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Globally, metabolic dysfunction-associated fatty liver disease (MAFLD), also known 
as non-alcoholic fatty liver disease (NAFLD) or metabolic dysfunction-associated 
steatotic liver disease (MASLD), is a common chronic liver disease. The progression 
of MAFLD leads to a vicious cycle in which oxidative stress results from the 
disease that is augmenting de-novo lipid levels and increases steatosis. Most 
non-enzymatic antioxidants are present in food. Therefore, the present review 
summarizes the findings of studies on food-derived antioxidants and presents 
an oxidative stress-related regulatory network in MAFLD, offering new ideas for 
MAFLD prevention and treatment.
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1 Introduction

Metabolic dysfunction-associated fatty liver disease (MAFLD) is characterized by the 
presence of fat in ≥5% hepatocytes, independent of excess alcohol consumption and other 
chronic liver diseases (1, 2). Previously referred to as non-alcoholic fatty liver disease 
(NAFLD), the term MAFLD was introduced to encompass the metabolic factors driving this 
disorder (3). Some experts alternatively refer to it as metabolic dysfunction-associated steatotic 
liver disease (MASLD) (4, 5). For consistency, this review refers to the condition as MAFLD.

MAFLD primarily arises from the accumulation of lipids in hepatic cells and presents as 
a spectrum of conditions ranging from simple steatosis to steatohepatitis. This disease can 
be classified into two subtypes: metabolic dysfunction-associated fatty liver (MAFL), marked 
by hepatic steatosis without significant liver injury; metabolic dysfunction-associated 
steatohepatitis (MASH), characterized by hepatocyte damage, inflammatory cell infiltration, 
and hepatic cell death (6). Although often clinically perceived benign, MAFLD can advance 
to severe liver fibrosis, ultimately resulting in cirrhosis or hepatocellular carcinoma (HCC). 
During this progression, lipid accumulation induces mitochondrial dysfunction and oxidative 
stress, leading to hepacyte damage (7, 8). From 2016 to 2019, the global prevalence of MAFLD 
rose from 25% to approximately 30%, with the mortality rate increasing from 0.77/1000 to 
1.65/1000 person-years, underscoring its significance as a leading cause of chronic liver 
disease-related morbidity and mortality worldwide (9). Moreover, MAFLD is strongly 
associated with metabolic syndrome, type 2 diabetes mellitus, atherosclerotic cardiovascular 
disease, and colorectal neoplasms (10, 11).

A central mechanism driving MAFLD progression is oxidative stress, which results from 
an imbalance between the production and elimination of reactive oxygen species (ROS) (12–
15). This imbalance leads to accumulations of ROS, directly injuring hepatocytes and 
producing toxic metabolites like malondialdehyde (1). Moreover, oxidative stress creates a 
feedback loop that exacerbates lipid accumulation and steatosis, further amplifying MAFLD 
progression (16). The severity of MAFLD correlates with oxidative stress levels and oxidative 
stress is a potential diagnostic marker for MAFLD (17).
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Extensive research has explored the mechanism of oxidative stress 
inducing MAFLD (18). Early work by Maurizio and Novo (19) 
identified the role of Nrf1 in linking oxidative stress to MAFLD by 
demonstrating that Nrf1-induced CYP4A upregulation increases ROS 
generation and inhibits antioxidant activity through suppression of 
ARE expression. Similarly, AHR has been implicated in MAFLD 
pathogenesis through its regulation of CYP1A1, influencing oxidative 
stress pathways (20). Recent studies have highlighted the role of 
genetic factors, such as SIRT5 rs12216101 T > G, in amplifying 
oxidative stress in MAFLD patients (21). Additionally, several 
miRNAs and ncRNAs have been recognized as crucial regulator of 
oxidative stress in MAFLD (22–24). Until now, Nrf2 emerges as a key 
molecule in modulating oxidative stress in MAFLD (25).

Dietary and lifestyle factors play a pivotal role in MAFLD 
progression (26–28). The oxidative balance score (OBS), which 
integrates pro- and antioxidant components from diet and lifestyle, 
has been shown to reflect the overall oxidative stress burden. Higher 
OBS was significantly associated with a lower risk of MAFLD (29). 
Real-world OBS analyses demonstrate that adopting a healthy diet and 
lifestyle, independently or in combination, can mitigate oxidative 
stress and significantly lower MAFLD onset and development (30). 
However, the precise role of diet in linking oxidative stress to MAFLD 
remains inadequately understood. We  reviewed studies on food-
derived antioxidants from the past decade, summarized representative 
research, and depicted a regulatory network targeting oxidative stress, 
centered on Nrf2 and mediated by endogenous molecules and 
signaling pathways. This review examined the impact of diet on 
oxidative stress, providing insights into potential preventive and 
therapeutic strategies for MAFLD.

2 Fruits, vegetables, grains, and herbs 
play a major role in alleviating 
oxidative stress

Many substances in fruits, vegetables, and grains can directly or 
indirectly inhibit MAFLD progression by suppressing oxidative stress. 
According to Li et al. (31), hesperetin, a flavonoid present in citrus 
fruits, boosted the antioxidant activity by triggering the PI3K/Akt 
pathway and reduced ROS overproduction by activating the Nrf2 
pathway during MAFLD progression. Fan et  al. reported that 
nobiletin, a polymethoxylated flavone primarily extracted from citrus 
peels, accelerated the dissociation of the Keap1-Nrf2 complex and 
promoted Nrf2 nuclear translocation, thereby alleviating MAFLD 
(32). In another study, total flavonoids extracted from Citrus 
changshan-huyou were reported to alleviate oxidative stress in MAFLD 
by upregulating miR-137-3p expression, which subsequently 
downregulated NOXA2/NOX2, reducing ROS generation (33). Found 
abundantly in apples, phloretin (a dihydrochalcone phenolic 
compound), alleviated oxidative stress by regulating the ERK/Nrf2 
pathway, which enhanced the antioxidant response (34, 35). Extracted 
from blueberries and grapes, pterostilbene was showed to alleviate 
oxidative stress and enhance fatty acid metabolism and decomposition 
via activation of the AMPK/mTOR pathway in hepatocytes (36). 
Euterpe oleracea Mart, popularly known as açai, is a palm tree fruit 
usually found in the Brazilian Amazonas and Pará states. The aqueous 
extract of açai (AAE) significantly prevented oxidative stress in 
patients with MAFLD (37).

Apigenin, a naturally occurring flavonoid in various fruits and leafy 
vegetables, activated the Nrf2 signaling pathway to reduce oxidative 
stress, thereby attenuating MAFLD (38). Liensinine is an isoquinoline 
alkaloid commonly found in Nelumbo nucifera Gaertn (lotus seeds) 
which is often consumed in Asia. Liensinine was shown to inhibit 
oxidative stress by upregulating Nrf2 and modulating the AMPK 
signaling pathway by TAK1 activation (39). Oligosaccharides, extracted 
from Porphyra yezoensis (a commonly consumed algea in East Asia), 
alleviated oxidative stress by downregulating the TGF-β signaling 
pathway, which is implicated in liver inflammation and fibrosis (40).

A major flavonoid found in buckwheat, rutin alleviated oxidative 
stress in diabetes-associated MAFLD through the AMPK signaling 
pathway, which plays a crucial role in energy homeostasis and stress 
response (41, 42). Betaine is commonly found not only in beets and 
whole grains but also in shrimps and shellfish. It could regulate lipid 
metabolism and mitochondrial function as well as inhibit oxidative 
stress, making it a promising candidate for MAFLD prevention and 
treatment (43).

Some traditional Chinese herbs may be used as condiments in 
food. Aescin, a bioactive compound derived from the ripe dried fruits 
of Aesculus chinensis Bunge, ameliorated oxidative stress, thus exerting 
a curative impact on MAFLD. The mechanism underlying aescin’s 
action was that it interacted with Keap1, leading to an enhanced 
translocation of Nrf2 into the nucleus (44). Alpinetin is a novel plant 
flavonoid isolated from Alpinia katsumadai Hayata, which inhibited 
oxidative stress by enhancing SOD1/HO-1/Nrf2 expression in MAFLD 
(45). Safranal is the active constituent of saffron (B.O.: Crocus sativus). 
Sabir et al. demonstrated that safranal treatment reduced the levels of 
oxidative stress indicators in MAFLD animal models (46). Rhamnetin 
extracted from Rhamnus davurica Pall exhibited antioxidative 
properties, which were effective against steatohepatitis and 
hepatocellular carcinoma (47).

3 Animal foods and supplements have 
inhibitory effects on oxidative stress

Astaxanthin presents in shrimp, crab, salmon, algae, and other 
marine organisms. As a carotenoid, astaxanthin works by neutralizing 
ROS and reducing oxidative stress (48). Wu et al. (49) found that 
astaxanthin attenuated mitochondrial dysfunction by upregulating 
FGF21/PGC-1α, thus alleviating oxidative stress in MAFLD (50). 
Moreover, astaxanthin has been proved to more advantageous than 
vitamin E in reversing steatohepatitis (51). Omega-3 fatty acids exist 
in several forms and are abundantly present in oily fish (26). According 
to a systematic review, omega-3 polyunsaturated fatty acids were 
effective in counteracting oxidative stress in early-stage MAFLD (52).

López-Oliva et al. (53) showed that α-lactalbumin, found in dairy 
products, induced oxidative stress by upregulating XRαβ/SREBP-1-
c/PPARγ expression and diminishing PPARα/CPT-1 expression and 
AMPKα phosphorylation. However, Chen et al. (54) reported that the 
α-lactalbumin peptide Asp-Gln-Trp (DQW) might serve as an 
effective dietary supplement for alleviating MAFLD by reducing 
oxidative stress (53). Additionally, the α-lactalbumin peptide Gly-Ile-
Asn-Tyr (GINY) alleviated oxidative stress in MAFLD progression 
(55). As bacteriological studies have advanced, probiotics have been 
found to inhibit oxidative stress in MAFLD (56). Lactobacillus 
rhamnosus GG, a probiotic frequently found in dairy products such as 
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cheese, inhibited oxidative stress by activating the Nrf2 pathway in 
MAFLD (57–59).

In addition to omega-3, oleoylethanolamide supplements exhibited 
an excellent ability to inhibit oxidative stress in MAFLD progression 
(60). Giudetti et al. (61) reported that oleoylethanolamide regulated 
Nrf1 and Nrf2 differently, which increased Nrf1 levels but decreased 
Nrf2 levels. Reda et  al. (62) elaborated that vitamin D3 inhibited 
oxidative stress in MAFLD by reducing SREBP-1-c expression and 
increasing PPARα expression to activate the NF-κB signaling pathway.

4 Beverages and snacks are also 
sources of antioxidants

Green tea is a popular traditional Chinese drink, which rich in 
catechins, particularly epigallocatechin gallate (EGCG). EGCG has 
been shown to reduce oxidative stress-induced progression of MAFLD 
by regulating the Nrf2, AMPK, SIRT1, NF-κB, TLR4/MYD88, 
TGF-β/SMAD, and PI3K/Akt/FoxO1 signaling pathways (63). Zhou 
et al. (64) demonstrated that some bioactive flavor compounds present 
in alcoholic beverages, such as xanthohumol, resveratrol, quercetin, 
anthocyanins, tetramethylpyrazine, and terpenes, could alleviate 
oxidative stress. “Baijiu,” the most common spirit in China, is more 
beneficial than beer and wine in alleviating MAFLD. Since alcohol is 
a recognized Group 1 carcinogen, we do not recommend consuming 
alcoholic beverages, especially spirits.

Moreover, Loffredo et al. (65) observed that coca polyphenols 
suppressed oxidative stress by downregulating NOX2 expression, 
suggesting that dark chocolate produces antioxidant effects in patients 
with steatohepatitis. Carminic acid is frequently used as a colorant in 
beverages and snacks, which could mitigate oxidative stress by 
blocking the TNF-α pathway and activating the Nrf2 pathway (66).

5 Metal elements bidirectionally 
regulates oxidative stress

The intake of different metal elements has varying effects on 
oxidative stress-induced MAFLD progression. On analyzing numerous 
studies in vivo, Xu et al. (67) discovered that selenium reduced steatosis 
and fibrosis in MAFLD by alleviating oxidative stress. Zhong et al. (68) 
reported that excessive copper accumulation induced oxidative stress 
and lipogenesis, while inhibiting lipolysis. They also elucidated that 
copper-induced oxidative stress promoted Nrf2 recruitment to the 
PPARγ promoter and improved lipogenesis, providing evidence for 
Nrf2 as a potential therapeutic target for MAFLD (68). Iron overload 
also induced oxidative stress, thereby damaging hepatocytes. 
Caveolin-1 overexpression augmented the iron storage capacity of 
hepatocytes by activating the ferritin light chain/ferritin heavy chain 
pathway in MAFLD and subsequently alleviating excess ferrous 
ion-induced oxidative stress in the liver (69, 70). Silver nanoparticles 
significantly elevated oxidative stress levels in mice with MAFLD (71).

6 Discussion

This review highlights studies on food-derived antioxidants and 
the role of diet in the oxidative stress pathway that contributes 

MAFLD, with the aim of clarifying the regulatory network involved 
(Table 1 and Figure 1). Based on the findings, we proposed that a 
healthy diet can alleviate MAFLD by reducing oxidative stress.

This review primarily includes in vitro and in vivo studies, along 
with a small number of randomized controlled trials (RCTs). In the 
in vitro studies included in this review, the cell lines used include 
human normal liver cell lines (L02, HL-7702), human HCC cell lines 
(HepG2, Huh-7), mouse normal liver cell line (AML-12), and mouse 
HCC cell line (Hepa1-6). Included in in vivo experiments primarily 
used mice and rats as animal models, with oral gavage being the most 
common administration method, although some studies also 
employed intraperitoneal injection. The dosage, exposure methods, 
and exposure duration are presented in Table 1.

Non-enzymatic antioxidants, predominantly found in plant-based 
foods, are key contributors to oxidative stress mitigation (1). Citrus 
fruits, for instance, are particularly effective in preventing and 
managing MAFLD due to their high flavonoids content. Similarly, 
common fruits like apples, grapes, and, blueberries play a vital role in 
reducing oxidative stress. Rare fruits, such as açai, are recommended 
in regions with a high prevalence of MAFLD, given their potent 
antioxidant properties.

Vegetables, including certain varieties unique in Asia, also 
demonstrate benefits for MAFLD management, suggesting the value 
of sharing dietary practices across regions. For example, the 
Mediterranean diet comprises nutrients and compounds with 
antioxidant properties, such as polyphenols, carotenoids, fiber, 
polyunsaturated fatty acids, low-refined foods, and low-sugar foods. 
In addition, herbal medicine has been identified as a promising 
therapeutic option for addressing oxidative stress in MAFLD (72–74).

While animal-based foods also contain non-enzymatic 
antioxidants, excessive consumption, particularly of meat, increases 
the risk of MAFLD (75). Alternatively, antioxidants derived from 
animal resources can be provided as supplements. Although certain 
alcoholic beverages may possess antioxidant properties, their 
consumption is not recommended for patients with MAFLD due to 
the potential for liver damage. Selenium, an essential trace element, 
can be obtained either from selenium-rich foods, such as nuts and 
game meat, or from carefully selected supplements (76). However, it 
is critical to avoid excessive intake of mental elements, which may 
exacerbate MAFLD. Additionally, food contamination remains a 
significant factor that can amplify the adverse effects of oxidative stress 
on MAFLD (77).

It is evident that Nrf2 plays a central role in combating oxidative 
stress in MAFLD. Majority of food-derived antioxidants (e.g., aescin, 
nobiletin, pterostilbene, hesperetin, and EGCE) can upregulate or 
activate Nrf2 directly or indirectly. Nrf2 can inhibit oxidative stress by 
activating multiple regulatory axes and signaling pathways (e.g., 
MAPK and NF-κB). Therefore, centered on Nrf2, food-derived 
antioxidants and endogenous molecules form a regulatory network 
for oxidative stress.

Some of the studies included in this review were conducted in the 
context of a high-fat diet. Notably, AAE exhibits superior antioxidant 
capacity in the context of a high-fat diet, suggesting a potential 
interaction between food-derived antioxidants and dietary 
composition. This highlights the need for synchronizing antioxidant 
intake with dietary adjustments. Furthermore, the relationship among 
diet, oxidative stress, and MAFLD should be explored within a holistic 
and dynamic framework.
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TABLE 1 Food-derived antioxidants, models, exposure and related endogenous molecules.

Antioxidant Sources Models (treatment) Related mol. Ref.

Hesperetin Citrus fruit HepG2 cell line (2.5, 5, or 

10 μM for 24 h)

Rats (100 or 300 mg/kg/d for 

16w)

Nrf2, PI3K, Akt, Keap1 (31)

Nobiletin Citrus peel L02 and HepG2 cell lines (5, 10, 

or 25 μM for 24 h)

mice (200 or 500 mg/kg/d for 

4w)

Nrf2, Keap1 (32)

PTFC Citrus changshan-huyou AML-12 cell line (5, 10, or 

20 μM for 24 h)

mice (25 or 50 mg/kg/d for 

12w)

miR-137-3p, NOXA2, NOX2 (33)

Phloretin Apple fruit Huh-7 cell line (50, 100, or 

150 μM for 24 h)

Mice (50, 100, or 200 mg/kg/d 

for 16w)

rats (30 mg/kg/d for 5d)

Nrf2, ERK, HO-1, GCL, GSH (34, 35)

Pterostilbene Blueberry, grape HepG2 cell line (12.5, 25, 50, 

100, or 200 μM for 1 h)

Mice (30, 45 or 60 mg/kg for 

24 h)

Nrf2, HO-1, PPAR-α, AMPKs (36)

AAE Euterpe oleracea Mart HepG2 cell line (12.5, 25, 50, 

100, 200, or 400 μM)

Mice (3 g/kg/d for 12w)

- (37)

Apigenin Fruits and leafy vegetables Hepa1-6 cell line (0.2–64 μM 

for 24 h)

Mice (30 mg/kg/d for 3w)

Nrf2 (38)

Liensinine Nelumbo nucifera Gaertn L02 and AML-12 cell lines 

(1.25, 2.5, 5, 10, 20, 30, 40, 50, 

or 60 μM for 96 h)

Mice (15, 30, or 60 mg/kg/d for 

16w)

TAK1, AMPKs (39)

PYOs Porphyra yezoensis Mice (100 or 225 mg/kg/d for 

6w)

AMPKs (40)

rutin Buckwheat Mice (100 or 200 mg/kg/d for 

8w)

AMPKs (41)

betaine Beet, whole grain, shrimp, 

shellfish

– – (43)

Aescin Aesculus chinensis Bunge HepG2 cell line (2 μM for 24 h)

Mice (free access to food)

Nrf2 (44)

Alpinetin Alpinia katsumadai Hayata HL-7702 cell lines (20, 40, or 

80 μM for 24 h)

Mice (12.5, 25 or 50 mg/kg/d 

for 16w)

Nrf2, SOD1, HO-1 (45)

Safranal Saffron Rats (250 or 500 mg/kg/d for 

4w)

– (46)

Rhamnetin Rhamnus davurica Pall HepG2 cell line (100, 500, 600, 

or 1,000 μM for 24 h)

– (47)

(Continued)
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TABLE 1 (Continued)

Antioxidant Sources Models (treatment) Related mol. Ref.

Astaxanthin Shrimp, crab, salmon, algea L02 cell line (30, 60, or 90 μM 

for 24 h)

Mice (10, 30 or 60 mg/kg/2d for 

10w)

Mice (0.02% of food for 10w)

FGF21, PGC-1α (49, 51)

Οmega-3 Oily fish – – (60)

DQW Dairy products HepG2 cell line (150 mg/mL for 

24 h)

Mice (30 or 60 mg/kg/d for 

12w)

Nrf2, PPARα, HO-1 (54, 55)

GINY Dairy products HepG2 cell line (250 mg/mL for 

24 h)

PPARα (55)

Oleoylethanolamide Supplement Huh-7 cell line (10 μM for 24 h)

Rats (10 mg/kg/d for 2w)

Nrf2 (60, 61)

Vitamin D3 Supplement Rats (1,000 IU/kg 3d/w for 

10w)

SREBP-1-c, PPARα (62)

EGCG Green tea – Nrf2, AMPKs, SIRT1 (63)

Cocoa polyphenols Dark chocolate – NOX2 (65)

Selenium Nuts, game meat – – (67)

FIGURE 1

Regulatory network of food-derived antioxidants in oxidative stress in hepatocytes.

https://doi.org/10.3389/fnut.2025.1539578
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Hu et al. 10.3389/fnut.2025.1539578

Frontiers in Nutrition 06 frontiersin.org

This study has limitations, as it primarily focuses on in vitro and 
in vivo research, with limited inclusion of RCTs the test these theories 
in the real world. Moreover, lifestyle modifications, such as physical 
exercise, play a crucial role in regulating oxidative stress in MAFLD 
(78, 79). Future research should explore the synergistic effects of diet 
and lifestyle interventions on oxidative stress, along with the 
underlying mechanisms. Additionally, more RCTs are needed to 
validate these findings and provide stronger evidence for 
clinical application.
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