CI) 41.3 52 2.20 2.4% 4.48 52 6.6% 0.07 [0.26, 0.39] Total (95% CI) 41.3 5 21.3 71 7.0 34 0.45 6.77 7 30 4.45 (0.76, 0.01] Total (95% CI) 42.5 33 100 141 33.55 107 7.30 4.45 (0.26, 0.39] Total (95% CI) 41.4 2.52 30 199.76 4.70 30 4.5% 0.21 [0.49, 0.07] A standard 2 2.29 33 3 52 2.05.4 3.48 52 6.6% 0.007 [0.46, 0.31] Total (95% CI) 10.2 132 4.76 105 140 10.7% 0.045 [0.30, 0.28] Total (95% CI) 10.2 132 4.76 105 140 10.7% 0.045 [0.30, 0.28] Total (95% CI) 10.2 132 4.76 105 140 10.7% 0.045 [0.30, 0.28] Total (95% CI) 10.2 132 4.76 105 140 10.7% 0.045 [0.30, 0.28] Total (95% CI) 10.3 10 166 186 32 166 11.6% 0.05[0.06] W Mang202 3.05 0.41 71 3.42 133 71 7.0% 0.39 [0.72, 0.06] W Vang202 3 3.0 50 4.41 71 3.42 130 71 7.0% 0.39 [0.72, 0.06] W Vang202 3 3.0 50 4.41 71 3.42 130 71 7.0% 0.39 [0.72, 0.06] W Vang202 3 3.0 50 4.41 71 3.42 130 71 7.0% 0.39 [0.72, 0.06] W Vang202 3 3.0 50 4.41 71 3.42 130 71 7.0% 0.39 [0.72, 0.06] W Vang202 3 3.0 50 4.41 71 3.42 130 71 7.0% 0.39 [0.72, 0.06] W Vang202 3 3.0 50 4.41 71 3.42 130 71 7.0% 0.39 [0.72, 0.06] W Vang202 3 3.0 50 4.41 71 3.42 130 71 7.0% 0.39 [0.72, 0.06] W Vang202 3 3.0 50 4.41 71 3.42 130 71 7.0% 0.39 [0.72, 0.06] W Vang202 3 3.0 50 4.41 71 3.42 130 71 7.0% 0.39 [0.7	C Rosa2016	116.2	70.58	108	123.3	78.12	52	6.4%	-0.10 [-0.43, 0.23]			
$ \begin{array}{c} \text{GL} i avo223 & 70 & 32.59 & 166 & 64 & 26.7 & 166 & 94\% & 0.20 \left[0.01, 0.42 \right] \\ \text{IV} way 2020 & 1.39 & 0.45 & 132 & 1.39 & 0.28 & 140 & 8.7\% & 0.09 \left[0.24, 0.24 \right] \\ \text{W} Way 2020 & 1.39 & 0.45 & 132 & 1.39 & 0.26 & 140 & 8.7\% & 0.09 \left[0.24, 0.24 \right] \\ \text{W} Way 2020 & 1.39 & 0.45 & 132 & 1.39 & 0.26 & 140 & 8.7\% & 0.09 \left[0.24, 0.24 \right] \\ \text{W} Way 2020 & 1.39 & 0.45 & 132 & 1.39 & 0.26 & 140 & 8.7\% & 0.09 \left[0.24, 0.24 \right] \\ \text{W} Way 2020 & 1.39 & 0.66 & 44 & 155.5 & 66.72 & 90 & 7.1\% & 0.45 \left[0.1\% & 0.45 \right] \\ \text{S chud2016 } 124 & 0.25 & 72 & 1.2 & 0.24 & 36 & 51\% & 0.16 \left[0.24, 0.56 \right] \\ \text{S chud2016 } 124 & 0.25 & 72 & 1.2 & 0.24 & 36 & 51\% & 0.16 \left[0.24, 0.56 \right] \\ \text{Feaduli2023 } 117.05 & 42.16 & 20 & 118.5 & 49.5 & 20 & 2.7\% & 0.03 \left[0.65, 0.59 \right] \\ \text{reterogeneity: Tar 9 = 0.02; 0.11 = 24.94, df = 15 (P = 0.01); P = 49\% \\ \text{Total (95% CI) } & & & & & & & & & & & & & & & & & & $	$ \begin{array}{c} \text{GL} a_{2} \text{C2} \text{C3} & 70 & 32.59 & 166 & 64 & 26.7 & 166 & 9.4\% & 0.20 \left[0.01, 0.42 \right] \\ \text{I. May 2019} & 1.6 & 0.76 & 34 & 13 & 0.78 & 31 & 33\% & 0.39 \left[0.11, 0.88 \right] \\ \text{ID Kress2024} & 1.7 & 0.7 & 102 & 1.9 & 0.9 & 98 & 7.\% & -0.25 \left[0.53, 0.03 \right] \\ \text{WWang2020} & 1.39 & 0.45 & 132 & 1.39 & 0.26 & 140 & 8.\% & 0.00 \left[0.24, 0.24 \right] \\ \text{KVang2021} & 1.68 & 0.33 & 7.1 & 1.76 & 0.45 & 7.1 & 6.5\% & -0.18 \left[-0.51, 0.15 \right] \\ \text{MC Mava2021} & 82 & 32.68 & 346 & 81 & 47.41 & 315 & 1.3\% & 0.02 \left[-0.75, 0.15 \right] \\ \text{S Schweder2015} & 12.03 & 47.6 & 56 & 118.3 & 52.2 & 29 & 4.4\% & 0.04 \left[-0.41, 0.49 \right] \\ \text{S Schweder2015} & 12.03 & 47.6 & 56 & 118.3 & 52.2 & 22 & 7.\% & -0.03 \left[0.65, 0.59 \right] \\ \text{Test for overall effect: 2 = 1.62 (P = 0.11): \\ \hline \textbf{Tc} \\ \textbf{telerogeneity: Tau' = 0.02; Chi' = 29.49, df = 15 (P = 0.01); P = 49\% \\ \hline \textbf{Test for overall effect: 2 = 1.62 (P = 0.11): \\ \hline \textbf{TC} \\ \textbf{Roundown Maan SD \\ \textbf{Total (95\% C)} \\ \text{Test for overall effect: 2 = 1.62 (P = 0.01); P = 49\% \\ \hline \textbf{Test for overall effect: 2 = 1.62 (P = 0.11): \\ \hline \textbf{TC} \\ \textbf{Roundown Maan SD \\ \textbf{Total (95\% C)} \\ \text{Total (95\% C)} \\ Total $	G Pagliai2024	118.6	67.4	52	119.3	72.6	52	5.4%	-0.01 [-0.39, 0.37]			
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		70	32.59	166	64	26.7	166	9.4%				
Di Krebs2024 1.7 0.7 102 1.9 0.9 98 7.6% -0.25 (-0.50.03) WWang2020 1.89 0.45 132 1.39 0.46 71 6.5% -0.08 (-0.01) (-0.42, 0.24) AC Mavar2021 82 39.28 346 81 47.41 315 11.3% 0.02 (-0.13, 0.18) AC Mavar2021 130.85 36.66 84 155.5 66.72 90 7.1% -0.48 (-0.51, 0.15) AC Mavar2021 130.85 36.66 84 155.5 66.72 90 7.1% -0.49 (-0.42, 0.49) H Vasel2022 130.85 36.66 84 155.5 66.72 90 7.1% -0.49 (-0.42, 0.56) E Badal2023 117.05 42.16 20 118.5 49.5 22 2.7% -0.03 (-0.65, 0.59) Fotal (95% CI)	$D_{Krebs2024} 1, 7 0, 7 102 1, 9 0, 9 0, 8 7, 8 0, 0 1, 0 2, 0, 0 1, 0 1$												
WW apg2020 1.39 0.45 112 1.39 0.26 140 8.7% 0.00 [0.24, 0.01 [0.24, 0.15] VW apg2021 182 39.28 346 81 47.41 315 11.3% 0.02 [0.13, 0.16] MC Maivaz021 82 39.28 346 81 47.41 315 11.3% 0.02 [0.13, 0.16] MC Maivaz021 103.05 36.06 84 155.5 66.72 90 7.1% -0.45 [-0.75, -0.15] S chineder/2015 12.03 347.6 55.6 118.3 52.2 29 7.1% -0.46 [-0.26, 0.56] Feadal/2023 117.05 42.16 20 118.5 49.5 20 2.7% -0.03 [-0.65, 0.56] Feadal/2033 117.05 42.16 Po-inflammatory diet Std. Mean Difference Std. Mean Difference Stabu2016 12.42 28.32 010 147.6 Std. Moan Difference Std. Mean Difference Stabu2017 194.6 42.52 30 199.76 47.07 30 4.5% -0.11 [-0.62, 0.39] V. Random.95% CI V. Random.95% CI V. Random.95% CI	$\begin{aligned} \text{WW} \text{mag} 2020 & 1.99 & 0.45 & 1.32 & 1.39 & 0.26 & 140 & 8.7\% & 0.00 [0.24, 0.24] \\ \text{Warg} 2023 & 1.69 & 0.33 & 7.1 & 17.6 & 0.45 & 7.1 & 6.5\% & -0.18 [0.51, 0.16] \\ \text{WC Malvar2021} & 82 & 39.26 & 346 & 81 & 47.41 & 315 & 11.3\% & 0.02 [0.13, 0.18] \\ \text{WI Vasc0222} & 130.85 & 36.06 & 84 & 155.5 & 66.72 & 90 & 7.1\% & -0.45 [0.75, 0.16] \\ \text{S Chiu2016} & 1.24 & 0.25 & 72 & 1.2 & 0.24 & 36 & 5.1\% & 0.16 [0.24, 0.56] \\ \text{Feadall2023} & 117.05 & 42.16 & 20 & 118.5 & 49.5 & 20 & 2.7\% & -0.03 [0.65, 0.56] \\ \text{Teal (95% CI)} & 1476 & 1330 & 100.0\% & -0.09 [0.21, 0.02] \\ \text{Heterogeneity: Tau" = 0.02; Chi" = 29.49, df = 15 (P = 0.01); P = 49\% \\ \text{Teat for overall effect. Z = 1.62 (P = 0.11) \\ \text{Teat for overall effect. Z = 1.62 (P = 0.11) \\ \text{To stall (95\% CI)} & 1476 & 1330 & 100.0\% & -0.09 [0.21, 0.02] \\ \text{Teat for overall effect. Z = 1.62 (P = 0.11) ; P = 49\% \\ \text{To stall (95\% CI)} & 1476 & 1330 & 100.0\% & -0.09 [0.21, 0.02] \\ \text{Teat for overall effect. Z = 1.62 (P = 0.11) ; P = 49\% \\ \text{To stall (95\% CI)} & 1476 & 1330 & 100.0\% & -0.09 [0.21, 0.02] \\ \text{Teat for overall effect. Z = 1.62 (P = 0.11) ; P = 49\% \\ \text{Std. Mean Difference} \\ \text{NV Random. 95\% CI \\ \text{NV Random. 95\% CI \\ \text{To stall 2024} & 20.23 & 33 & 52 & 205.4 & 34.8 & 52 & 6.6\% & -0.07 [0.46, 0.03] \\ \text{JD Krebs2024} & 5.51 & 0.95 & 102 & 5.75 & 1.23 & 98 & 9.5\% & -0.22 [0.50, 0.06] \\ \text{JD Krebs2024} & 5.51 & 0.95 & 102 & 5.75 & 1.23 & 98 & 9.5\% & -0.22 [0.50, 0.06] \\ \text{JD Krebs2023} & 164.2 & 30.21 & 20 & 162.35 & 24.63 & 20 & 3.3\% & 0.07 [-0.56, 0.69] \\ \text{Total (95\% CI)} & 1063 & 9.5\% & -0.22 [0.55, 0.05] \\ \text{Total (95\% CI)} & 1063 & 9.5\% & 0.22 [0.55, 0.69] \\ \text{Total (95\% CI)} & 1063 & 9.5\% & 0.22 [0.55, 0.69] \\ \text{Total (95\% CI)} & 1063 & 9.5\% & 0.33 [0.78, 0.12] \\ \text{Total (95\% CI)} & 1063 & 9.5\% & 0.33 [0.78, 0.12] \\ \text{Total (95\% CI)} & 1063 & 9.5\% & 0.33 [0.78, 0.12] \\ T$												
$ \begin{aligned} & (\text{Wang}2023 \\ \text{OK} (\text{Maya}2021 \\ \text{B2} \\ \text{Solub}(21) \\ \text{B2} \\ \text{Solub}(21) \\ \text{B2} \\ \text{Solub}(21) \\ \text{B2} \\ \text{Solub}(21) \\ \text{B2} \\ \text{Chi}(22) \\ \text{B2} \\ \text{Solub}(21) \\ \text{B2} \\ \text{Chi}(22) \\ \text{B2} \\ \text{Solub}(21) \\ \text{B2} \\ \text{Chi}(22) \\ \text{Chi}(21) \\ \text{B2} \\ \text{Chi}(22) \\ \text{Chi}(21) $	$ \begin{array}{c} (\text{Warg2023} & 1.69 & 0.33 & 71 & 1.76 & 0.45 & 71 & 6.5\% & -0.18 [-0.15, 1.05] \\ (\text{We Mavar2021} & 82 & 39.26 & 39.26 & 34.6 & 81 & 155.5 & 66.72 & 90 & 7.1\% & -0.45 [-0.75, -0.15] \\ (\text{N} \text{Schoeder2015} & 120.3 & 47.6 & 56 & 118.3 & 52.2 & 29 & 4.4\% & 0.04 [-0.14, 0.49] \\ (\text{Schu2016} & 1.24 & 0.25 & 72 & 1.2 & 0.24 & 36 & 51.\% & 0.05 [-0.25, 0.59] \\ \text{Total (95% Cl)} & 1476 & 1330 & 100.0\% & 0.09 [-0.21, 0.02] \\ \text{Heterogeneity: Tau2 = 0.02; Chi2 = 29.49, df = 15 (P = 0.01); P = 49\% \\ \text{Total (95% Cl)} & 1476 & 1330 & 100.0\% & 0.09 [-0.21, 0.02] \\ \text{Total (95% Cl)} & 1476 & 1330 & 100.0\% & 0.09 [-0.21, 0.02] \\ \text{Heterogeneity: Tau2 = 0.02; Chi2 = 29.49, df = 15 (P = 0.01); P = 49\% \\ \text{Total (95% Cl)} & 1476 & 1300 & 190.76 & 100 & 9.5\% & -0.11 [-0.62, 0.39] \\ \text{A Sangouni2021} & 194.6 & 42.52 & 30 & 199.76 & 100 & 9.5\% & -0.21 [-0.49, 0.07] \\ \text{C Reas2016} & 188.4 & 37.19 & 108 & 190.3 & 40.23 & 52 & 60\% & -0.05 [-0.38, 0.28] \\ \text{C Reas2016} & 188.4 & 37.19 & 108 & 190.3 & 40.23 & 52 & 66\% & -0.07 [-0.46, 0.31] \\ \text{C Reas2016} & 188.4 & 37.19 & 108 & 190.3 & 40.23 & 52 & 60\% & -0.05 [-0.38, 0.28] \\ \text{C Reas2016} & 188.4 & 37.19 & 108 & 190.3 & 40.23 & 52 & 60\% & -0.05 [-0.38, 0.28] \\ \text{C Reas2016} & 188.4 & 37.19 & 108 & 190.3 & 40.23 & 52 & 60\% & -0.05 [-0.38, 0.28] \\ \text{C Reas2016} & 188.4 & 37.19 & 108 & 190.3 & 40.23 & 52 & 60\% & -0.05 [-0.38, 0.28] \\ \text{C Reas2016} & 188.4 & 37.19 & 108 & 190.3 & 40.23 & 52 & 60\% & -0.05 [-0.38, 0.28] \\ \text{C Reas2016} & 188.4 & 37.19 & 108 & 190.3 & 40.23 & 52 & 60\% & -0.05 [-0.38, 0.28] \\ \text{C Reas2021} & 150.2 & 5.75 & 1.23 & 98 & 9.5\% & -0.22 [-0.50, 0.06] \\ \text{UV Wang2023} & 3.05 & 0.44 & 71 & 3.42 & 1.03 & 71 & 79\% & -0.39 [-0.78, 0.02] \\ \text{MH Vasel2024} & 153.2 & 33.36 & 84 & 162 & 36.84 & 90 & 89\% & -0.25 [-0.55, 0.06] \\ \text{Heterogeneity: Tau2 = 0.02; Chi2 = 21.69, df = 12 (P = 0.04); P = 45\% \\ \text{Total (95\% Cl)} & 1063 & 951 & 100.0\% & 0.31 [-0.43, -0.18] \\ Heterogeneity: Tau2 = 0.02; Chi2 = 21.69, df = 12 (P = 0.04); P = 45\% \\ \text{Total (95\% $												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							71					
$ \frac{1}{3} \operatorname{chroeder2015}{2016}{120.3} \frac{47.6}{124} \frac{56}{0.25} \frac{118.3}{72} \frac{52.2}{1.2} \frac{29}{0.4} \frac{44\%}{0.6} \frac{0.6[-0.41, 0.49]}{0.16[-0.24, 0.56]} $ $ \frac{1}{301} \frac{100.0\%}{0.16[-0.24, 0.56]} \frac{118.5}{0.16[-0.24, 0.56]} \frac{118.5}{0.21} \frac{120.24}{0.25} \frac{118.5}{22} \frac{120.24}{0.25} \frac{120.2}{2.7\%} \frac{100.0\%}{0.03[-0.65, 0.59]} \frac{118.5}{0.005[-0.21, 0.02]} \frac{1}{2} \frac$	N Schroeder2015 120.3 47.6 56 118.3 52.2 29 4.4% 0.04 [0.41, 0.49] 3 Chiu2016 1.24 0.25 72 1.2 0.24 36 5.1% 0.16 [0.24, 0.56] Feadali2023 117.05 42.16 20 118.5 49.5 20 2.7% -0.03 [0.65, 0.59] Total (95% CI) 1476 1330 100.% -0.09 [-0.21, 0.02] Heterogeneity: Tau ² = 0.02; Ch ² = 29.49, df = 15 (P = 0.01); P = 49% Test for overall effect: Z = 1.62 (P = 0.11) TC Anti-inflammatory diet Pro-inflammatory diet Maan SD Total Weight IV. Random .95% CI Anti-inflammatory diet Pro-inflammatory diet Std. Mean Difference Std.	MC Malvar2021	82	39.26	346	81	47.41	315	11.3%	0.02 [-0.13, 0.18]	+		
$ \frac{1}{3} \operatorname{chroeder2015}{2016}{120.3} \frac{47.6}{124} \frac{56}{0.25} \frac{118.3}{72} \frac{52.2}{1.2} \frac{29}{0.4} \frac{44\%}{0.6} \frac{0.6[-0.41, 0.49]}{0.16[-0.24, 0.56]} $ $ \frac{1}{301} \frac{100.0\%}{0.16[-0.24, 0.56]} \frac{118.5}{0.16[-0.24, 0.56]} \frac{118.5}{0.21} \frac{120.24}{0.25} \frac{118.5}{22} \frac{120.24}{0.25} \frac{120.2}{2.7\%} \frac{100.0\%}{0.03[-0.65, 0.59]} \frac{118.5}{0.005[-0.21, 0.02]} \frac{1}{2} \frac$	N Schroeder2015 120.3 47.6 56 118.3 52.2 29 4.4% 0.04 [0.41, 0.49] 3 Chiu2016 1.24 0.25 72 1.2 0.24 36 5.1% 0.16 [0.24, 0.56] Feadali2023 117.05 42.16 20 118.5 49.5 20 2.7% -0.03 [0.65, 0.59] Total (95% CI) 1476 1330 100.% -0.09 [-0.21, 0.02] Heterogeneity: Tau ² = 0.02; Ch ² = 29.49, df = 15 (P = 0.01); P = 49% Test for overall effect: Z = 1.62 (P = 0.11) TC Anti-inflammatory diet Pro-inflammatory diet Maan SD Total Weight IV. Random .95% CI Anti-inflammatory diet Pro-inflammatory diet Std. Mean Difference Std.	VH Vasei2022	130.85	36.06	84	155.5	66.72	90	7.1%	-0.45 [-0.75, -0.15]			
S chiu2016 1.24 0.25 72 1.2 0.24 36 5.1% 0.16 [0.24, 0.56] Badil2023 117.05 42.16 20 118.5 49.5 20 2.7% -0.03 [0.65, 0.59] Total (95% CI) 1476 130 100.% -0.09 [0.21, 0.02] -2 -1 0 1 2 Favours [Anti-inflarmatory diet] Favours [Pro-inflarmatory diet] TC Anti-inflarmatory diet Pro-inflarmatory diet Near SD Total Weight V. Random, 95% CI V. Random, 9	S chiu2016 124 025 72 1.2 0.24 36 5.1% 0.16 [-0.24, 0.56] T Badail2023 117.05 42.16 20 118.5 49.5 20 2.7% -0.03 [-0.65, 0.59] Total (95% CI) 1476 1330 100.0% -0.09 [-0.21, 0.02] + elerogeneity: Tau ² = 0.02; Ch ² = 29.49, df = 15 (P = 0.11): P = 49% Total (95% CI) 1476 1330 100.0% -0.09 [-0.21, 0.02] + elerogeneity: Tau ² = 0.02; Ch ² = 29.49, df = 15 (P = 0.11): P = 49% Total (95% CI) 1476 100 9.5% -0.11 [-0.62, 0.39] Total (95% CI) 1476 100 9.5% -0.21 [-0.49, 0.07] Total (95% CI) 1063 95% CI 0.05 [-0.38, 0.28] Total (95% CI) 1063 951 100.0% -0.25 [-0.55, 0.05] Total (95% CI) 1063 951 100.0% -0.31 [-0.43, -0.18] Total (95% CI) 1063 951 100.0%	V Schroeder2015							4.4%				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	F Badali2023 117.05 42.16 20 118.5 49.5 20 2.7% -0.03 [-0.65, 0.59] Fotal (95% CI) 1476 1330 100.0% -0.09 [-0.21, 0.02] -2 -2 -1 0 2 Fest for overall effect: Z = 1.62 (P = 0.1): 1476 1330 100.0% -0.09 [-0.21, 0.02] -2 -2 -1 0 2 Fest for overall effect: Z = 1.62 (P = 0.1): For ours [Pro-inflammatory diet] Favours [Anti-inflammatory diet] Favours [Anti-inflammatory diet] Favours [Pro-inflammatory diet] Favours [Pro-inflammatory diet] Shah2018 134.6 2.6 30 199.76 47.07 30 4.5% -0.11 [-0.62, 0.39] -2 -2 -1 Favours [Anti-inflammatory diet] Favours [Pro-inflammatory diet] Favours [Anti-inflammatory diet] Favours										-+ ,		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Sadanzozo	111.00	72.10	20	110.0	-3.5	20	2.1 /0	-0.00 [-0.00, 0.09]			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Total (95% CI)			1476			1330	100 0%	-0.09.1-0.24.0.021			
Test for overall effect: $Z = 1.62$ (P = 0.11) TC Anti-inflammatory diet Pro-inflammatory diet Std. Mean Difference Study or Subgroup Mean SD Total Meight IV, Random, 95% Cl NA Sangouni2024 194.6 42.52 30 199.76 47.07 30 4.5% -0.11 [0.62, 0.39] 3 Shah2018 134.5 28.32 100 141 33.55 100 9.5% -0.21 [0.49, 0.07] CR Davis2017a 5.02 0.9 70 5.15 0.85 67 7.8% -0.15 [0.48, 0.19] CR Davis2017a 5.02 0.9 70 5.15 0.85 67 7.8% -0.15 [0.48, 0.19] Pagliai2024 202.93 33 52 205.4 34.8 52 6.6% -0.07 [0.46, 0.31] DK rebs2024 5.51 0.95 102 5.75 1.23 98 9.5% -0.22 [-0.60, 0.66] DK rebs2024 5.51 0.95 102 5.75 1.23 98 9.5% -0.22 [-0.50, 0.06] WW ang2020 4.1 1.02 132 4.76 1.05 140 10.7% -0.64 [0.88, -0.39] At Vasei2022 153.2 33.36 84 162 36.84 90 8.9% -0.25 [0.55, 0.05] S Chiu2016 4.52 0.36 72 4.76 0.36 36 6.1% -0.66 [-1.07, -0.25] Coll (95% Cl) 1063 951 100.0% -0.31 [-0.43, -0.18] Heterogeneity: Tau ² = 0.02; Chi ² = 21.69, df = 12 (P = 0.04); I ² = 45% Test for overall effect: $Z = 4.82$ (P < 0.0001) Et 4	Test for overall effect: Z = 1.62 (P = 0.11) -2 -1 0 - 1 Total Verage of the colspan="2">Pro-inflammatory diet Std. Mean Difference Total Verage of the colspan="2">Std. Mean Difference Std. Verage of the colspan="2">Std. Mean Difference V. Random, 95% CI Nandom, 95% CI <th <="" colspan="2" td=""><td>()</td><td>0.02.01:2-</td><td>- 20 40 -4</td><td></td><td>- 0.041-12</td><td>- 40%</td><td>1550</td><td>100.0 /0</td><td>-0.00 [-0.21, 0.02]</td><td></td></th>	<td>()</td> <td>0.02.01:2-</td> <td>- 20 40 -4</td> <td></td> <td>- 0.041-12</td> <td>- 40%</td> <td>1550</td> <td>100.0 /0</td> <td>-0.00 [-0.21, 0.02]</td> <td></td>		()	0.02.01:2-	- 20 40 -4		- 0.041-12	- 40%	1550	100.0 /0	-0.00 [-0.21, 0.02]	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				- 13 (P	- 0.01); 1*	- 43 /0				-2 -1 0 1 2		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	rescior overall effect: a	2 = 1.02 (P	- 0.11)							Favours [Anti-inflammatory diet] Favours [Pro-inflammatory diet]		
Study or Subgroup Mean SD Total Mean SD Total Weight IV. Random. 95% Cl IV. Random. 95% Cl VA Sangouni2024 194.6 42.52 30 199.76 47.07 30 4.5% -0.11 [-0.49, 0.07] Shah2018 134.5 28.32 100 141 33.55 100 95% -0.21 [-0.49, 0.07] CR Davis2017a 5.02 0.9 70 5.15 0.85 67 7.8% -0.05 [-0.48, 0.19] CR Davis2017a 188.4 37.19 108 190.3 40.23 52 8.0% -0.07 [-0.46, 0.31] G Pagliai2024 202.93 33 52 205.4 34.8 52 6.6% -0.07 [-0.46, 0.31] VW Wang2020 4.1 1.02 132 166 118.6% -0.54 [-0.76, -0.32] -0.46 [-0.88, -0.39] VW Wang2020 4.1 1.03 71 7.9% -0.39 [-0.72, -0.06] -0.45 [-0.86, 0.05] -0.41 [-0.88, 0.12] -0.41 [-0.88, 0.12] -0.41 [-0.86, 0.06] -0.25 [-0.55, 0	Study or Subgroup Mean SD Total Mean SD Total Weight IV. Random. 95% Cl IV. Random. 95% Cl AA Sangouni2024 194.6 42.52 30 199.76 47.07 30 4.5% -0.11 [-0.42, 0.39] Shah2018 134.5 28.32 100 141 33.55 100 9.5% -0.21 [-0.49, 0.07] CR Davis2017a 5.02 0.9 70 5.15 0.85 67 7.8% -0.05 [-0.48, 0.19] CR Osas2016 188.4 37.19 108 190.3 40.23 52 8.0% -0.05 [-0.48, 0.31] HG Law2023 169 31 166 186 32 166 11.6% -0.54 [-0.76, -0.32] JD Krebs2024 5.51 0.95 102 5.75 1.23 98 9.5% -0.22 [-0.50, 0.06] JD Krebs2024 5.51 0.95 102 5.76 1.23 91.07% -0.66 [-0.87, -0.32] -0.46 -0.39 [-0.78, 0.012] K Wang2023 3.05 <td>тс</td> <td>Anti-infl</td> <td>ammator</td> <td>/ diet</td> <td>Pro-infl</td> <td>ammator</td> <td>diet</td> <td></td> <td>Std. Mean Difference</td> <td></td>	тс	Anti-infl	ammator	/ diet	Pro-infl	ammator	diet		Std. Mean Difference			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	AA Sangouni2024 194.6 42.52 30 199.76 47.07 30 4.5% -0.11 [-0.62, 0.39] 3 Shah2018 134.5 28.32 100 141 33.55 100 9.5\% -0.21 [-0.49, 0.07] CR Davis2017a 5.02 0.9 70 5.15 0.85 67 7.8% -0.15 [-0.48, 0.19] CR Osa2016 188.4 37.19 108 190.3 40.23 52 8.0% -0.07 [-0.46, 0.31] HG Law2023 169 31 166 186 32 166 11.6% -0.54 [-0.76, -0.32] JW Wang2020 4.1 1.02 132 4.76 1.05 140 10.7% -0.64 [-0.88, -0.39] HW Vase[2022 15.2 33.6 84 162 36.44 90 8.9% -0.25 [-0.55, 0.05] N Schroeder2015 213.4 28.1 56 222.7 27.6 29 5.4% -0.33 [-0.78, 0.12] S Chiu2016 4.52 0.36 72 4.76 0.36 36 6.1% -0.66 [-1.07, -0.25] Heterogeneity: Tau ² = 0.02; Chi ² = 21.69, df = 12 (P = 0.04); l ² = 45% Test for overall effect: Z = 4.82 (P < 0.0001) RE4 RE4												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $								-				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C Rosa2016 188.4 37.19 108 190.3 40.23 52 8.0% $-0.05[0.38, 0.28]$ G Ragila2024 202.93 33 52 205.4 34.8 52 6.6% $-0.07[-0.46, 0.31]$ HG Law2023 169 31 166 186 32 166 11.6% $-0.54[-0.76, -0.32]$ JD Krebs2024 5.51 0.95 102 5.75 1.23 98 9.5% $-0.27[-0.60]$ JW Wang2020 4.1 1.02 132 4.76 1.05 140 10.7% $-0.64[-0.8, 0.39]$ K Wang2023 3.05 0.84 71 3.42 1.03 71 7.9% $-0.25[-0.55, 0.05]$ N Schroeder2015 213.4 28.1 56 222.7 27.6 29 5.4% $-0.33[-0.78, 0.12]$ S Chiu2016 4.52 0.36 72 4.76 0.36 36 6.1% $-0.66[-1.07, -0.25]$ Total (95% CI) 1063 951 100.0% $-0.31[-0.43, -0.18]$ Heterogeneity: Tau ² = 0.02; Chi ² = 21.69, df = 12 (P = 0.04); I ² = 45% Test for overall effect: Z = 4.82 (P < 0.0001) RE 4	B Shah2018	134.5										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $			0.9	70	5.15	0.85	67	7.8%				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		5.02	37.19	108	190.3	40.23	52	8.0%	-0.05 [-0.38, 0.28]			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CR Davis2017a											
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	CR Davis2017a C Rosa2016	188.4										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CR Davis2017a C Rosa2016 G Pagliai2024	188.4 202.93	33		186	52						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CR Davis2017a C Rosa2016 G Pagliai2024 HG Law2023	188.4 202.93 169	33 31	166		1 00	98					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	CR Davis2017a C Rosa2016 G Pagliai2024 HG Law2023 ID Krebs2024	188.4 202.93 169 5.51	33 31 0.95	166 102	5.75							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CR Davis2017a C Rosa2016 G Pagliai2024 HG Law2023 ID Krebs2024 IW Wang2020	188.4 202.93 169 5.51 4.1	33 31 0.95 1.02	166 102 132	5.75 4.76	1.05						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	N Schroeder2015 213.4 28.1 56 222.7 27.6 29 5.4% -0.33 [0.78 , 0.12] S Chiu2016 4.52 0.36 72 4.76 0.36 36 6.1% -0.66 [-1.07 , -0.25] F Badali2023 164.2 30.21 20 162.35 24.63 20 3.3% 0.07 [-0.55 , 0.69] Fotal (95% Cl) 1063 951 100.0% -0.31 [-0.43 , -0.18] Heterogeneity: Tau ² = 0.02; Chi ² = 21.69, df = 12 (P = 0.04); I ² = 45% Test for overall effect: Z = 4.82 (P < 0.00001) RE 4 RE 4	CR Davis2017a C Rosa2016 G Pagliai2024 HG Law2023 JD Krebs2024 JW Wang2020	188.4 202.93 169 5.51 4.1	33 31 0.95 1.02	166 102 132	5.75 4.76	1.05						
S Chiu2016 4.52 0.36 72 4.76 0.36 36 6.1% -0.66 [-1.07, -0.25] T Badali2023 164.2 30.21 20 162.35 24.63 20 3.3% 0.07 [-0.55, 0.69] Total (95% Cl) 1063 951 100.0% -0.31 [-0.43, -0.18] -2 -1 0 1 2 rest for overall effect: Z = 4.82 (P < 0.00001)	S Chiu2016 4.52 0.36 72 4.76 0.36 36 6.1% -0.66 [-1.07, -0.25] F Badail2023 164.2 30.21 20 162.35 24.63 20 3.3% 0.07 [-0.55, 0.69] Total (95% Cl) 1063 951 100.0% -0.31 [-0.43, -0.18] Heterogeneity: Tau ² = 0.02; Chi ² = 21.69, df = 12 (P = 0.04); l ² = 45% Test for overall effect: Z = 4.82 (P < 0.00001) RE 4 RE 4	CR Davis2017a C Rosa2016 G Pagliai2024 HG Law2023 JD Krebs2024 JW Wang2020 K Wang2023	188.4 202.93 169 5.51 4.1 3.05	33 31 0.95 1.02 0.84	166 102 132 71	5.75 4.76 3.42	1.05 1.03	71	7.9%	-0.39 [-0.72, -0.06]			
I Badali2023 164.2 30.21 20 162.35 24.63 20 3.3% 0.07 [-0.55, 0.69] I Total (95% Cl) 1063 951 100.0% -0.31 [-0.43, -0.18] -2 -1 0 1 2 I eterogeneity: Tau ² = 0.02; Chi ² = 21.69, df = 12 (P = 0.04); I ² = 45% -2 -1 0 1 2 Fest for overall effect: Z = 4.82 (P < 0.00001)	I Badali2023 164.2 30.21 20 162.35 24.63 20 3.3% 0.07 [-0.55, 0.69] I observation	CR Davis2017a C Rosa2016 3 Pagliai2024 4G Law2023 JD Krebs2024 WW Wang2020 K Wang2023 MH Vasei2022	188.4 202.93 169 5.51 4.1 3.05 153.2	33 31 0.95 1.02 0.84 33.36	166 102 132 71 84	5.75 4.76 3.42 162	1.05 1.03 36.84	71 90	7.9% 8.9%	-0.39 [-0.72, -0.06] -0.25 [-0.55, 0.05]			
Total (95% CI) 1063 951 100.0% -0.31 [-0.43, -0.18] Heterogeneity: Tau ² = 0.02; Chi ² = 21.69, df = 12 (P = 0.04); l ² = 45% -2 -1 0 1 2 Fest for overall effect: Z = 4.82 (P < 0.00001)	Total (95% CI) 1063 951 100.0% -0.31 [-0.43, -0.18] Heterogeneity: Tau ² = 0.02; Chi ² = 21.69, df = 12 (P = 0.04); I ² = 45% -0.31 [-0.43, -0.18] -2 -1 0 1 2 Fest for overall effect: Z = 4.82 (P < 0.00001)	CR Davis2017a C Rosa2016 G Pagliai2024 HG Law2023 JD Krebs2024 JW Wang2020 K Wang2023 WH Vasei2022 N Schroeder2015	188.4 202.93 169 5.51 4.1 3.05 153.2 213.4	33 31 0.95 1.02 0.84 33.36 28.1	166 102 132 71 84 56	5.75 4.76 3.42 162 222.7	1.05 1.03 36.84 27.6	71 90 29	7.9% 8.9% 5.4%	-0.39 [-0.72, -0.06] -0.25 [-0.55, 0.05] -0.33 [-0.78, 0.12]			
Heterogeneity: Tau ² = 0.02; Chi ² = 21.69, df = 12 (P = 0.04); l ² = 45% -2 -1 0 1 2 Test for overall effect: Z = 4.82 (P < 0.00001)	Heterogeneity: Tau ² = 0.02; Chi ² = 21.69, df = 12 (P = 0.04); l ² = 45% -2 -1 0 1 2 Test for overall effect: Z = 4.82 (P < 0.00001)	CR Davis2017a C Rosa2016 G Pagliai2024 HG Law2023 JD Krebs2024 JW Wang2020 K Wang2023 MH Vasei2022 N Schroeder2015 S Chiu2016	188.4 202.93 169 5.51 4.1 3.05 153.2 213.4 4.52	33 31 0.95 1.02 0.84 33.36 28.1 0.36	166 102 132 71 84 56 72	5.75 4.76 3.42 162 222.7 4.76	1.05 1.03 36.84 27.6 0.36	71 90 29 36	7.9% 8.9% 5.4% 6.1%	-0.39 [-0.72, -0.06] -0.25 [-0.55, 0.05] -0.33 [-0.78, 0.12] -0.66 [-1.07, -0.25]			
Heterogeneity: Tau ² = 0.02; Chi ² = 21.69, df = 12 (P = 0.04); l ² = 45% -2 -1 0 1 2 Test for overall effect: Z = 4.82 (P < 0.00001)	Heterogeneity: Tau ² = 0.02; Chi ² = 21.69, df = 12 (P = 0.04); l ² = 45% -2 -1 0 1 2 Fest for overall effect: Z = 4.82 (P < 0.00001)	CR Davis2017a C Rosa2016 G Pagliai2024 HG Law2023 ID Krebs2024 IW Wang2020 K Wang2023 WH Vasei2022 N Schroeder2015 S Chiu2016	188.4 202.93 169 5.51 4.1 3.05 153.2 213.4 4.52	33 31 0.95 1.02 0.84 33.36 28.1 0.36	166 102 132 71 84 56 72	5.75 4.76 3.42 162 222.7 4.76	1.05 1.03 36.84 27.6 0.36	71 90 29 36	7.9% 8.9% 5.4% 6.1%	-0.39 [-0.72, -0.06] -0.25 [-0.55, 0.05] -0.33 [-0.78, 0.12] -0.66 [-1.07, -0.25]			
Fest for overall effect: Z = 4.82 (P < 0.00001)	Test for overall effect: Z = 4.82 (P < 0.00001)	CR Davis2017a C Rosa2016 G Pagliai2024 HG Law2023 JD Krebs2024 JJW Wang2020 K Wang2023 WH Vasei2022 N Schroeder2015 S Chiu2016 T Badali2023	188.4 202.93 169 5.51 4.1 3.05 153.2 213.4 4.52	33 31 0.95 1.02 0.84 33.36 28.1 0.36	166 102 132 71 84 56 72 20	5.75 4.76 3.42 162 222.7 4.76	1.05 1.03 36.84 27.6 0.36	71 90 29 36 20	7.9% 8.9% 5.4% 6.1% 3.3%	-0.39 [-0.72, -0.06] -0.25 [-0.55, 0.05] -0.33 [-0.78, 0.12] -0.66 [-1.07, -0.25] 0.07 [-0.55, 0.69]			
Fest for overall effect: Z = 4.82 (P < 0.00001)	Test for overall effect: Z = 4.82 (P < 0.00001) Favours [Pro-inflammatory diet] Favours [Pro-inflammatory diet]	CR Davis2017a C Rosa2016 G Pagliai2024 HG Law2023 JD Krebs2024 WI Wang2020 K Wang2020 K Wang2020 K Wang2023 MH Vasei2022 S Chiu2016 F Badali2023 Total (95% CI)	188.4 202.93 169 5.51 4.1 3.05 153.2 213.4 4.52 164.2	33 31 0.95 1.02 0.84 33.36 28.1 0.36 30.21	166 102 132 71 84 56 72 20 1063	5.75 4.76 3.42 162 222.7 4.76 162.35	1.05 1.03 36.84 27.6 0.36 24.63	71 90 29 36 20	7.9% 8.9% 5.4% 6.1% 3.3%	-0.39 [-0.72, -0.06] -0.25 [-0.55, 0.05] -0.33 [-0.78, 0.12] -0.66 [-1.07, -0.25] 0.07 [-0.55, 0.69]			
RE 4	RE 4	CR Davis2017a C Rosa2016 S Pagliai2024 HG Law2023 JD Krbbs2024 JW Wang2020 KWang2023 WH Vasei2022 N Schroeder2015 S Chiu2016 T Badali2023 Total (95% CI) Heterogeneity: Tau ² =	188.4 202.93 169 5.51 4.1 3.05 153.2 213.4 4.52 164.2 0.02; Chi ² =	33 31 0.95 1.02 0.84 33.36 28.1 0.36 30.21 = 21.69, df	166 102 132 71 84 56 72 20 1063 = 12 (P	5.75 4.76 3.42 162 222.7 4.76 162.35	1.05 1.03 36.84 27.6 0.36 24.63	71 90 29 36 20	7.9% 8.9% 5.4% 6.1% 3.3%	-0.39 [-0.72, -0.06] -0.25 [-0.55, 0.05] -0.33 [-0.78, 0.12] -0.66 [-1.07, -0.25] 0.07 [-0.55, 0.69]			
		CR Davis2017a C Rosa2016 S Pagliai2024 HG Law2023 JD Krbbs2024 JW Wang2020 KWang2023 WH Vasei2022 N Schroeder2015 S Chiu2016 T Badali2023 Total (95% CI) Heterogeneity: Tau ² =	188.4 202.93 169 5.51 4.1 3.05 153.2 213.4 4.52 164.2 0.02; Chi ² =	33 31 0.95 1.02 0.84 33.36 28.1 0.36 30.21 = 21.69, df	166 102 132 71 84 56 72 20 1063 = 12 (P	5.75 4.76 3.42 162 222.7 4.76 162.35	1.05 1.03 36.84 27.6 0.36 24.63	71 90 29 36 20	7.9% 8.9% 5.4% 6.1% 3.3%	-0.39 [-0.72, -0.06] -0.25 [-0.55, 0.05] -0.33 [-0.78, 0.12] -0.66 [-1.07, -0.25] 0.07 [-0.55, 0.69]			
		CR Davis2017a C Rosa2016 S Pagliai2024 HG Law2023 JD Krbbs2024 JW Wang2020 KWang2023 WH Vasei2022 N Schroeder2015 S Chiu2016 T Badali2023 Total (95% CI) Heterogeneity: Tau ² =	188.4 202.93 169 5.51 4.1 3.05 153.2 213.4 4.52 164.2 0.02; Chi ² =	33 31 0.95 1.02 0.84 33.36 28.1 0.36 30.21 = 21.69, df	166 102 132 71 84 56 72 20 1063 = 12 (P	5.75 4.76 3.42 162 222.7 4.76 162.35	1.05 1.03 36.84 27.6 0.36 24.63	71 90 29 36 20	7.9% 8.9% 5.4% 6.1% 3.3%	-0.39 [-0.72, -0.06] -0.25 [-0.55, 0.05] -0.33 [-0.78, 0.12] -0.66 [-1.07, -0.25] 0.07 [-0.55, 0.69]			
Iom-effects meta-analysis and forest plot of the association between anti-inflammatory diets and lipids.	dom-effects meta-analysis and forest plot of the association between anti-inflammatory diets and lipids.	R Davis2017a C Rosa2016 J Pagliai2024 G Law2023 JD Krebs2024 JW Wang2020 K Wang2023 VH Vasei2022 V Schroeder2015 S Chiu2016 F Badali2023 Fotal (95% CI) Heterogeneity: Tau ² = Fest for overall effect: .	188.4 202.93 169 5.51 4.1 3.05 153.2 213.4 4.52 164.2 0.02; Chi ² =	33 31 0.95 1.02 0.84 33.36 28.1 0.36 30.21 = 21.69, df	166 102 132 71 84 56 72 20 1063 = 12 (P	5.75 4.76 3.42 162 222.7 4.76 162.35	1.05 1.03 36.84 27.6 0.36 24.63	71 90 29 36 20	7.9% 8.9% 5.4% 6.1% 3.3%	-0.39 [-0.72, -0.06] -0.25 [-0.55, 0.05] -0.33 [-0.78, 0.12] -0.66 [-1.07, -0.25] 0.07 [-0.55, 0.69]			
		R Davis2017a R Rosa2016 Pagliai2024 IG Law2023 D Krebs2024 W Wang2020 (Wang2023) HH Vasei2022 S Schroeder2015 S Chiu2016 Badali2023 rotal (95% CI) Heterogeneity: Tau ² = eest for overall effect: : XE 4	188.4 202.93 169 5.51 4.1 3.05 153.2 213.4 4.52 164.2 0.02; Chi ² = Z = 4.82 (P	33 31 0.95 1.02 0.84 33.36 28.1 0.36 30.21 = 21.69, df < 0.00001	166 102 132 71 84 56 72 20 1063 = 12 (P	5.75 4.76 3.42 162 222.7 4.76 162.35 = 0.04); I ²	1.05 1.03 36.84 27.6 0.36 24.63 = 45%	71 90 29 36 20 951	7.9% 8.9% 5.4% 6.1% 3.3%	-0.39 [-0.72, -0.6] -0.25 [-0.55, 0.05] -0.33 [-0.78, 0.12] -0.66 [-1.07, -0.25] 0.07 [-0.55, 0.69] -0.31 [-0.43, -0.18]	Favours [Anti-inflammatory diet] Favours [Pro-inflammatory diet]		

adherence rates in many populations (73, 74). The traditional antiinflammatory dietary patterns may not align with the culinary and dietary practices prevalent in specific regions. Altering entrenched dietary habits constitutes a significant challenge requiring gradual implementation. Enabling individuals to adjust their daily nutritional needs in accordance with their dietary preferences, while utilizing local food conversion charts that adhere to the tenets of the antiinflammatory dietary framework, could enhance adherence to some

degree (75). Successful adoption of an anti-inflammatory diet necessitates social support. Government initiatives can play a pivotal role in educating the populace about this diet by promoting the use of local agricultural products and aligning with seasonal availability. For instance, individuals can be encouraged to enhance their consumption of whole grains while minimizing the intake of highly processed staple foods; to enjoy their preferred vegetables while increasing the intake of cost-effective fruits; to elevate their consumption of fish, shrimp, and shellfish while decreasing red meat intake; to utilize appropriate amounts of monounsaturated fats and oils (such as olive oil and tea oil) in cooking, while also reducing dietary sugar; and to cultivate the habit of incorporating nuts into their diet (76).

The findings suggest that the anti-inflammatory diets are poised to be a pivotal strategy in mitigating the global burden of CVD, with significant practical implications for dietitians, healthcare professionals, and the broader populace. Initially, it furnishes dietitians with a more robust scientific foundation for incorporating antiinflammatory diets into tailored dietary recommendations for individuals at risk of CVD. Concurrently, dietitians can leverage the DII to evaluate patients' dietary patterns and adapt anti-inflammatory dietary regimens dynamically, in conjunction with metabolic markers (e.g., hs-CRP and lipid profiles), on an individual basis (33). For healthcare providers, anti-inflammatory diets may serve as a nonpharmacological intervention for both primary and secondary prevention of CVD, potentially synergizing with pharmacological treatments (77). Furthermore, the results support the integration of inflammatory markers (e.g., hs-CRP) into CVD risk assessment models and their application in monitoring the biological effects of anti-inflammatory dietary interventions. Sustained adherence to an anti-inflammatory diet may prove effective in reducing healthcare expenditures within the general population, while simultaneously retarding the progression of atherosclerosis and enhancing vascular endothelial function, thereby promoting healthy aging.

Our meta-analysis offers several significant advantages. Firstly, unlike previous meta-analyses that primarily included cross-sectional studies, prospective cohort studies, and case-control studies, our analysis distinctly incorporates RCTs (including RCCTs), thereby bolstering the evidential robustness of the original studies considered. Secondly, we implemented a comprehensive search strategy across various databases, covering both English and non-English literature, which substantially reduces the risk of overlooking eligible studies. Finally, by concentrating on research conducted in the past decade, we ensured the data's relevance and timeliness, thereby enhancing the overall quality of the meta-analysis. At the same time, this metaanalysis has some limitations. Firstly, several of the studies included did not employ a quantitative scoring system based on the DII and instead relied on prior definitions of anti-inflammatory dietary patterns to assess whether the intervention constituted an antiinflammatory diet. Secondly, certain studies exhibit a discernible implementation bias, given the inherent challenges in blinding participants to dietary interventions. Consequently, this may exert an influence on the observed intervention outcomes. Thirdly, the results from the subgroup analyses indicated that the impact of antiinflammatory dietary interventions on HDL-C may begin to manifest after approximately 6 months. However, due to significant variations in intervention durations across the included studies, it was not feasible to further stratify the intervention durations into subgroups for analysis, thereby precluding the determination of the optimal duration for which an anti-inflammatory diet could enhance HDL-C levels.

The findings of this meta-analysis indicate that anti-inflammatory dietary patterns may contribute to the reduction of inflammation markers and the enhancement of CVD risk factors, thereby offering significant implications for the prevention and management of CVD. However, these findings should be interpreted cautiously, given the limited number of included studies, with high-sensitivity C-reactive protein (hs-CRP) data available from only five studies. Furthermore, while some studies included comprehensive food lists, others did not. Consequently, we advocate for future research to enhance sample sizes, refine study methodologies, and furnish more detailed dietary inventories.

5 Conclusion

In conclusion, the findings of this meta-analysis demonstrate that an anti-inflammatory dietary pattern is associated with reduced serum hs-CRP concentrations, significant reductions in blood pressure, and improvements in lipid profiles. These results suggest that adopting an anti-inflammatory diet may mitigate CVD risk. However, given the observed heterogeneity and limitations discussed earlier, additional high-quality, large-scale RCTs with rigorous methodology are required to confirm these findings.

Data availability statement

The original contributions presented in the study are included in the article/Supplementary material, further inquiries can be directed to the corresponding authors.

SBP Study or Subgroup	Anti-infla Mean	ammatory SD	y diet Total	Pro-infla Mean	ammatory SD		Weight	Mean Difference IV. Random. 95% CI	Mean Difference IV. Random. 95% Cl
8.1.1 ≥6 months									
CR Davis2017b C Rosa2016	116.6 139.7	12.44 15.27	80 108	120.7 145.9	12.12 15.8	69 52	7.9% 6.5%	-4.10 [-8.05, -0.15] -6.20 [-11.37, -1.03]	
H L. Mayr2019	132	15.16	34	139.5	15.59	31	4.4%	-7.50 [-14.99, -0.01]	
JW Wang2020	130	11.6	132	132.9	10.7	140	9.5%	-2.90 [-5.56, -0.24]	
K Wang2023 MC Malvar2021	131.04 123	11.76 18	71 346	135.65 122	12.4 17	71 315	7.9% 9.5%	-4.61 [-8.59, -0.63] 1.00 [-1.67, 3.67]	
Subtotal (95% CI)	125	10	771	122		678	45.9%	-3.31 [-5.77, -0.86]	◆
Heterogeneity: Tau ² = 5 Test for overall effect: 2			= 5 (P =	: 0.03); I ² =	59%				
8.1.2 <6 months	110.10	44.0		100.0	40.74		5 404		
AA Sangouni2024 HG Law2023	118.16 115	11.3 9	30 166	129.2 117	13.74 10	30 166	5.4% 10.2%	-11.04 [-17.41, -4.67] -2.00 [-4.05, 0.05]	-
JD Krebs2024	130.9	14.8	102	131.6	15.6	98	7.6%	-0.70 [-4.92, 3.52]	
MH Vasei2022	122.08	8	84	134	13.49	90	8.8%	-11.92 [-15.19, -8.65]	
N Schroeder2015 S Chiu2016	116.2 125.2	9.5 4.8	56 72	117 128.8	10.4 4.8	29 36	7.2% 10.3%	-0.80 [-5.33, 3.73] -3.60 [-5.52, -1.68]	\mp
T Badali2023	119	9.54	20	120.25	13.52	20	4.6%	-1.25 [-8.50, 6.00]	
Subtotal (95% CI)		11100 (1110) - 1	530			469	54.1%	-4.42 [-7.61, -1.23]	\bullet
Heterogeneity: Tau ² = 7 Test for overall effect: 2			∬=6 (P	< 0.00001)	; l² = 83%				
Total (95% Cl)			1301			1147	100.0%	-3.99 [-6.01, -1.97]	•
Heterogeneity: Tau ² = 9				< 0.00001)	; l ² = 76%				-20 -10 0 10 20
Test for overall effect: 2 Test for subgroup differ				= 0.59), J ²	= 0%				Favours [Anti-inflammatory diet] Favours [Pro-inflammatory diet]
	Anti-infla	ammatory	y diet	Pro-infla	ammatory			Mean Difference	Mean Difference
Study or Subgroup 8.2.1 North America	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV. Random, 95% Cl
HG Law2023	115	9	166	117	10	166	10.2%	-2.00 [-4.05, 0.05]	+
N Schroeder2015	116.2	9.5	56	117	10.4	29	7.2%	-0.80 [-5.33, 3.73]	
S Chiu2016 Subtotal (95% CI)	125.2	4.8	72 294	128.8	4.8	36 231	10.3% 27.8%	-3.60 [-5.52, -1.68]	→
Subtotal (95% Cl) Heterogeneity: Tau ² = 0	0.00: Chi ² =	1.97 df -		0.37): 1 ² = 0)%	231	21.6%	-2.67 [-4.01, -1.33]	•
Test for overall effect: 2									
8.2.2 European									
C Rosa2016 MC Malvar2021	139.7 123	15.27 18	108 346	145.9 122	15.8 17	52 315	6.5% 9.5%	-6.20 [-11.37, -1.03] 1.00 [-1.67, 3.67]	
Subtotal (95% CI)	123	10	454	122	17	367	16.0%	-2.25 [-9.27, 4.78]	-
Heterogeneity: Tau ² = 2 Test for overall effect: 2			= 1 (P =	0.02); I ² =	83%				
8.2.3 Oceania CR Davis2017b	116.6	12.44	80	120.7	12.12	69	7.9%	-4.10 [-8.05, -0.15]	_
H L. Mayr2019	132	15.16	34	139.5	15.59	31	4.4%	-7.50 [-14.99, -0.01]	
JD Krebs2024	130.9	14.8	102	131.6	15.6	98	7.6%	-0.70 [-4.92, 3.52]	-
Subtotal (95% CI)			216			198	20.0%	-3.31 [-6.63, 0.01]	•
Heterogeneity: Tau ² = 2 Test for overall effect: 2			: 2 (P = 0).24); l ² = 2	9%				
8.2.4 Asian				100.0			5 10/		
AA Sangouni2024 JW Wang2020	118.16 130	11.3 11.6	30 132	129.2 132.9	13.74 10.7	30 140	5.4% 9.5%	-11.04 [-17.41, -4.67] -2.90 [-5.56, -0.24]	-
K Wang2023	131.04	11.76	71	135.65	12.4	71	7.9%	-4.61 [-8.59, -0.63]	
MH Vasei2022	122.08	8	84	134	13.49	90	8.8%		
T Badali2023 Subtotal (95% CI)	119	9.54	20 337	120.25	13.52	20 351	4.6% 36.2%	-1.25 [-8.50, 6.00] -6.44 [-10.85, -2.02]	•
Heterogeneity: Tau ² = '	19.58; Chi²	= 22.30, c		= 0.0002);	l² = 82%	001	00.2.70	0.44 [-10.00, -1.01]	-
Test for overall effect: 2	z = 2.86 (P	= 0.004)							
Total (95% CI)			1301			1147	100.0%	-3.99 [-6.01, -1.97]	
Heterogeneity: Tau ² = 9 Test for overall effect: 2				< 0.00001)	; I ^z = 76%				-20 -10 0 10 20
Test for subaroup differ	ences: Chi	² = 2.63. d	df = 3 (P						Favours [Anti-inflammatory diet] Favours [Pro-inflammatory diet]
	Anti-infla	ammatory	y diet	Pro-infla	ammatory		14/-1-1-	Mean Difference	Mean Difference
Study or Subgroup 8.3.1 Healthy	Mean	SD	Total	Mean	SD	otal	Weight	IV. Random, 95% CI	IV. Random, 95% Cl
CR Davis2017b	116.6	12.44	80	120.7	12.12	69	7.9%	-4.10 [-8.05, -0.15]	
HG Law2023	115	9	166	117	10	166	10.2%	-2.00 [-4.05, 0.05]	
JD Krebs2024 JW Wang2020	130.9 130	14.8 11.6	102 132	131.6 132.9	15.6 10.7	98 140	7.6% 9.5%	-0.70 [-4.92, 3.52] -2.90 [-5.56, -0.24]	
MC Malvar2021	123	18	346	132.9	10.7	315	9.5%	1.00 [-1.67, 3.67]	
N Schroeder2015	116.2	9.5	56	117	10.4	29	7.2%	-0.80 [-5.33, 3.73]	
S Chiu2016 Subtotal (95% CI)	125.2	4.8	72 954	128.8	4.8	36 853	10.3% 62.4%	-3.60 [-5.52, -1.68] -2.02 [-3.39, -0.66]	
Heterogeneity: Tau ² =).14); l² = 3	88%	033	V4.4 70	-z.oz [-0.00, -0.00]	•
	z = 2.90 (P	= 0.004)							
Test for overall effect: 2			(maximu				-		
8.3.2 Patient	118.16	11.3 15.27	30 108	129.2 145.9	13.74 15.8	30 52	5.4% 6.5%	-11.04 [-17.41, -4.67] -6.20 [-11.37, -1.03]	
8.3.2 Patient AA Sangouni2024	120 7	15.27	108	145.9 139.5	15.8 15.59	52 31	6.5% 4.4%	-6.20 [-11.37, -1.03] -7.50 [-14.99, -0.01]	
8.3.2 Patient AA Sangouni2024 C Rosa2016	139.7 132	11.76	71	135.65	12.4	71	7.9%	-4.61 [-8.59, -0.63]	
8.3.2 Patient AA Sangouni2024 C Rosa2016 H L. Mayr2019 K Wang2023	132 131.04		84	134	13.49	90		-11.92 [-15.19, -8.65]	
8.3.2 Patient AA Sangouni2024 C Rosa2016 H L. Mayr2019 K Wang2023 MH Vasei2022	132 131.04 122.08	8	~~	120.25	13.52	20 294	4.6% 37.6%	-1.25 [-8.50, 6.00] -7.41 [-10.84, -3.98]	
8.3.2 Patient AA Sangouni2024 C Rosa2016 H L. Mayr2019 K Wang2023 MH Vasei2022 T Badali2023	132 131.04		20 347						
8.3.2 Patient AA Sangouni2024 C Rosa2016 H L. Mayr2019 K Wang2023 MH Vasei2022 T Badali2023 Subtotal (95% CI) Heterogeneity: Tau ² = 1	132 131.04 122.08 119 10.65; Chi ²	8 9.54 = 12.99, d	347 df = 5 (P		= 62%	234	01.070		•
AA Sangouni2024 C Rosa2016 H L. Mayr2019 K Wang2023 MH Vasei2022 T Badali2023 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 2	132 131.04 122.08 119 10.65; Chi ²	8 9.54 = 12.99, d	347 df = 5 (P)		= 62%				
8.3.2 Patient AA Sangouni2024 C Rosa2016 H L. Mayr2019 K Wang2023 MH Vasei2022 T Badali2023 Subtotal (95% CI) Heterogeneity: Tau ² = : Test for overall effect: 2 Total (95% CI)	132 131.04 122.08 119 10.65; Chi ² 2 = 4.23 (P	8 9.54 = 12.99, d < 0.0001)	347 df = 5 (P) 1301	= 0.02); ² :			100.0%	-3.99 [-6.01, -1.97]	• •
8.3.2 Patient AA Sangouni2024 C Rosa2016 H L. Mayr2019 K Wang2023 MH Vasei2022 T Badaii2023 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 2	132 131.04 122.08 119 10.65; Chi ² Z = 4.23 (P	8 9.54 = 12.99, d < 0.0001)	347 df = 5 (P) 1301 f = 12 (P	= 0.02); ² :					
8.3.2 Patient AA Sangouni2024 C Rosa2016 H L. Mayr2019 K Wang2023 MH Vasei2022 T Badai/2023 Subtotal (95% CI) Heterogeneity: Tau ² = 1 Total (95% CI)	132 131.04 122.08 119 10.65; Chi ² $\zeta = 4.23$ (P 0.36; Chi ² = $\zeta = 3.87$ (P	8 9.54 = 12.99, d < 0.0001) : 49.96, df = 0.0001)	347 df = 5 (P) 1301 f = 12 (P	= 0.02); l ² : < 0.00001)	; I² = 76%				-20 -10 0 10 20 Favours [Anti-inflammatory diet] Favours [Pro-inflammatory diet]

LDL-C Study or Subgroup	Anti-infl Mean	ammatory SD	diet Total	Pro-infla Mean	ammatory SD		Weight	Std. Mean Difference IV. Random. 95% CI	Std. Mean Difference IV. Random. 95% Cl
12.1.1 ≥6个月	Mean	30	Total	Wedn	30	Total	Weight	TV, Kalidolli, 3376 CI	N, Kaldoll, 35 /8 Cl
C D Gardner2022	104.35	32.24	33	97.8	33.98	33	5.2%	0.20 [-0.29, 0.68] -0.21 [-0.55, 0.12]	
CR Davis2017a C Rosa2016	2.92 108.5	0.77 38.05	70 108	3.08 122.3	0.72 40.7	67 52	7.0% 7.0%	-0.35 [-0.69, -0.02]	
G Pagliai2024	123.7	31.4	52	126.02	32.51	52	6.3%	-0.07 [-0.46, 0.31]	
H L. Mayr2019 JW Wang2020	1.99 2.21	0.87	34 132	1.95 2.88	0.84	31 140	5.2% 8.1%	0.05 [-0.44, 0.53] -0.82 [-1.07, -0.57]	- T
MC Malvar2021	114	34	346	112	32	315	9.3%	0.06 [-0.09, 0.21]	+
T Badali2023	87.68	20.54	20	92.22	24.56	20	3.9%	-0.20 [-0.82, 0.42]	
Subtotal (95% CI) Heterogeneity: Tau ² =	0 12 [.] Chi ² =	39 59 df	795 = 7 (P <	0.00001)	12 = 82%	710	52.0%	-0.18 [-0.46, 0.09]	
Test for overall effect:			= / (r <	0.00001),	1 02 /0				
12.1.2 <6个月									
AA Sangouni2024	126.56	28.34	30	124.36	36.29	30	5.0%	0.07 [-0.44, 0.57]	
B Shah2018	68	23.89	100	74	25.83	100	7.7%	-0.24 [-0.52, 0.04]	
HG Law2023 JD Krebs2024	103 3.4	26 0.9	166 102	115 3.6	28 1	166 98	8.5% 7.7%	-0.44 [-0.66, -0.23] -0.21 [-0.49, 0.07]	
MH Vasei2022	81.97	17.01	84	83.85	20.04	90	7.5%	-0.10 [-0.40, 0.20]	
N Schroeder2015 S Chiu2016	141 2.63	23.7 0.3	56 72	148.3 2.81	21 0.3	29 36	5.5% 6.0%	-0.32 [-0.77, 0.13] -0.60 [-1.00, -0.19]	
Subtotal (95% CI)	2.05	0.0	610	2.01	0.5	549	48.0%	-0.28 [-0.42, -0.14]	◆
Heterogeneity: Tau ² =			6 (P = 0	.24); I ² = 2	25%				
Test for overall effect:	Z = 3.96 (P	< 0.0001)							
Total (95% CI)			1405				100.0%	-0.23 [-0.39, -0.07]	_ · · · · · · · · · · · · · · · · · · ·
Heterogeneity: Tau ² = Test for overall effect:			= 14 (P ·	< 0.00001); I² = 72%				-4 -2 0 2 4
Test for subgroup diffe			f = 1 (P =	= 0.54), I²	= 0%				Favours [Anti-inflammatory diet] Favours [Pro-inflammatory diet]
Shudu an Out		ammatory			ammatory			Std. Mean Difference IV, Random, 95% Cl	Std. Mean Difference
Study or Subgroup 12.2.1 North America	Mean	SD	Total	Mean	SD	Iotal	Weight	iv. Kandom. 95% C	IV. Random. 95% Cl
B Shah2018	68	23.89	100	74	25.83	100	7.7%	-0.24 [-0.52, 0.04]	
C D Gardner2022 HG Law2023	104.35 103	32.24 26	33 166	97.8 115	33.98 28	33 166	5.2% 8.5%	0.20 [-0.29, 0.68]	
N Schroeder2015	103 141	26 23.7	166 56	115 148.3	28	166 29	8.5% 5.5%	-0.44 [-0.66, -0.23] -0.32 [-0.77, 0.13]	
S Chiu2016	2.63	0.3	72	2.81	0.3	36	6.0%	-0.60 [-1.00, -0.19]	
Subtotal (95% CI) Heterogeneity: Tau ² =	0.03: Chi² =	= 7.58. df =	427 4 (P = 0),11): I ² = -	17%	364	33.0%	-0.31 [-0.53, -0.10]	•
Test for overall effect:				,					
12.2.2 European									
C Rosa2016	108.5	38.05	108	122.3	40.7	52	7.0%	-0.35 [-0.69, -0.02]	
G Pagliai2024	123.7	31.4	52	126.02	32.51	52	6.3%	-0.07 [-0.46, 0.31]	
MC Malvar2021 Subtotal (95% CI)	114	34	346 506	112	32	315 419	9.3% 22.6%	0.06 [-0.09, 0.21] -0.09 [-0.35, 0.17]	
Heterogeneity: Tau ² =			2 (P = 0	0.08); I ² = (60%				
Test for overall effect:	Z = 0.70 (P	= 0.49)							
12.2.3 Oceania									
CR Davis2017a H L. Mayr2019	2.92 1.99	0.77 0.87	70 34	3.08 1.95	0.72	67 31	7.0% 5.2%	-0.21 [-0.55, 0.12]	—
JD Krebs2024	3.4	0.87	102	3.6	0.84	98	7.7%	0.05 [-0.44, 0.53] -0.21 [-0.49, 0.07]	
Subtotal (95% CI)			206			196	19.8%	-0.17 [-0.37, 0.03]	•
Heterogeneity: Tau ² = Test for overall effect:			2 (P = 0	0.64); I ^z = ()%				
		,							
12.2.4 Asian AA Sangouni2024	126.56	28.34	30	124.36	36.29	30	5.0%	0.07 [-0.44, 0.57]	
JW Wang2020	2.21	0.87	132	2.88	0.76	140	8.1%	-0.82 [-1.07, -0.57]	-
MH Vasei2022 T Badali2023	81.97 87.68	17.01 20.54	84 20	83.85 92.22	20.04 24.56	90 20	7.5% 3.9%	-0.10 [-0.40, 0.20] -0.20 [-0.82, 0.42]	
Subtotal (95% CI)	07.00	20.04	266	52.22	24.00	280	24.5%	-0.29 [-0.76, 0.18]	◆
Heterogeneity: Tau ² = Test for overall effect:			= 3 (P =	0.0004); I	² = 84%				
	2 - 1.20 (F	- 0.23)							
Total (95% CI) Heterogeneity: Tau ² =	0.06.063	- 40.09.46	1405	< 0.00001	12 - 729/		100.0%	-0.23 [-0.39, -0.07]	▲
Test for overall effect:			= 14 (P ·	< 0.00001), I ⁻ = 72%	•			-4 -2 0 2 4
Test for subaroup diffe									Favours [Anti-inflammatory diet] Favours [Pro-inflammatory diet]
Study or Subgroup	Anti-infl Mean	ammatory SD	diet Total		ammatory SD		Weight	Std. Mean Difference IV. Random. 95% Cl	Std. Mean Difference IV. Random, 95% Cl
12.3.1 Healthy									
CR Davis2017a HG Law2023	2.92 103	0.77 26	70 166	3.08 115	0.72 28	67 166	7.0% 8.5%	-0.21 [-0.55, 0.12]	
JD Krebs2024	3.4	0.9	166	3.6	28	166 98	8.5% 7.7%	-0.44 [-0.66, -0.23] -0.21 [-0.49, 0.07]	
JW Wang2020	2.21	0.87	132	2.88	0.76	140	8.1%	-0.82 [-1.07, -0.57]	-
MC Malvar2021 N Schroeder2015	114 141	34 23.7	346 56	112 148.3	32 21	315 29	9.3% 5.5%	0.06 [-0.09, 0.21] -0.32 [-0.77, 0.13]	T
S Chiu2016	2.63	0.3	72	2.81	0.3	36	6.0%	-0.60 [-1.00, -0.19]	
Subtotal (95% CI)		10 10 -1	944		12 - 000	851	52.2%	-0.36 [-0.62, -0.09]	◆
Heterogeneity: Tau ² = Test for overall effect:			- 0 (P <	0.00001);	00%				
12.3.2 Patient									
AA Sangouni2024	126.56	28.34	30	124.36	36.29	30	5.0%	0.07 [-0.44, 0.57]	- -
B Shah2018	68	23.89	100	74	25.83	100	7.7%	-0.24 [-0.52, 0.04]	
C D Gardner2022 C Rosa2016	104.35 108.5	32.24 38.05	33 108	97.8 122.3	33.98 40.7	33 52	5.2% 7.0%	0.20 [-0.29, 0.68] -0.35 [-0.69, -0.02]	
G Pagliai2024	123.7	38.05	52	126.02	32.51	52	6.3%	-0.07 [-0.46, 0.31]	-+-
H L. Mayr2019	1.99	0.87	34	1.95	0.84	31	5.2%	0.05 [-0.44, 0.53]	<u>_</u>
MH Vasei2022 T Badali2023	81.97 87.68	17.01 20.54	84 20	83.85 92.22	20.04 24.56	90 20	7.5% 3.9%	-0.10 [-0.40, 0.20] -0.20 [-0.82, 0.42]	
Subtotal (95% CI)			461			408	47.8%	-0.13 [-0.26, 0.01]	•
Heterogeneity: Tau ² =			7 (P = 0	0.62); I ² =	0%				
Test for overall effect:	∠ - 1.08 (P	- 0.00)							
Total (95% CI)	0.06.05	- 40.00 -1	1405	- 0.0000 -	12 - 700		100.0%	-0.23 [-0.39, -0.07]	
Heterogeneity: Tau ² =			- 14 (P	< 0.00001), I* = 72%				
Test for overall effect:									Favours [Anti-inflammatory diet] Favours [Pro-inflammatory diet]
Test for overall effect: Test for subgroup diffe		i² = 2.17. d	f = 1 (P =	= 0.14), l ²	= 54.0%				

TG <u>Study or Subgroup</u> 11.1.1 ≥6个月	Anti-infl Mean	ammatory SD	/ diet Total	Pro-infla Mean	ammatory SD		Weight	Std. Mean Difference IV. Random. 95% Cl	Std. Mean Difference IV. Random, 95% Cl
C D Gardner2022	105.84	40.26	33	118.8	74.17	33	4.0%	-0.21 [-0.70, 0.27]	
CR Davis2017a C Rosa2016	1 116.2	0.36 70.58	70 108	1.1 123.3	0.47 78.12	67 52	6.3% 6.4%	-0.24 [-0.57, 0.10] -0.10 [-0.43, 0.23]	
G Pagliai2024	118.6	67.4	52	119.3	72.6	52	5.4%	-0.01 [-0.39, 0.37]	
H L. Mayr2019 JW Wang2020	1.6 1.39	0.76 0.45	34 132	1.3 1.39	0.78 0.26	31 140	3.9% 8.7%	0.39 [-0.11, 0.88] 0.00 [-0.24, 0.24]	
K Wang2023	1.69	0.33	71	1.76	0.45	71	6.5%	-0.18 [-0.51, 0.15]	+
MC Malvar2021 Subtotal (95% CI)	82	39.26	346 846	81	47.41	315 761	11.3% 52.4%	0.02 [-0.13, 0.18] -0.03 [-0.13, 0.07]	↓
Heterogeneity: Tau ² =	0.00; Chi ² =	= 6.22, df =		.51); l² = ()%	701	52.470	-0.03 [-0.13, 0.07]	1
Test for overall effect:	Z = 0.58 (P	= 0.56)							
11.1.2 <6个月 AA Sangouni2024	161.53	64.78	30	207.76	89.06	30	3.6%	-0.59 [-1.10, -0.07]	
B Shah2018	93.5	43.5	100	108.5	46.1	100	7.6%	-0.33 [-0.61, -0.05]	
HG Law2023 JD Krebs2024	70 1.7	32.59 0.7	166 102	64 1.9	26.7 0.9	166 98	9.4% 7.6%	0.20 [-0.01, 0.42] -0.25 [-0.53, 0.03]	
MH Vasei2022	130.85	36.06	84	155.5	66.72	90	7.1%	-0.45 [-0.75, -0.15]	
N Schroeder2015	120.3	47.6	56	118.3	52.2	29	4.4%	0.04 [-0.41, 0.49]	
S Chiu2016 T Badali2023	1.24 117.05	0.25 42.16	72 20	1.2 118.5	0.24 49.5	36 20	5.1% 2.7%	0.16 [-0.24, 0.56] -0.03 [-0.65, 0.59]	
Subtotal (95% CI) Heterogeneity: Tau ² =	0.06: Chi2 -	= 21 84 df	630	0 003)- 12	= 68%	569	47.6%	-0.15 [-0.37, 0.06]	-
Test for overall effect:			- / (/ -	0.000), 1	- 00 /8				
Total (95% CI) Heterogeneity: Tau ² =	0.02: Chi² =	= 29.49 df	1476 = 15 (P =	= 0.01) 12	= 49%	1330	100.0%	-0.09 [-0.21, 0.02]	
Test for overall effect:	Z = 1.62 (P	= 0.11)							-2 -1 0 1 2 Favours [Anti-inflammatory diet] Favours [Pro-inflammatory diet]
Test for subgroup diffe		i ² = 1.02. d lammatory			= 1.7% ammator	y diet		Std. Mean Difference	Std. Mean Difference
Study or Subgroup 11.2.1 North America	Mean	SD	Total	Mean	SD		Weight		IV. Random, 95% Cl
B Shah2018	93.5	43.5	100	108.5	46.1	100	7.6%	-0.33 [-0.61, -0.05]	
C D Gardner2022	105.84	40.26	33	118.8	74.17	33	4.0%	-0.21 [-0.70, 0.27]	
HG Law2023 N Schroeder2015	70 120.3	32.6 47.6	166 56	64 118.3	26.7 52.2	166 29	9.4% 4.4%	0.20 [-0.01, 0.42] 0.04 [-0.41, 0.49]	
S Chiu2016	1.24	0.25	72 427	1.2	0.24	36 364	5.1%	0.16 [-0.24, 0.56]	_
Subtotal (95% CI) Heterogeneity: Tau ² =				0.04); l² =	61%	304	30.5%	-0.02 [-0.27, 0.22]	Ŧ
Test for overall effect:	Z = 0.17 (P	9 = 0.87)							
11.2.2 European C Rosa2016	116.2	70.58	108	123.3	78.12	52	6.4%	-0.10 [-0.43, 0.23]	
G Pagliai2024	118.6	67.4	52	119.3	72.6	52	5.4%	-0.01 [-0.39, 0.37]	
MC Malvar2021 Subtotal (95% CI)	82	39.26	346 506	81	47.41	315 419	11.3% 23.1%	0.02 [-0.13, 0.18] 0.00 [-0.13, 0.13]	$\mathbf{+}$
Heterogeneity: Tau ² =			= 2 (P = 0	0.81); I ² =	0%				
Test for overall effect:	Z = 0.01 (P	² = 0.99)							
11.2.3 Oceania CR Davis2017a	1	0.36	70	1.1	0.47	67	6.3%	-0.24 [-0.57, 0.10]	
H L. Mayr2019	1.6	0.76	34	1.3	0.78	31	3.9%	0.39 [-0.11, 0.88]	
JD Krebs2024 Subtotal (95% CI)	1.7	0.7	102 206	1.9	0.9	98 196	7.6% 17.8%	-0.25 [-0.53, 0.03] -0.09 [-0.42, 0.25]	-
Heterogeneity: Tau ² = Test for overall effect:			= 2 (P = 0	0.07); l ² = (62%				
11.2.4 Asian		,							
AA Sangouni2024	161.53	64.78	30	207.76	89.06	30	3.6%	-0.59 [-1.10, -0.07]	<u> </u>
JW Wang2020 K Wang2023	1.39 1.69	0.45	132 71	1.39 1.76	0.26 0.45	140 71	8.7% 6.5%	0.00 [-0.24, 0.24] -0.18 [-0.51, 0.15]	
MH Vasei2022	130.85	36.06	84	155.5	66.72	90	7.1%	-0.45 [-0.75, -0.15]	<u> </u>
T Badali2023 Subtotal (95% CI)	117.05	42.16	20 337	118.5	49.5	20 351	2.7% 28.6%	-0.03 [-0.65, 0.59] -0.23 [-0.46, -0.00]	•
Heterogeneity: Tau ² = Test for overall effect:			= 4 (P = 0	0.10); l ² = 4	19%				
Total (95% CI)		,	1476			1330	100.0%	-0.09 [-0.21, 0.02]	•
Heterogeneity: Tau ² =				= 0.01); I ²	= 49%	1000	10010/0	0.00 [0.2.1, 0.02]	-2 -1 0 1 2
Test for overall effect: Test for subgroup diffe			f = 3 (P	= 0.37). I ²	= 4.3%				Favours [Anti-inflammatory diet] Favours [Pro-inflammatory diet]
	Anti-inf	lammatory	y diet	Pro-infl	ammator			Std. Mean Difference	Std. Mean Difference
Study or Subgroup 11.3.1 Healthy	Mean	SD	Total	Mean	SD		Weight		IV. Random. 95% Cl
CR Davis2017a HG Law2023	1 70	0.36 32.59	70 166	1.1 64	0.47 26.7	67 166	6.3% 9.4%	-0.24 [-0.57, 0.10] 0.20 [-0.01, 0.42]	
JD Krebs2024	1.7	0.7	102	1.9	0.9	98	7.6%	-0.25 [-0.53, 0.03]	
JW Wang2020 MC Malvar2021	1.39 82	0.45 39.26	132 346	1.39 81	0.26 47.41	140 315	8.7% 11.3%	0.00 [-0.24, 0.24] 0.02 [-0.13, 0.18]	Ŧ
N Schroeder2015	120.3	47.6	56	118.3	52.2	29	4.4%	0.04 [-0.41, 0.49]	
S Chiu2016 Subtotal (95% CI)	1.24	0.25	72 944	1.2	0.24	36 851	5.1% 52.9%	0.16 [-0.24, 0.56] 0.00 [-0.12, 0.12]	→
Heterogeneity: Tau ² = Test for overall effect:				0.17); I² = :	33%				
	2 - 0.01 (P	- 0.99)							
11.3.2 Patient AA Sangouni2024	161.53	64.78	30	207.76	89.06	30	3.6%	-0.59 [-1.10, -0.07]	———————————————————————————————————————
B Shah2018 C D Gardner2022	93.5	43.5	100 33	108.5	46.1	100 33	7.6%	-0.33 [-0.61, -0.05]	
C D Gardner2022 C Rosa2016	105.84 116.2	40.26 70.58	33 108	118.8 123.3	74.17 78.12	33 52	4.0% 6.4%	-0.21 [-0.70, 0.27] -0.10 [-0.43, 0.23]	
G Pagliai2024	118.6	67.4	52	119.3	72.6	52	5.4%	-0.01 [-0.39, 0.37]	_ <u></u>
H L. Mayr2019 K Wang2023	1.6 1.69	0.76	34 71	1.3 1.76	0.78 0.45	31 71	3.9% 6.5%	0.39 [-0.11, 0.88] -0.18 [-0.51, 0.15]	
MH Vasei2022	130.85	36.06	84	155.5	66.72	90	7.1%	-0.45 [-0.75, -0.15]	
T Badali2023 Subtotal (95% CI)	117.05	42.16	20 532	118.5	49.5	20 479	2.7% 47.1%	-0.03 [-0.65, 0.59] -0.19 [-0.36, -0.03]	•
Heterogeneity: Tau ² = Test for overall effect:			= 8 (P =	0.12); l ² =	37%				
Total (95% CI)	E.UE (F	5.021	1476			1330	100.0%	-0.09 [-0.21, 0.02]	•
				= 0.01); I²	= 49%	1330	100.0%	-0.03 [-0.21, 0.02]	
		0 4 4 1							
Heterogeneity: Tau ² = Test for overall effect: Test for subgroup diffe			f = 1 (P	= 0.06) 12	= 71.3%				Favours [Anti-inflammatory diet] Favours [Pro-inflammatory diet]

Author contributions

RJ: Conceptualization, Funding acquisition, Methodology, Writing – original draft, Writing – review & editing. TW: Software, Writing – original draft, Writing – review & editing. KH: Validation, Writing – original draft, Writing – review & editing. PP: Methodology, Validation, Writing – original draft. GZ: Methodology, Writing – original draft. HW: Validation, Supervision, Writing – original draft. LZ: Funding acquisition, Supervision, Validation, Writing – review & editing. HL: Funding acquisition, Supervision, Validation, Writing – review & editing. XL: Funding acquisition, Supervision, Validation, Writing – review & editing. YD: Funding acquisition, Supervision, Validation, Writing – review & editing, Conceptualization.

Funding

The author(s) declare that financial support was received for the research and/or publication of this article. This study was funded by the Jilin Provincial Science and Technology Department Project (No. YDZJ202301ZYTS; YDZJ202401270ZYTS; 20240404041ZP; 20230304095YY; 20220508064RC), as well as the "14th Five Year Plan" Science and Technology Research Project of the Jilin Provincial Department of Education (No. JKH20231212KJ; JKH20241356KJ). Additionally, it received backing from the National College Students' Innovation and Entrepreneurship Training Program (No. 202410183325, 202210199006, and 202210199041).

References

1. Tsao CW, Aday AW, Almarzooq ZI, Anderson CAM, Arora P, Avery CL, et al. Heart disease and stroke Statistics-2023 update: a report from the American Heart Association. *Circulation*. (2023) 147:e93–e621. doi: 10.1161/CIR.00000000001123

2. Pickering RJ. Oxidative stress and inflammation in cardiovascular diseases. *Antioxidants (Basel)*. (2021) 10:171. doi: 10.3390/antiox10020171

3. Sun Y, Wu Y, Tang S, Liu H, Jiang Y. Sestrin proteins in cardiovascular disease. Clin Chim Acta. (2020) 508:43-6. doi: 10.1016/j.cca.2020.05.013

4. World Heart Federation. *World-Heart-Report-2023*. (2023). Available at: https://world-heart-federation.org/resource/world-heart-report-2023/

5. Ramallal R, Toledo E, Martínez-González MA, Hernández-Hernández A, García-Arellano A, Shivappa N, et al. Dietary inflammatory index and incidence of cardiovascular disease in the SUN cohort. *PLoS One*. (2015) 10:e0135221. doi: 10.1371/journal.pone.0135221

6. Barbaresko J, Koch M, Schulze MB, Nöthlings U. Dietary pattern analysis and biomarkers of low-grade inflammation: a systematic literature review. *Nutr Rev.* (2013) 71:511–27. doi: 10.1111/nure.12035

7. Suzuki K. Chronic inflammation as an immunological abnormality and effectiveness of exercise. *Biomol Ther.* (2019) 9:223. doi: 10.3390/biom9060223

8. Chen S, Huang K, Xu H, Xu Z, Han L, Liu X. Causal relationship between 91 inflammatory proteins and 5 cardiovascular diseases: a bidirectional Mendelian randomization. *Acad J Naval Med Univ.* (2024) 45:558–68. doi: 10.16781/j. CN31-2187/R.20240068

9. Pearson TA, Mensah GA, Alexander RW, Anderson JL, Cannon RO 3rd, Criqui M, et al. Markers of inflammation and cardiovascular disease: application to clinical and public health practice: a statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association. *Circulation.* (2003) 107:499–511. doi: 10.1161/01.CIR.0000052939.59093.45

10. Zhang J, Ji C, Zhai X, Tong H, Hu J. Frontiers and hotspots evolution in antiinflammatory studies for coronary heart disease: a bibliometric analysis of 1990–2022. *Front Cardiovasc Med.* (2023) 10:1038738. doi: 10.3389/fcvm.2023.1038738

11. Suárez-Rivero JM, Pastor-Maldonado CJ, Povea-Cabello S, Álvarez-Córdoba M, Villalón-García I, Talaverón-Rey M, et al. From mitochondria to atherosclerosis: the inflammation path. *Biomedicines*. (2021) 9:258. doi: 10.3390/biomedicines9030258

12. Madjid M, Fatemi O. Components of the complete blood count as risk predictors for coronary heart disease: in-depth review and update. *Tex Heart Inst J.* (2013) 40:17–29.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Gen AI was used in the creation of this manuscript.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fnut.2025.1549831/ full#supplementary-material

13. Yang C, Deng Z, Li J, Ren Z, Liu F. Meta-analysis of the relationship between interleukin-6 levels and the prognosis and severity of acute coronary syndrome. *Clinics (Sao Paulo)*. (2021) 76:e2690. doi: 10.6061/clinics/2021/e2690

14. Li S. Influence of immune and inflammatory effects on the pathogenesis of coronary artery disease. *Adv Clin Med.* (2023) 13:2898–902. doi: 10.12677/ACM.2023. 133410

15. Zeng S, Yang G. Progress in understanding the association between inflammatory mediators and coronary artery disease. *Cardiovasc Dis Electron J Integr Tradit Chin West Med.* (2020) 8:15–6. doi: 10.16282/j.cnki.cn11-9336/r.2020.08.009

16. Stabile G, Iacopino S, Verlato R, Arena G, Pieragnoli P, Molon G, et al. Predictive role of early recurrence of atrial fibrillation after cryoballoon ablation. *Europace*. (2020) 22:1798–804. doi: 10.1093/europace/euaa239

17. Boos CJ, Anderson RA, Lip GY. Is atrial fibrillation an inflammatory disorder? *Eur Heart J.* (2006) 27:136–49. doi: 10.1093/eurheartj/ehi645

18. Watanabe T, Takeishi Y, Hirono O, Itoh M, Matsui M, Nakamura K, et al. C-reactive protein elevation predicts the occurrence of atrial structural remodeling in patients with paroxysmal atrial fibrillation. *Heart Vessel.* (2005) 20:45–9. doi: 10.1007/s00380-004-0800-x

19. Carey RM, Moran AE, Whelton PK. Treatment of hypertension: a review. JAMA. (2022) 328:1849–61. doi: 10.1001/jama.2022.19590

20. Förstermann U, Xia N, Li H. Roles of vascular oxidative stress and nitric oxide in the pathogenesis of atherosclerosis. *Circ Res.* (2017) 120:713–35. doi: 10.1161/ CIRCRESAHA.116.309326

21. Drazner MH. The progression of hypertensive heart disease. *Circulation*. (2011) 123:327–34. doi: 10.1161/CIRCULATIONAHA.108.845792

22. Horne BD, Anderson JL, John JM, Weaver A, Bair TL, Jensen KR, et al. Which white blood cell subtypes predict increased cardiovascular risk? *J Am Coll Cardiol.* (2005) 45:1638–43. doi: 10.1016/j.jacc.2005.02.054

23. Aday AW, Lawler PR, Cook NR, Ridker PM, Mora S, Pradhan AD. Lipoprotein particle profiles, standard lipids, and peripheral artery disease incidence. *Circulation*. (2018) 138:2330–41. doi: 10.1161/CIRCULATIONAHA.118.035432

24. Knuuti J, Wijns W, Saraste A, Capodanno D, Barbato E, Funck-Brentano C, et al. 2019 ESC guidelines for the diagnosis and management of chronic coronary syndromes. *Eur Heart J.* (2020) 41:407–77. doi: 10.1093/eurheartj/ehz425

25. Arnett DK, Blumenthal RS, Albert MA, Buroker AB, Goldberger ZD, Hahn EJ, et al. 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: executive summary: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines. *J Am Coll Cardiol.* (2019) 74:1376–414. doi: 10.1016/j.jacc.2019.03.009

26. Mattiuzzi C, Sanchis-Gomar F, Lippi G. Worldwide burden of LDL cholesterol: implications in cardiovascular disease. *Nutr Metab Cardiovasc Dis.* (2020) 30:241–4. doi: 10.1016/j.numecd.2019.09.008

27. Vajdi M, Farhangi MA, Mahmoudi-Nezhad M. Dietary inflammatory index significantly affects lipids profile among adults: an updated systematic review and metaanalysis. *Int J Vitam Nutr Res.* (2022) 92:431–47. doi: 10.1024/0300-9831/a000688

28. Li S, Liu Z, Joseph P, Hu B, Yin L, Tse LA, et al. Modifiable risk factors associated with cardiovascular disease and mortality in China: a PURE sub study. *Eur Heart J*. (2022) 43:2852–63. doi: 10.1093/eurheartj/ehac268

29. Scheiber A, Mank V. Anti-Inflammatory Diets. *StatPearls*. Treasure Island (FL): StatPearls Publishing. (2024).

30. Bach-Faig A, Berry EM, Lairon D, Reguant J, Trichopoulou A, Dernini S, et al. Mediterranean diet pyramid today. Science and cultural updates. *Public Health Nutr.* (2011) 14:2274–84. doi: 10.1017/S1368980011002515

31. Youm YH, Nguyen KY, Grant RW, Goldberg EL, Bodogai M, Kim D, et al. The ketone metabolite β -hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease. *Nat Med.* (2015) 21:263–9. doi: 10.1038/nm.3804

32. Marx W, Veronese N, Kelly JT, Smith L, Hockey M, Collins S, et al. The dietary inflammatory index and human health: an umbrella review of Meta-analyses of observational studies. *Adv Nutr.* (2021) 12:1681–90. doi: 10.1093/advances/nmab037

33. Shivappa N, Steck SE, Hurley TG, Hussey JR, Hébert JR. Designing and developing a literature-derived, population-based dietary inflammatory index. *Public Health Nutr.* (2014) 17:1689–96. doi: 10.1017/S1368980013002115

34. Na W, Kim M, Sohn C. Dietary inflammatory index and its relationship with highsensitivity C-reactive protein in Korean: data from the health examinee cohort. *J Clin Biochem Nutr.* (2018) 62:83–8. doi: 10.3164/jcbn.17-22

35. Chen Y, Zheng Y, Wen X, Huang J, Song Y, Cui Y, et al. Anti-inflammatory effects of olive (*olea europaea* L.) fruit extract in LPS-stimulated RAW264.7 cells via MAPK and NF-κB signal pathways. *Mol Biol Rep.* (2024) 51:774. doi: 10.1007/s11033-024-09661-9

36. Guo C, Gao W, Xie Z, Pu L, Wei J, Yang J. Research advances in antioxidant capacity and components of vegetables and fruits in China. *Chin Bull Life Sci.* (2015) 27:1000–4. doi: 10.13376/j.cbls/2015139

37. Cryan JF, O'Riordan KJ, Cowan CSM, Sandhu KV, Bastiaanssen TFS, Boehme M, et al. The microbiota-gut-brain Axis. *Physiol Rev.* (2019) 99:1877–2013. doi: 10.1152/physrev.00018.2018

38. Makki K, Deehan EC, Walter J, Bäckhed F. The impact of dietary Fiber on gut microbiota in host health and disease. *Cell Host Microbe*. (2018) 23:705–15. doi: 10.1016/j.chom.2018.05.012

39. Souza PR, Marques RM, Gomez EA, Colas RA, de Matteis R, Zak A, et al. Enriched marine oil supplements increase peripheral blood specialized pro-resolving mediators concentrations and reprogram host immune responses: a randomized double-blind placebo-controlled study. *Circ Res.* (2020) 126:75–90. doi: 10.1161/CIRCRESAHA. 119.315506

40. Calder PC. Omega-3 fatty acids and inflammatory processes. *Nutrients*. (2010) 2:355-74. doi: 10.3390/nu2030355

41. Li Z, Lü J, Yu L, Situ W, Xue L, Wang H, et al. Applications and perspectives of ketone body D- β -hydroxybutyrate in the medical fields. *Sheng Wu Gong Cheng Xue Bao.* (2022) 38:976–89. doi: 10.13345/j.cjb.210343

42. Dai L, Liu Z, Guo L, Yang Y, Chang C, Wang Y, et al. B-Hydroxybutyrate mediated epigenetic modification and its molecular mechanism of regulating inflammation. *Acta Vet Zootech Sin.* (2023) 54:4095–104.

43. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. *BMJ*. (2021) 372:n71. doi: 10.1136/bmj.n71

44. Migliavaca CB, Stein C, Colpani V, Barker TH, Ziegelmann PK, Munn Z, et al. Meta-analysis of prevalence: I(2) statistic and how to deal with heterogeneity. *Res Synth Methods*. (2022) 13:363–7. doi: 10.1002/jrsm.1547

45. Davis CR, Bryan J, Hodgson JM, Woodman R, Murphy KJ. A Mediterranean diet reduces F(2)-Isoprostanes and triglycerides among older Australian men and women after 6 months. *J Nutr.* (2017) 147:1348–55. doi: 10.3945/jn.117.248419

46. Davis CR, Hodgson JM, Woodman R, Bryan J, Wilson C, Murphy KJ. A Mediterranean diet lowers blood pressure and improves endothelial function: results from the MedLey randomized intervention trial. *Am J Clin Nutr.* (2017) 105:1305–13. doi: 10.3945/ajcn.116.146803

47. Mayr HL, Itsiopoulos C, Tierney AC, Kucianski T, Radcliffe J, Garg M, et al. Ad libitum Mediterranean diet reduces subcutaneous but not visceral fat in patients with coronary heart disease: a randomised controlled pilot study. *Clin Nutr ESPEN*. (2019) 32:61–9. doi: 10.1016/j.clnesp.2019.05.001

48. Casas R, Sacanella E, Urpí-Sardà M, Corella D, Castañer O, Lamuela-Raventos RM, et al. Long-term immunomodulatory effects of a Mediterranean diet in adults at

high risk of cardiovascular disease in the PREvención con DIeta MEDiterránea (PREDIMED) randomized controlled trial. *J Nutr.* (2016) 146:1684–93. doi: 10.3945/jn.115.229476

49. Shah B, Newman JD, Woolf K, Ganguzza L, Guo Y, Allen N, et al. Antiinflammatory effects of a vegan diet versus the American Heart Associationrecommended diet in coronary artery disease trial. *J Am Heart Assoc*. (2018) 7:e011367. doi: 10.1161/JAHA.118.011367

50. Calvo-Malvar M, Benítez-Estévez AJ, Sánchez-Castro J, Leis R, Gude F. Effects of a community-based behavioral intervention with a traditional Atlantic diet on Cardiometabolic risk markers: a cluster randomized controlled trial ("the GALIAT study"). *Nutrients*. (2021) 13:1211. doi: 10.3390/nu13041211

51. Vasei MH, Hosseinpour-Niazi S, Ainy E, Mirmiran P. Effect of dietary approaches to stop hypertension (DASH) diet, high in animal or plant protein on cardiometabolic risk factors in obese metabolic syndrome patients: a randomized clinical trial. *Prim Care Diabetes.* (2022) 16:634–9. doi: 10.1016/j.pcd.2022.09.001

52. Badali T, Arefhosseini S, Rooholahzadegan F, Tutunchi H, Ebrahimi-Mameghani M. The effect of DASH diet on atherogenic indices, pro-oxidant-antioxidant balance, and liver steatosis in obese adults with non-alcoholic fatty liver disease: a double-blind controlled randomized clinical trial. *Health Promot Perspect.* (2023) 13:77–87. doi: 10.34172/hpp.2023.10

53. Law HG, Khan MA, Zhang W, Bang H, Rood J, Most M, et al. Reducing saturated fat intake lowers LDL-C but increases Lp(a) levels in African Americans: the GET-READI feeding trial. *J Lipid Res.* (2023) 64:100420. doi: 10.1016/j.jlr.2023.100420

54. Sangouni AA, Hosseinzadeh M, Parastouei K. The effect of dietary approaches to stop hypertension (DASH) diet on fatty liver and cardiovascular risk factors in subjects with metabolic syndrome: a randomized controlled trial. *BMC Endocr Disord.* (2024) 24:126. doi: 10.1186/s12902-024-01661-x

55. Krebs JD, Parry-Strong A, Braakhuis A, Worthington A, Merry TL, Gearry RB, et al. A Mediterranean dietary pattern intervention does not improve cardiometabolic risk but does improve quality of life and body composition in an Aotearoa New Zealand population at increased cardiometabolic risk: a randomised controlled trial. *Diabetes Obes Metab.* (2025) 27:368–76. doi: 10.1111/dom.16030

56. Wang K, Zhang X, Meng S, Li W, Wang Z. The impact of the regulated cessation of dietary management for hypertension on the quality of life in individuals with chronic heart failure. *Chronic Pathematol J.* (2023) 24:765–7. doi: 10.16440/J.CNKI.1674-8166.2023.05.32

57. Wang J, Fan Q, Zhang X, Yang F, Zhan H, Wang H, et al. Intervention of dietary approaches to stop hypertension on prehypertension in herdsmen of Nanshan pastoral area, Urumgi. *J Xinjiang Med Univ.* (2020) 43:962–966+975.

58. Li D. Impact of Mediterranean dietary patterns on serum inflammatory markers in middle-aged individuals with cardiovascular disease. *Pract Clin Med.* (2020) 21:23–24+31.

59. Pagliai G, Tristan Asensi M, Dinu M, Cesari F, Bertelli A, Gori AM, et al. Effects of a dietary intervention with lacto-ovo-vegetarian and Mediterranean diets on apolipoproteins and inflammatory cytokines: results from the CARDIVEG study. *Nutr Metab (Lond)*. (2024) 21:9. doi: 10.1186/s12986-023-00773-w

60. Gardner CD, Landry MJ, Perelman D, Petlura C, Durand LR, Aronica L, et al. Effect of a ketogenic diet versus Mediterranean diet on glycated hemoglobin in individuals with prediabetes and type 2 diabetes mellitus: the interventional keto-med randomized crossover trial. *Am J Clin Nutr.* (2022) 116:640–52. doi: 10.1093/ajcn/nqac154

61. Chiu S, Bergeron N, Williams PT, Bray GA, Sutherland B, Krauss RM. Comparison of the DASH (dietary approaches to stop hypertension) diet and a higher-fat DASH diet on blood pressure and lipids and lipoproteins: a randomized controlled trial. *Am J Clin Nutr.* (2016) 103:341–7. doi: 10.3945/ajcn.115.123281

62. Schroeder N, Park YH, Kang MS, Kim Y, Ha GK, Kim HR, et al. A randomized trial on the effects of 2010 dietary guidelines for Americans and Korean diet patterns on cardiovascular risk factors in overweight and obese adults. *J Acad Nutr Diet.* (2015) 115:1083–92. doi: 10.1016/j.jand.2015.03.023

63. Zhong X, Guo L, Zhang L, Li Y, He R, Cheng G. Inflammatory potential of diet and risk of cardiovascular disease or mortality: a meta-analysis. *Sci Rep.* (2017) 7:6367. doi: 10.1038/s41598-017-06455-x

64. Farhangi MA, Nikniaz L, Nikniaz Z, Dehghan P. Dietary inflammatory index potentially increases blood pressure and markers of glucose homeostasis among adults: findings from an updated systematic review and meta-analysis. *Public Health Nutr.* (2020) 23:1362–80. doi: 10.1017/S1368980019003070

65. Namazi N, Larijani B, Azadbakht L. Dietary inflammatory index and its association with the risk of cardiovascular diseases, metabolic syndrome, and mortality: a systematic review and Meta-analysis. *Horm Metab Res.* (2018) 50:345–58. doi: 10.1055/a-0596-8204

66. Ling C, Cook MD, Grimm H, Aldokhayyil M, Gomez D, Brown M. The effect of race and shear stress on CRP-induced responses in endothelial cells. *Mediat Inflamm*. (2021) 2021:6687250. doi: 10.1155/2021/6687250

67. Shen J, Ordovas JM. Impact of genetic and environmental factors on hsCRP concentrations and response to therapeutic agents. *Clin Chem.* (2009) 55:256–64. doi: 10.1373/clinchem.2008.117754

68. Bisoendial RJ, Kastelein JJP, Levels JHM, Zwaginga JJ, van den Bogaard B, Reitsma PH, et al. Activation of inflammation and coagulation after infusion of C-reactive protein in humans. *Circ Res.* (2005) 96:714–6. doi: 10.1161/01. RES.0000163015.67711.AB

69. Chen C, Nan B, Lin P, Yao Q. C-reactive protein increases plasminogen activator inhibitor-1 expression in human endothelial cells. *Thromb Res.* (2008) 122:125–33. doi: 10.1016/j.thromres.2007.09.006

70. Xu S, Ilyas I, Little PJ, Li H, Kamato D, Zheng X, et al. Endothelial dysfunction in atherosclerotic cardiovascular diseases and beyond: from mechanism to pharmacotherapies. *Pharmacol Rev.* (2021) 73:924–67. doi: 10.1124/pharmrev. 120.000096

71. Xu P, Huang Z, Xu Y, Liu H, Liu Y, Wang L. Editorial: antioxidants and inflammatory immune-related diseases. *Front Immunol.* (2024) 15:1476887. doi: 10.3389/fimmu.2024.1476887

72. Gopal RK, Ganesh PS, Pathoor NN. Synergistic interplay of diet, gut microbiota, and insulin resistance: unraveling the molecular Nexus. *Mol Nutr Food Res.* (2024) 68:e2400677. doi: 10.1002/mnfr.202400677

73. Tiong XT, Nursara Shahirah A, Pun VC, Wong KY, Fong AYY, Sy RG, et al. The association of the dietary approach to stop hypertension (DASH) diet with blood

pressure, glucose and lipid profiles in Malaysian and Philippines populations. *Nutr Metab Cardiovasc Dis.* (2018) 28:856–63. doi: 10.1016/j.numecd.2018.04.014

74. Li J, Zhou J, Zhang Y. The current status of DASH diet-related knowledge, attitude and practice among hypertensive patients from main urban districts of Chongqing. *Health Med Res Pract.* (2018) 15:15–21.

75. Xiao M, Shi S, Wu F, Yao J, Wen X, Shen Y. Study on application effect and compliance of modified DASH diet inpatients with H-type hypertension under the medical community model of general practitioner+. *Clin Educ Gen Pract.* (2024) 22:73–5. doi: 10.13558/j.cnki.issn1672-3686.2024.001.020

76. Ling Z, Liu J. Research progress on Mediterranean diet and health. *Chin J Urban Rural Enterp.* (2024) 39:18–21. doi: 10.16286/j.1003-5052.2024.02.006

77. Arnett DK, Blumenthal RS, Albert MA, Buroker AB, Goldberger ZD, Hahn EJ, et al. 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines. *Circulation.* (2019) 140:e596–646. doi: 10.1161/CIR.00000000000678