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Background: Latinos, the largest racial/ethnic minority group in the United States, 
have high rates of cardiometabolic diseases, hypothesized due in part to genetic 
variation in the fatty acid desaturase (FADS) cluster that is associated with 
reduced omega-3 (n-3) highly unsaturated fatty acid (HUFA) biosynthesis. This 
study examined how variations in FADS and other HUFA pathway-related genes 
(ELOVL5 and ELOVL2) impact cardiometabolic disease risk factors in Latinos of 
Mexican Ancestry (LMA).

Results: This study analyzed 493 self-identified LMA from the Arizona Insulin 
Resistance registry (AIR) and found a marked enrichment in FADS alleles linked 
the ancestral haplotype (AH) compared to European Americans. LMA individuals 
with two AH alleles produced markedly lower levels of n-6 and n-3 HUFAs. 
However, this was more pronounced with the n-3 HUFAs, eicosapentaenoic acid 
(EPA) and docosahexaenoic acid (DHA), where the n-6 arachidonic acid (ARA) 
to EPA and DHA ratios were 30:1 and 5:1, respectively, and circulating EPA levels 
were reduced to <5 ng/mL. Importantly, genetic variations in both FADS and 
ELOVL2/5 regions also were strongly associated with several cardiometabolic 
disease (CMD) markers, with the presence of two FADS AH alleles corresponding 
to a 45, 33, and 41% increase in fasting insulin, triglyceride levels and HOMA-IR, 
respectively.

Conclusion: This study reveals the potential impact of genetically influenced 
HUFA regulation and n-3 HUFA deficiency on cardiometabolic disease risk within 
LMA. These insights provide a strong rationale for future studies and clinical 
trials that focus on n-3 HUFA supplementation to mitigate CMD disparities in 
LMA populations.
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1 Introduction

The nutritional content of food in developed nations has changed 
dramatically over the past 75 years (1), mirroring the rise in 
non-communicable diseases, which account for approximately 75% of 
deaths in developed countries (2–4). Cardiometabolic diseases (CMD) 
remain the leading cause of death globally, with disparities particularly 
evident among various racial/ethnic minority groups in the 
United  States (USA). Latino populations, especially Mexican 
Americans (MxAm), have higher rates of obesity, diabetes, 
hyperlipidemia, and cardiovascular diseases compared Non-Hispanic 
White (5–7) populations.

It is now estimated that over 70% of daily energy consumed in a 
modern Western diet (MWD) is from sources that were absent from our 
ancestors’ hunter-gatherer diet (8). A notable example of this shift is the 
change in dietary polyunsaturated fatty acids (PUFA) consumption, 
which can be traced back to recommendations from health agencies to 

reduce saturated fat intake in favor of PUFAs, predominantly derived 
from vegetable oils such as soybean, corn, and canola (9, 10). These 
recommendations led to a ~ 4-fold increase in the dietary consumption 
of the omega-6 (n-6) PUFA linoleic acid (LA) without significantly 
altering the consumption of dietary omega-3 (n-3) PUFAs, thereby 
altering the ratio of dietary n-6 to n-3 PUFAs to greater than 10:1 (1).

The dietary n-6 and n-3, 18-carbon PUFAs LA and alpha-linolenic 
acid [ALA, omega-3 (n-3)] are converted by the liver and other tissues 
to long-chain (>20 carbon), highly unsaturated fatty acids (HUFAs) 
utilizing a sequential set of desaturases and elongases (11, 12). Figure 1 
highlights genes and enzymes key to HUFA biosynthesis and 
metabolism. In two parallel and competing pathways, 18-carbon n-6 
or n-3 PUFAs are converted into HUFAs. In the n-6 arm of the 
pathway (left), ARA is synthesized from LA, utilizing 2 desaturation 
and 1 elongation enzymatic steps (13, 14). In the n-3 arm of the 
pathway (right), EPA and DHA are synthesized from dietary 
ALA. This second desaturation step (Δ-5 desaturase or FADS1) is 

FIGURE 1

n-6 and n-3 HUFA biosynthetic pathway. FADS1/2, fatty acid desaturase 1 or 2; ELOVL2/5, fatty acid elongase 2 or 5; ALA, alpha-linolenic acid; SDA, 
stearidonic acid; EtSA, eicosatetranenoic acid; EPA, eicosapentaenoic acid; DPA, docosapentaenoic acid; DHA, docosahexaenoic acid; LA, linoleic acid; 
GLA, gamma-linolenic acid; DGLA, dihomogammalinoleic acid; ARA, arachidonic acid; ADA, adrenic acid; PL, phospholipid; FFA, free fatty acid; HETrE, 
hydroxyeicosatrienoic acid; PG, prostaglandin; PGE1, prostaglandin E1; TX, thromboxane; LT, leukotriene; EET, epoxyeicosatetraenoic acid; DiHETE, 
dihydroxyeicosatetraenoic acid; HETE, hydroxyeicosatetraenoic acid; HEPE, hydroxyeicosapentaenoic acid; Co-A, Coenzyme A.
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rate-limiting, and genetic variation throughout the FADS gene cluster 
impacts the pathway efficiency via altered FADS1 transcription 
(15–17).

Once ARA is formed and placed into membrane phospholipids, 
it can be  mobilized (by phospholipases) and metabolized [by 
cyclooxygenase (COX), lipoxygenase (LOX) and P450 pathways] into 
oxylipins including eicosanoids such as prostaglandins, thromboxanes 
and leukotrienes (Figure 1) (18–20). These then act locally to promote 
inflammation and thrombosis in CVD and other diseases (20). By 
contrast, DGLA, the n-6 HUFA proximal to FADS1, is metabolized by 
COX 1/2 to 1-series PGs, particularly PGE1, and by 15-LOX to 
15-HETrE (21). These two metabolites of DGLA suppress 
inflammation, promote vasodilation, lower blood pressure, inhibit 
smooth muscle cell proliferation, and exert anti-neoplastic activities 
(22–25). Similarly, EPA and DHA are metabolized to anti-
inflammatory, anti-thrombotic and “pro-resolving” oxylipins 
including resolvins, protectins, and maresins (19, 26, 27). With few 
exceptions, DGLA, EPA, DHA and their oxylipin products exert 
effects that differ from or oppose ARA-derived oxylipins (Figure 1) 
regarding inflammation, hyperlipidaemia and disease modification. 
Consequently, DGLA conversion to ARA and the balance of ARA to 
DGLA, EPA and DHA have the potential to influence the prevalence 
and severity of numerous human diseases.

Numerous studies have established a connection between genetic 
variations in the FADS cluster and the efficiency of the HUFA 
biosynthetic pathway, and thus HUFA levels (28, 29). Early research 
indicated that high levels of ARA, as well as the ARA/LA ratio, are 
independent predictors for coronary artery disease (30). Furthermore, 
the role of FADS variants in complex lipid and inflammatory 
phenotypes has been extensively documented (31). Notably, the FADS 
gene region is recognized as the locus associated with the largest 
multimorbidity cluster in the entire human genome (32).

Moreover, research from various laboratories has revealed 
significant ancestry-based discrepancies in the frequency of FADS 
variants affecting HUFAs and their corresponding oxylipin 
metabolites, such as eicosanoids (33–36). Evolutionary pressures have 
shaped the allele frequencies of FADS variants across different 
populations, reflecting adaptations to diverse diets and environments. 
For example, the “derived” FADS haplotype experienced ancient 
positive selection in Africa, leading to its high frequency in 
present-day African populations (37, 38). For example, ∼80% of 
African Americans (AfAm), as compared to ∼45% of European 
Americans (EuAm), carry two copies of derived alleles associated with 
increased FADS1 activity, resulting in a marked increase in HUFAs, 
especially ARA and ARA-derived metabolites (34, 35). The 
introduction of agriculture is also thought to have influenced FADS 
allele frequencies. However, strong selection on the derived allele in 
European populations occurred much later than the Neolithic 
transition, possibly as late as the Bronze Age (39). The findings of 
Fumagalli et al. (40) on genetic adaptations in the Greenlandic Inuit 
population provided an important rationale as to why a high 
proportion of Indigenous American ancestry populations carry two 
copies of “ancestral” alleles associated with reduced FADS1 activity, 
resulting in a reduction in HUFAs, especially EPA production (36, 37, 
41, 42). Their research demonstrated that the FADS gene cluster shows 
the strongest signal of genetic adaptation, reflecting evolutionary 
responses to a traditional marine-based diet and extreme Arctic 
conditions (40). Specifically, the ancestral FADS alleles were positively 

selected in the Inuit and remain prevalent among populations with 
high proportions of Indigenous American ancestry such as MxAm.

An unresolved question is if the variation in FADS in Hispanic 
populations that induces very low levels of n-3 HUFAs and imbalances 
in n-6 to n-3 HUFA ratios influences the risk of cardiometabolic 
diseases often observed in these populations. To address this 
important question, we investigated the relationship between variation 
the in genes (FADS1,2,3 and ELOVL2,5) that code for HUFA 
biosynthetic enzymes on a robust set of cardiometabolic markers and 
traits in adult Latino participants from the Arizona Insulin Resistance 
registry (AIR) (43).

2 Methods

2.1 Participants

The Arizona Insulin Resistance registry (AIR) cohort comprises 
667 self-reported Latinos of Mexican Ancestry (LMA) residing in 
Arizona, ranging in age from 8 to 83 years. A detailed description of 
these participants can be found in a prior publication by Shaibi et al. 
(44). In the subset of n = 497 adult participants, 35% were male, the 
mean age was 36.4 and the mean BMI was 29.8. No socioeconomic 
status or lifestyle factors were available for reporting. Of these, 353 
participants were spread across 92 families, while the remainder were 
single, unrelated individuals. The distribution of relative pairs within 
the entire cohort is documented by DeMenna et al. (43). In the current 
study, we  focused solely on adult participants aged 18 and above 
(n = 497). In this subset, 81% were overweight or obese, and 45% had 
hyperglycemia (44). Comprehensive data, including metabolic, 
anthropometric, demographic, and medical history, were collected for 
all participants (44).

2.2 Genotyping FADS, ELOVL2, and ELOVL5 
SNPs

A total of 493 participants were successfully genotyped for 20 
SNPs (three ELOVL5, six ELOVL2, and eleven FADS1/2/3) using the 
Agena Bioscience® MALDI-TOF™ instrument. The 20 SNPs were 
chosen based on previous literature that revealed significant 
associations between various SNPs and HUFA levels (17, 35, 39, 40, 
45–50), given that the SNPs could be successfully multiplexed. Primers 
for multiplex PCR and extension PCR were designed with Agena’s 
Online Assay Design Suite (v2.0). The assays were validated against 
the human genome database GRCH37/hg19 (dbSNP138). Oligos were 
synthesized by Integrated DNA Technologies (Coralville, Iowa), and 
hydrated to stock concentrations (250 μM for PCR primers and 500 
μM for extension primers).

All reagents used were part of the iPlex Gold Genotyping kit 
(Agena Biosciences, San Diego, CA), and used according to their 
recommended protocols. High-quality genomic DNA was 
obtained from whole blood using the PAXgene Blood DNA 
procedure per the manufacturer’s instructions (Qiagen, CA, 
United States) (43). Samples were plated at 20 ng per well on a 
96-well plate. A 5 μL multiplex polymerase chain reaction (PCR) 
was performed on each sample. Following PCR, extra nucleotides 
were neutralized with a shrimp alkaline phosphatase (SAP) 
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reaction. A third reaction utilized iPLEX Gold chemistry, 
terminator nucleotides and a probe (extension primer) that 
anneals directly adjacent to the SNP site, to carry out single-base 
extension onto the SNP site. The reactions were cleaned using a 
salt-sequestering resin, and a small volume (nanoliters) of each 
was spotted onto the matrix of a specialized silicon chip. This chip 
was then analyzed using Agena’s Matrix Assisted Laser 
Desorption/Ionization  – Time of Flight (MALDI-TOF) mass-
spectrometry instrument and MassARRAY Typer software 
v4.1.83. Samples were genotyped using a 20-SNP custom array 
designed for the Agena MassARRAY MALDI-TOF instrument. 
The work was performed by the University of Arizona 
Genetics Core.

2.3 Description of clinical indices

Collection of samples and clinical phenotypes are described in 
more detail in previous publications (43, 44). Briefly, blood samples 
were collected after a 12-h fast to assess biomarkers including glucose, 
insulin, triglycerides, total cholesterol, high-density lipoprotein 
cholesterol, low-density lipoprotein cholesterol, and very-low-density 
lipoprotein cholesterol. Participants also underwent a 2-h oral glucose 
tolerance test. Diabetes and metabolic phenotypes, including indices 
of insulin action and secretion, were also collected. The following 
clinical indices were evaluated: body mass index (kg/m2), fat mass (%), 
waist circumference (cm), hip circumference (cm), systolic blood 
pressure (mmHg), diastolic blood pressure (mmHg), fasting plasma 
insulin (μIU/mL), fasting plasma glucose (mg/dL), hemoglobin A1c 
(%), 2 h oral glucose tolerance test (mg/dL), homeostasis model 
assessment for insulin resistance (HOMA-IR), Matsuda index, 
disposition index, prediabetes status, diabetes status, alanine 
aminotransferase (IU/L), aspartate aminotransferase (IU/L), and 
adiponectin (μg/mL). Participants were excluded from the study if 
they had any of the following: overt diabetes, untreated metabolic 
disease, HIV/AIDS, active cancer (or in remission for less than 
3 years), acute illness, or currently pregnant.

2.4 Fatty acid analysis

Serum samples were collected from participants and stored at 
−80°C until the fatty acid (FA) analyses. Fatty acid methyl esters 
(FAMEs) were prepared (51) after alkaline hydrolysis of complex 
lipids in duplicate samples (100 μL) in the presence of the C:17 
internal standard triheptadecanoin (Nuchek Prep). This standard was 
included for FA quantification, as previously described (52, 53). A 
standard panel of 37 FAs (Supelco, which accounts for 99% of FAs in 
the sample) was quantified by gas chromatography with flame 
ionization detection (GC-FID) using an Agilent 9000 Intuvo gas 
chromatographer with a DB-FastFAME column (20 m, 0.18 mm ID, 
0.2 μm film) for a split injection with a split ratio of 15:1. The 
instrument response factor was calculated based on external standard 
sets for quality assurance purposes, and a mixture of known FAMEs 
was run with each sample set to monitor instrument performance 
(54). Individual FAs were expressed as ng/ml and were calculated 
using the internal standard response factor and by taking the average 
of duplicate samples.

2.5 Genetic and statistical analysis

All analyses were conducted using R Studio, version 4.2.0 or later. 
We  examined associations between SNPs in FADS, ELOVL2, and 
ELOVL5 with fatty acids (FAs) and other clinical indices using 
regression analyses. The major alleles found in the sampled population 
were chosen as the alleles whose effect was to be tested, regardless of 
their presence or absence in the human genome reference. Genotypes 
were coded based on the number of major alleles (0, 1, or 2 copies). 
For FADS SNPs, most major alleles were ancestral (i.e., the same as the 
most recent common ancestors of humans). The only exception was 
rs174538. After analyzing the 1,000 Genomes haplotype structure, it 
was found that the derived allele of rs174538 consistently aligns with 
the ancestral background. Consequently, the coding for this SNP was 
inverted for our analysis to again count the number of major alleles.

Linear mixed models (55) (using the lmekin package in R) with 
genotype coded both additively and as a factor model were performed, 
accounting for relatedness between individuals using self-reported 
pedigree information. All regression analyses included covariate 
adjustments for age, sex, type 2 diabetes status and body mass index 
(BMI). Models were also assessed after removal of BMI. Outcome 
variables were transformed to approximate normality using 
logarithmic transformations. Variables were checked for outlier data 
points > 3 standard deviations from the mean, but ultimately nothing 
was removed from the data set. Missing values were handled using 
listwise deletion. Summary statistic tables for all permutations of 
regression analysis are included in Supplementary File 1, and list 
β-values (estimate, or effect size per increasing number of major 
alleles), and p-values (significance). Due to logarithmic 
transformations, estimates required transformation in order to 
be expressed as percentages (56). Forest Plots were generated using a 
mixed regression model with 95% confidence intervals and are based 
on the standard p-value threshold. The false discovery rate (FDR) was 
controlled using the Benjamini-Hochberg procedure (57), and was 
performed two ways. The first set was computed from the list of all 
p-values within each individual SNP, where a threshold of 0.1 was used 
to examine significant associations [referred to as “pval (fdr)” in raw 
datasheets]. A second global FDR (q-values, referred to as “global_fdr” 
in raw datasheets) was computed using a p-value from all tests 
performed for this analysis with a 0.2 threshold for a cutoff. To account 
for multiple hypothesis testing and minimize false positives, 
we applied a false discovery rate (FDR) threshold to balance discovery 
and reproducibility. An FDR cutoff of 0.2, a widely used standard in 
genomics research (57), was initially applied to identify significant 
associations. To further assess the robustness of our findings, we also 
applied a more stringent FDR threshold of 0.1, which reduces the 
number of significant results by increasing conservatism. By 
comparing results at both thresholds, we identified the most robust 
associations that remained significant under the stricter criterion.

3 Results

3.1 Allele frequencies of SNPs in FADS and 
ELOVL2/5 in different populations

Before examining allele frequencies in our study, it is important 
to point out that allele frequencies can vary significantly across 
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different ethnic groups. An allele that is the major allele in one 
population may be  the minor allele in another population. In the 
current study, the major alleles in Indigenous American ancestry 
populations (1000 Genomes MxAm and AIR) are markedly different 
than in AfAm and EuAm populations. As the focus of this manuscript 
is Indigenous American ancestry populations, the major alleles in 
these populations will be  designated as the alleles of interest for 
all populations.

As discussed above and detailed in Table 1, the allele frequencies 
of SNPs in FADS and ELOVL2/5 varied among different populations 
of different ancestries. For the FADS SNPs, the allele frequencies 
(based on 1,000 Genomes samples) of the alleles of interest range from 
0.19 to 0.39 in EuAm populations. In AfAm populations, they range 
from 0.11 to 0.89, with notably smaller linkage disequilibrium (LD) 
blocks in the FADS cluster of this group, resulting in rs174594, 
rs174602, and rs174455 not in strong LD with other FADS SNPs 
within this population. In contrast, in 1000 Genomes MxAm 
populations, the frequencies were higher and ranged from 0.61 to 
0.73, while in AIR, they ranged from 0.54 to 0.70.

We also observed significant variations in genotypic 
frequencies across populations. As illustrated in 
Supplementary Figure 2, the TT genotype at rs174537 occurs in 
less than 1% of AfAm populations, 15% of EuAm, 48% of MxAm, 
and 41% of AIR participants. In contrast, the GG genotype was 
found in 79% AfAm, 42% EuAm, 9% MxAm and 18% 
AIR populations.

For the three ELOVL5 SNPs examined, the allele frequencies in 
MxAm and AIR were similar to those in EuAm, ranging between 0.71 
and 0.82. In contrast, in AfAm populations, they ranged from 0.35 to 
0.44. Among the six ELOVL2 SNPs, EuAm populations exhibited a 
frequency range from 0.44 to 0.75. AfAm populations had a broader 
range from 0.32 to 0.91. In MxAm and AIR populations, the 
frequencies lie from 0.64 to 0.81 and 0.61 to 0.75, respectively.

3.2 Impact of FADS and ELOVL2/5 SNPs on 
n-6 and n-3 HUFA biosynthesis in AIR 
participants

Figures 2A–D display Forest Plots illustrating the associations 
between FADS and ELOVL2/5 SNP alleles and circulating n-6 and n-3 
HUFA levels in the AIR cohort. All FADS alleles showed significant 
associations with the n-6 HUFAs, ARA and DGLA. For ARA levels, 
there was a significant decrease ranging from 8.0 to 20.4% per FADS 
major allele (the allele most common in the AIR cohort). In contrast, 
these same FADS alleles were associated with increases in DGLA 
levels, ranging from 9.5 to 14.3% per major allele (PMA). All but two 
FADS SNPs were associated with EPA levels, where each major allele 
decreased EPA levels between 11.2 and 24.7%. Similarly, all but three 
FADS SNPs were associated with DHA levels, with decreases ranging 
from 6.0 to 9.3% per allele. In contrast to FADS SNPs, only two 
ELOVL2/5 SNPs had allelic associations with ARA, where each allele 
decreased levels by ~6% PMA. No ELOVL2/5 alleles impacted DGLA, 
EPA, or DHA levels.

Figures 3A–D display boxplots of HUFA levels as a function of 
rs174537 genotypes. Rs174537 was chosen as a representative FADS 
SNP based on its strong associations with ARA levels in previous 
GWAS studies, its wide use in association studies, and the fact that it 
sits in LD with two proposed FADS1 functional SNPs (58, 59). Table 2 
illustrates HUFA ratios, estimates (β) and significance values when 
comparing TT and GG genotypes at rs174537. Figures 2, 3 and Table 2 
demonstrate a 33% reduction in ARA concentrations when comparing 
the GG to TT genotypes. This trend was reversed for DGLA, the 
HUFA proximal to the FADS1 enzymatic step, with a 32% increase in 
the TT compared to the GG genotype. EPA and DHA concentrations 
were decreased by 38 and 15% when comparing GG to TT genotypes, 
respectively.

Determining HUFA ratios throughout the biosynthesis pathway, 
and particularly those flanking the FADS1 biosynthetic step, has been 
utilized to assess the metabolic flux through the pathway (15, 16, 46). 
The opposing effects of n-6/n-3 HUFA on inflammatory modulation 
and their associated circulating levels also illustrate the balance 
between anti-inflammatory and pro-resolving substrates. Table  2 
shows there is a 30–40% decrease in levels of both ARA and EPA 
individually, in individuals with the TT genotype at rs174537 
(homozygous for the AIR major allele) as opposed to the GG genotype 
(minor in AIR but common in other populations). This is notable as 

TABLE 1 Allele frequencies for FADS and ELOVL SNPs examined in this 
study.

Population allele frequencies

SNP Tested 
allele 

(major 
in AIR)

EuAm 
(CEU)

AfAm 
(ASW)

MxAm 
(MXL)

AIR

FADS rs174537 T 0.36 0.11 0.70 0.62

rs174538 A 0.34 0.11 0.68 0.60

rs174546 T 0.36 0.11 0.69 0.62

rs174547 C 0.36 0.12 0.69 0.61

rs174548 G 0.30 0.22 0.69 0.62

rs174554 G 0.36 0.11 0.69 0.62

rs1535 G 0.36 0.16 0.70 0.62

rs174576 A 0.36 0.31 0.71 0.65

rs174594 C 0.38 0.85 0.73 0.69

rs174602 C 0.19 0.71 0.61 0.54

rs174455 G 0.35 0.88 0.71 0.66

ELOVL5 rs7744440 T 0.74 0.35 0.77 0.71

rs9357760 A 0.79 0.44 0.85 0.82

rs2397142 C 0.79 0.44 0.85 0.82

ELOVL2 rs3734398 C 0.44 0.32 0.71 0.68

rs2281591 A 0.76 0.53 0.80 0.74

rs3798713 C 0.44 0.34 0.64 0.61

rs953413 A 0.46 0.66 0.74 0.71

rs1570069 G 0.46 0.63 0.73 0.66

rs3798719 C 0.75 0.91 0.81 0.75

Allele frequencies were determined from 1000 Genomes populations including CEU (Utah 
residents with European ancestry) for EuAm, ASW (African ancestry in Southwest USA) for 
AfAm, and MXL (Mexican ancestry from Los Angeles, CA) for MxAm. AIR allele 
frequencies were calculated using data from this study. Except for rs174594, rs174602, and 
rs174455 in AfAm (due to smaller LD blocks in AfAm), the FADS SNPs were in high LD in 
these populations.
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these HUFAs sit at the same point (distal to the FADS1 biochemical 
step) in the n-6 and n-3 HUFA biosynthetic pathways.

Table 2 also reveals ARA/DGLA ratios are 3.1 and 6.1 for the TT 
and GG genotypes, respectively (p = 1.6 × 10−76, β = −2.99), suggesting 
that the metabolic flux through the FADS1 portion of the pathway 
(Figure 1) is markedly decreased in individuals with the TT genotype. 
When comparing the ratios of the n-6 HUFA, ARA, to n-3 HUFAs, 
ARA/EPA ratios are not statistically different when comparing the TT 
and GG genotypes (p = 0.9, β = −0.63). In contrast, ARA/DHA ratios 
are statistically lower for the TT genotype (4.98 and 6.4 in the TT and 
GG genotypes, respectively, p = 8.3×10−12, β = −1.31). Within the n-3 
HUFA biosynthetic pathway, DHA/EPA ratios were not significantly 
different when comparing TT and GG genotypes.

Supplementary Figure 3 illustrates allelic effects on HUFA ratios 
among all assayed SNPs. FADS major alleles (AIR population) were 
associated with decreased ratios of ARA/DGLA and ARA/DHA, 

where each major allele reduced the ARA/DGLA ratio by 0.75–1.5 
and the ARA/DHA ratio by 0.4–0.75. FADS alleles at rs174548 and 
rs1535 also increase DHA/EPA by ~1.1. Notably, several ELOVL2/5 
alleles also impacted HUFA ratios. For example, ARA/EPA decreased 
by 5.7–6.4 PMA at rs3734398 and rs953413, and for ARA/DHA, 
rs7744440, rs2281591 and rs3798719 show a ratio decrease ranging 
from 0.31 to 0.33 PMA. For DHA/EPA, rs3734398, rs3798713 and 
rs953413 show a ratio decrease ranging from 1.2 to 1.4 PMA.

3.3 Association between FADS and 
ELOVL2/5 variants and cardiometabolic 
biomarkers in the AIR cohort

Figure 4 displays Forest Plots that examine the associations with 
phenotypes linked to insulin regulation. The FADS SNP rs174455 was 

FIGURE 2

Impact of FADS and ELOVL alleles on n-6 and n-3 HUFA plasma levels. This figure contains Forest Plots that illustrate the impact of FADS and ELOVL 
reference alleles on n-6 and n-3 HUFA levels. (A,B) Allelic effects on ARA and DGLA, respectively. (C,D) Allelic effects on EPA and DHA, respectively. 
Green, blue and black lines represent ELOVL5, ELOVL2 and FADS alleles, respectively. The 95% confidence intervals are indicated by the horizontal 
lines.
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associated with both HOMA-IR (14.6% increase PMA) and fasting 
insulin levels (12.8% increase PMA). Three ELOVL2/5 SNPs 
(rs7744440, rs2281591, rs3798719) were associated with 2 h glucose 
(4.3–4.5% increase PMA), fasting insulin (14.3–19.8% increase PMA), 
and HOMA-IR (13.3–17.2% increase PMA). Forest Plots in Figure 5 
illustrate associations between the AIR cohort major alleles and 
fasting lipids. There were strong and consistent effects between FADS 
major alleles and increased levels of triglyceride (6.7–14.2% PMA) and 
VLDL (6.5–13.3% PMA). The associations of FADS and ELOVL2/5 

alleles with anthropometric characteristics by sex were also examined. 
Notably, in females, FADS major alleles were associated with decreased 
hip circumference (ranging from 0.7 to 1.2% PMA) and weight (4.1–
4.2% PMA) (Figure 6). Neither FADS nor ELOVL2/5 alleles had any 
effect on anthropomorphic traits in men (data not shown).

The FADS variant that showed the most consistent and strongest 
associations with several cardiometabolic biomarkers when 
comparing homozygous major alleles to homozygous minor alleles 
was rs174455 (Table  3). For instance, HOMA-IR values were 

FIGURE 3

Impact of FADS and ELOVL genotypes on n-6 and n-3 HUFA plasma concentrations. (A,B) Concentrations of ARA and DGLA, respectively, as a function 
of the FADS SNP, rs174537, genotypes. (C,D) Concentrations of EPA and DHA, respectively, as a function of rs174537 genotypes. p-values remained 
significant after FDR adjustment and were derived from an additive linear mixed model.

TABLE 2 Impact of rs174537 genotypes on fatty acid levels.

Phenotype Homozygous major 
allele (TT)

Homozygous minor 
allele (GG)

Estimate 95% CI p-value

ARA (ng/mL) 55.83 86.23 −32.92% (−39.10, −26.11) 3.00E-14

DGLA (ng/mL) 19.4 15.18 31.59% (17.55, 47.31) 3.40E-05

EPA (ng/mL) 3.03 4.84 −38.30% (−50.60, −22.94) <0.001

DHA (ng/mL) 12.08 14.11 −15.80% (−25.07, −5.38) 0.03

ARA/DGLA (Ratio) 3.11 6.06 −2.99 (−3.31, −2.67) 1.60E-76

ARA/EPA (Ratio) 30.53 32 −0.63 (−11.24, 9.97) 0.9

ARA/DHA (Ratio) 4.98 6.4 −1.31 (−1.69, −0.93) 8.30E-12

DHA/EPA (Ratio) 6.52 4.9 1.39 (−11.24, 9.97) 0.14

Differences in HUFA (and ratio) values when comparing the homozygous AIR population major allele (TT at rs174537) to the homozygous minor allele (GG at rs174537). The homozygous 
allele values were determined by calculating the mean value for rs174537 at each homozygous genotype. Estimates and unadjusted significance values were derived from summary statistics of 
the factor regression model. The 95% confidence interval (CI) is in the same scale as the respective estimate value.
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significantly higher in the homozygous major allele genotype (GG) 
group compared to the homozygous minor allele genotype (AA), with 
a 45% increase. Similarly, fasting insulin levels were elevated by an 
average of 43% in individuals with the GG compared to the AA 
genotype. Triglyceride levels were also significantly higher in the GG 
group, with a 33% increase, as were VLDL levels, which rose by nearly 
30%. There were no significant differences observed between GG and 
AA genotypes for males regarding fat mass, hip circumference, height, 
or weight. In females, weight was significantly different between the 
genotypes, with those carrying the GG genotype weighing ~10% less 
than their AA counterparts.

4 Discussion

Diabetes and hyperlipidemia are significant health concerns in 
Mexican and MxAm populations, who have higher prevalence rates 

compared to Non-Hispanic White (NHW) populations (60, 61). For 
example, MxAm are 1.7 times more likely to be  diagnosed with 
diabetes than NHW, and over 50% of Hispanic adults (including 
MxAm) are predicted to develop type 2 diabetes in their lifetime (62). 
MxAm with diabetes also tend to have worse glycemic control and 
higher rates of diabetes-related complications, such as kidney disease. 
Additionally, MxAm are more likely to have higher triglyceride levels 
and lower HDL cholesterol levels compared to NHW (61, 62). 
Non-alcoholic fatty liver disease (NAFLD) affects about 25% of the 
general population, but the prevalence is higher in Hispanic 
populations, with MxAm having the highest rate at 42.8% (63).

Socioeconomic factors, including lower income, decreased access 
to healthcare, and language barriers, clearly contribute to the higher 
prevalence of these conditions in MxAm populations (61, 64). Genetic 
variants also play a role. For instance, the SLC16A11 risk variants, 
more common in people of Mexican ancestry, are associated with 
increased diabetes risk (64–66). Variations in the PNPLA3 gene, 

FIGURE 4

Impact of FADS and ELOVL genotypes on insulin action and glucose phenotypes. (A,B) Associations between 2 h glucose and HOMA-IR, respectively, 
and all assayed SNPs. (C,D) Associations between fasting glucose and fasting insulin, respectively, and all assayed SNPs. The 95% confidence intervals 
are indicated by the horizontal lines.
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which predisposes people to store extra fat in liver cells, are found 
more often in those of Hispanic origin and are also associated with 
greater severity of NAFLD (67, 68).

In the current study of Latino adults of MxAm descent from the 
Southwest US, we observed high frequencies of alleles linked to the 
ancestral FADS haplotype, comparable to those observed in MxAm 
populations from the US West Coast. In contrast, these alleles are 
much less frequent in African and European ancestry populations and 
are also associated with a reduced capacity to synthesize n-6 and n-3 
HUFAs, largely due to their impact on the rate-limiting FADS1 
enzymatic step (15). This observation was confirmed in our study and 
mirrored findings in other Latino populations (36, 41, 42), where a 33 
and 38% reduction in circulating levels of ARA and EPA, respectively, 
was seen when individuals with the TT genotype at rs174537 were 
compared to those with the GG genotype.

Within the TT genotype at rs174537, mean ARA levels (56 ng/
mL) were 18-fold and 5-fold higher than mean EPA (3 ng/mL) and 
mean DHA (12 ng/mL) levels, respectively. Moreover, individual 
ARA/EPA ratios display a high level of variability (coefficient of 

variation ~109%) with a strong positive skew, leading to a mean ARA/
EPA ratio of ~30 to 1 for the TT group. Although this ratio does not 
differ significantly between genotypes, the extremely low 
concentrations of EPA in TT individuals raise an important question 
as to whether there is an EPA deficiency with the potential to impact 
cardiometabolic disease. This question is especially relevant given 
findings from recent notable n-3 HUFA supplementation randomized 
controlled trials such as ASCEND, VITAL, and REDUCE-IT (69–71). 
Notably, only REDUCE-IT provided higher doses of EPA to patients 
at high risk of CVD and demonstrated a reduction in composite CVD 
morbidity and mortality (including CVD mortality, non-fatal MI, 
non-fatal stroke, cardiovascular revascularization or unstable angina) 
in the treatment group (69).

While the current study corroborated the frequencies of the 
ancestral haplotype and its impact on n-6 and n-3 HUFA levels as has 
been observed in other African, European and Indigenous American 
ancestry cohorts, the major objective here was to determine whether 
FADS/ELOVL variants impact important cardiometabolic traits, 
including triglycerides, HDL, VLDL, fat mass, and insulin resistance 

FIGURE 5

Impact of FADS and ELOVL genotypes on fasting lipid phenotypes. (A,B) Associations between HDL and Triglycerides, respectively, and all assayed 
SNPs. (C,D) Associations between LDL and VLDL, respectively, and all assayed SNPs. The 95% confidence intervals are indicated by the horizontal lines.
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markers. Previously, our laboratory examined the impact of the 
ancestral FADS haplotype on clinical phenotypes in six Hispanic 
subgroups in the Multi-Ethic Study of Atherosclerosis (MESA) (42). 
Results from this study suggested that FADS variation was associated 
with circulating levels of triglycerides, HDL-C, E-selectin, s-ICAM, 
waist-hip ratio, height, and weight. However, only associations for 
triglycerides and height remained significant when the regression 
model included the principal components of ancestry. That study 
underscored the need to investigate the clinical impact of FADS 
variation in a more homogeneous cohort.

The key findings of the current study demonstrate that the 
ancestral haplotype is strongly associated with several cardiometabolic 
endpoints. For example, at rs174455, the homozygous ancestral FADS 
genotype (compared to the homozygous derived genotype) was linked 
to a ~40% increase in fasting insulin and HOMA-IR, a ~30% increase 
in triglycerides and VLDL, and modest decreases in HDL and female 
anthropometric measures. Interestingly, ELOVL2/5 variants were also 
associated with increased glucose, insulin, and HOMA-IR, indicating 
variation in the HUFA biosynthetic pathway outside of the FADS 

cluster may also affect cardiometabolic endpoints. The underlying 
molecular mechanisms that link FADS, circulating HUFAs, and 
cardiometabolic endpoints are not yet clearly understood. However, 
n-3 HUFA supplementation has been shown to impact insulin-
stimulated glucose disposal, potentially improving insulin sensitivity 
(72, 73). Additionally, the ratio of EPA to ARA has been shown to be a 
promising indicator of glycemic control (74).

Interestingly, alleles associated with the ancestral haplotype are 
often strongly linked to significantly higher triglyceride levels (36, 
38, 75), whereas n-3 HUFA supplementation is well-documented 
to reduce circulating triglyceride levels (42, 76, 77). Mechanistically, 
n-3 HUFAs have been shown to: (1) inhibit hepatic synthesis and 
secretion of VLDL particles, the primary carriers of triglycerides 
in the bloodstream; (2) enhance the activity of lipoprotein lipase, 
an enzyme that hydrolyzes triglycerides in VLDL and chylomicrons, 
accelerating their clearance from circulation; (3) inhibit acyl-
CoA:1,2-diacylglycerol acyltransferase, a key enzyme in 
triglyceride biosynthesis; and (4) increase peroxisomal β-oxidation, 
thereby promoting fatty acid metabolism (75, 76). These findings 

FIGURE 6

Impact of FADS and ELOVL genotypes on anthropometric phenotypes in females. (A,B) Associations between height and fat mass, respectively, and all 
assayed SNPs. (C,D) Associations between weight and hip circumference, respectively, and all assayed SNPs. The 95% confidence intervals are 
indicated by the horizontal lines.
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support our hypothesis that n-3 HUFA deficiency, particularly of 
EPA, that results from FADS gene-by-diet PUFA interactions in 
MxAm individuals of Indigenous American ancestry, may 
contribute to insulin resistance, elevated triglyceride levels, and an 
increased risk of diabetes and NAFLD. Notably, our study suggests 
that these metabolic conditions, when linked to n-3 HUFA 
deficiency, may be  specifically mitigated through targeted n-3 
HUFA supplementation.

A limitation of our study design is the lack of dietary data in 
our cohort, which prevents a complete assessment of gene-by-
dietary PUFA interactions. However, we recently published data 
from a similar cohort of MxAm from the same region in Arizona 
that provide relevant context (77). In that cohort, approximately 
35% of total caloric intake came from fat, with an average total fat 
intake of 59.6 g/day. PUFAs contributed 5–10% of energy, 
primarily from the n-6 PUFA, LA, with a mean intake of 
12 ± 6.5 g/day (6.9 ± 2.2% of total energy). The mean n-6 to n-3 
PUFA ratio in this population was 8.8:1, closely resembling the 
dietary patterns of other populations consuming a modern 
Western diet. Another limitation of our study is the lack of data 
on lifestyle factors and supplementation (e.g., PUFA supplements), 
which could influence the interpretation of our findings.

While the study’s focus on self-reported Latinos of Mexican 
origin from the AIR registry provided a targeted dataset, it may 
limit the generalizability of our findings to other Latino 
populations due to potential underrepresentation of broader 
genetic diversity. However, our analysis of the MESA cohort 
corroborates these findings, revealing strong negative associations 

between Indigenous American genetic ancestry and HUFA levels. 
Furthermore, the FADS rs174537 SNP accounted for a substantial 
portion of the ancestry-related effects on n-3 HUFAs, including 
EPA, and showed strong associations with various metabolic, 
inflammatory, and anthropometric traits, particularly 
circulating triglycerides.

Taken together, the current study suggests that gene-by-diet 
interactions associated with the quantities and ratios of dietary 
PUFAs, combined with the FADS ancestral haplotype, may play 
an important role in risk, complications and cardiometabolic 
disease disparities observed in MxAm populations. This study 
highlights the complex interplay between genetic variants, 
particularly in the FADS genes, and cardiometabolic traits in 
MxAm populations. The findings also underscore the importance 
of considering both genetic predispositions and environmental 
factors, such as diet, in understanding the health disparities that 
disproportionately affect these populations. Importantly, the 
gene-by-diet interactions involving PUFAs, HUFAs, and their 
downstream metabolic effects point to potential avenues for 
personalized nutrition and therapeutic strategies to mitigate 
cardiometabolic risk in this population.

Future research should further explore how dietary interventions, 
particularly those aimed at optimizing PUFA intake or supplementing 
with n-3 HUFAs, could modify the effects of FADS variants. This is 
particularly relevant when interactions between the FADS gene and 
dietary PUFAs result in an increased risk of n-3 HUFA deficiency, 
which would be expected in the 40–50% of MxAm homozygous for the 
ancestral haplotype. Given the high prevalence of hyperlipidemia in this 

TABLE 3 Comparison of homozygous genotypes at rs174455 for cardiometabolic phenotypes.

Phenotype Homozygous major 
allele (GG)

Homozygous minor 
allele (AA)

Estimate 95% CI p-value

2 Hr Glucose (mg/dL) 138.21 130.64 −0.59% (−7.66, 7.00) 0.87

HOMA-IR 2.31 1.78 44.96% (11.69, 88.13) <0.01

Fasting Glucose (mg/dL) 94.77 93.67 −0.72% (−3.37, 2.00) 0.59

Fasting Insulin (μIU/mL/

mL)

9.35 7.21 43.26% (10.97, 84.96) <0.01

HDL (mg/dL) 42.79 46.3 −6.06% (−12.51, 0.85) 0.08

Triglycerides (mg/dL) 144.18 108.74 33.03% (15.76, 52.86) <0.01

LDL (mg/dL) 107.49 100.53 3.64% (−4.48, 12.46) 0.39

VLDL (mg/dL) 23.8 17.29 29.90% (13.69, 48.43) <0.01

Male fat mass (%) 20.85 18.9 −0.44% (−13.34, 14.36) 0.94

Female fat mass (%) 27.21 25.35 −2.46% (−7.22, 2.54) 0.33

Male hip circumference 

(cm)

106.7 106.66 0.62% (−1.79, 3.09) 0.61

Female hip circumference 

(cm)

110.36 109.71 −0.61% (−2.18, 1.00) 0.46

Male height (cm) 164.82 165.56 0.26% (2.59, 3.20) 0.85

Female height (cm) 161.85 163.13 −0.31% (−2.38, 1.79) 0.77

Male weight (kg) 81.68 80.9 7.05% (−4.01, 19.38) 0.22

Female weight (kg) 77.29 83.82 −9.56% (−17.38, −1.00) 0.03

Differences in cardiometabolic phenotype values when comparing the homozygous AIR population major (GG) to the homozygous minor allele (AA) at rs174455. The homozygous allele 
values were compared by calculating the mean value for rs174455 for each cardiometabolic phenotype. Estimates and unadjusted significance values were derived from summary statistics of 
the factor regression model. The 95% confidence interval (CI) is in the same scale as the respective estimate value.
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population and the biological mechanisms linking n-3 HUFAs to 
elevated lipids, individuals in this group may especially benefit from n-3 
HUFA supplementation. Supplementation with doses ranging from 2 
to 4 grams per day has been shown to be most effective in lowering 
triglyceride levels, and the beneficial effects are typically observed 
within 6 weeks and can continue to improve over a period of up to 
6 months in most studies (78). Additionally, expanding studies to other 
Latino populations and controlling for other socioeconomic and 
lifestyle factors will be critical in developing targeted prevention and 
treatment programs. Ultimately, addressing these gene-by-diet 
interactions could help reduce the burden of diabetes, cardiovascular 
disease, and related conditions in MxAm, Mexican and other 
Latino communities.
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