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The antioxidant activity of natural products is closely related to their antiglycation 
effects. This study aimed to examine the antiglycation activity and elucidate the 
underlying mechanisms of two specific peptides, EDYGA (Glu-Asp-Tyr-Gly-Ala) 
and DLLCIC (Asp-Leu-Leu-Cys-Ile-Val), derived from protein hydrolysates of the 
Pelodiscus sinensis. Both EDYGA and DLLCIC were efficient in bovine serum 
albumin (BSA)/glucose model to inhibit BSA glycation, while DLLCIC showed 
higher antiglycation activity than EDYGA. Firstly, it was found that EDYGA and 
DLLCIC could inhibit the formation of NEG and AGEs. Moreover, EDYGA and 
DLLCIC were able to maintain the protein secondary structure and stabilize the 
band positions (amide I & II). Additionally, molecular simulations indicated that 
DLLCIC can spontaneously interact with the central site of BSA, specifically at 
Lys114 and Glu424 residues, through hydrogen bonds with an energy strength of 
−0.7 kcal/mol. Furthermore, CCK-8 and morphological experiments confirmed 
that EDYGA and DLLCIC improved cell survival against AGEs-induced cytotoxicity, 
with EC50 values of 17.64 μM for EDYGA and 15.08 μM for DLLCIC. These findings 
serve as a significant reference for the development of EDYGA and DLLCIC as 
effective antiglycation agents in the prevention of glycation-mediated diseases.
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1 Introduction

Glycation is a reaction between reducing sugars and the free amino residues of proteins 
without enzyme intervention (1, 2). This reaction involves a series of intermediates, such as 
Schiff bases and Amadori products, which play a pivotal role in the formation of advanced 
glycation end products (AGEs) (3, 4). AGEs are the end products of glycation reaction, which 
are characterized due to their high reactivity, cross-linking, and fluorescence properties (1). 
Glycation-induced structural and functional changes in proteins have been identified as a 
major link between diabetes and its severe complications such as retinopathy, neuropathy, and 
cardiovascular complications (5). To control related diseases caused by glycosylation, treatment 
methods can be developed based on antiglycosylation mechanisms. Due to the complexity of 
the reaction, different approaches have been proposed to inhibit the glycation and formation 
of advanced glycation end products such as (a) carbonyl scavenging (b) inhibition of early 
glycation reaction (c) inhibition of advanced glycation reaction (d) masking of lysine residues 
in proteins and (e) protecting the native protein conformation. Some synthetic compounds 
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have antiglycation activity such as aminoguanidine (AG). However, 
the synthesized compounds are highly toxic (6, 7).

In recent years, the inhibition of the formation of AGEs by natural 
products has aroused considerable interest, which will be a research 
hot topic (5). Currently, several natural compounds with antioxidant 
properties show good inhibitory activity against AGE formation and 
appear to have minimal toxic effects. The natural compounds that 
potentially inhibit the formation of AGEs are divided into the 
following six classes based on their structural properties: polyphenols, 
polysaccharides, terpenoids, vitamins, alkaloids, and peptides (8, 9). 
As previously reported in the literature, bioactive peptides exhibited 
excellent inhibitory effects on protein glycation. Kuerban et al. (10) 
found that the Lens culinaris hydrolysis peptides could inhibit AGEs 
formation in fructose (15 mmol/L)-bovine serum albumin (BSA) 
system. Kuerban et  al. (11) reported that the Vicia faba peptides 
fractions (less than 3 ku) could capture extra fructose and glucose, 
with in vitro inhibit AGEs formation. Moreover, Aydın et al. (12) 
observed that carnosine prevents oxidative stress and AGE formation 
in a D-galactose-induced aging rat model through its antioxidant and 
antiglycation properties. Additionally, glutathione, an important 
source of reducing power in the body, prevents glycation by glucose 
more effectively than carnosine (13, 14). Han et al. (15) observed that 
a dipeptide, Asn-Trp, from computer-aided simulation of yam 
dioscorin hydrolysis presented strong antiglycation activity and 
exhibited protection against methylglyoxal-induced cell apoptosis.

Research on small-molecule antioxidants has attracted considerable 
attention in recent years. These compounds play a crucial role in 
slowing down the aging process and preventing chronic diseases by 
scavenging free radicals and reducing oxidative stress. Among them, 
polyphenols, including tea polyphenols (16), flavonoids (17), and 
anthocyanins (18), are among the most extensively studied due to their 
potent antioxidant properties. These bioactive compounds are abundant 
in plants and are known for their ability to neutralize oxidative damage. 
Alongside polyphenols, other natural antioxidants such as vitamin C, 
vitamin E (19), and glutathione (20) also exhibit significant antioxidant 
effects. In addition, synthetic small-molecule antioxidants like butylated 
hydroxyanisole and butylated hydroxytoluene (21) have found 
applications in the food industry. Small-molecule antioxidant peptides, 
derived from natural proteins via hydrolysis, are increasingly recognized 
for their strong antioxidant properties and safety. They are easily 
absorbed by the body and work through mechanisms like metal ion 
chelation, free radical scavenging, and lipid peroxidation inhibition 
(22). Studying small-molecule antioxidant peptides is crucial for 
creating natural and safe antioxidants for food and pharmaceutical use. 
Antioxidant and antiglycation mechanisms both suppress free radicals 
and regulate oxidative stress. This stress not only generates free radicals 
but also speeds up glycation, resulting in AGEs accumulation. AGEs 
trigger more oxidative damage, creating a cycle. Antioxidants help by 
neutralizing free radicals and preventing glycation, thus reducing 
AGEs. This suggests that combining antioxidants and antiglycation 
approaches could effectively combat aging and chronic diseases.

The BSA/glucose system is a common model for studying AGEs by 
the reaction of the carbonyl group of glucose with the free amino group 
of the protein. Previous studies have shown that free radicals are involved 
in the formation of AGEs (23, 24). In addition, it has been reported that 
antioxidants and radical scavengers inhibit these processes (25, 26). 
EDYGA (Glu-Asp-Tyr-Gly-Ala) and DLLCIC (Asp-Leu-Leu-Cys-
Ile-Val) are derived from Pelodiscus sinensis, which are potent 

ARE-luciferase inducers with antioxidant properties (27). The structure 
of EDYGA contains tyrosine (Tyr), which features a phenolic group 
capable of neutralizing free radicals through hydrogen atom transfer, 
thereby inhibiting lipid peroxidation. On the other hand, the terminal 
cysteine (Cys) in DLLCIC is a crucial amino acid for antioxidant 
reactions (28). The thiol group (–SH) can scavenge free radicals or form 
disulfide bonds with other thiol groups (29), thus providing antioxidant 
protection. Therefore, both peptides exhibit strong antioxidant potential. 
In this study, we aim to assess the antiglycation properties of EDYGA 
and DLLCIC using the BSA/Glucose model and explore the potential 
mechanisms behind these effects. The findings provide further evidence 
that certain antioxidant peptides can prevent the formation of AGEs.

2 Materials and methods

2.1 Chemicals and materials

Previous studies have obtained EDYGA (Glu-Asp-Tyr-Gly-Ala) 
and DLLCIC (Asp-Leu-Leu-Cys-Ile-Val) from Pelodiscus sinensis 
protein (27). In this study, peptides were synthesized using a solid 
phase technique, as described previously (27). Purities of all acquired 
peptides were > 98%. Glucose was purchased from Pricella 
Biotechnology (Wuhan, China), RPMI-1640 medium and bovine 
serum albumin (BSA) were obtained from Cellmax Technologies 
(Beijing, China), Sodium azide and DMSO were purchased from 
China National Pharmaceutical Group Chemical Reagents (Beijing, 
China), 0.25% trypsin–EDTA were purchased from Cienry 
Technologies (Huzhou, China) and phosphate buffer saline (PBS) 
were purchased from Genom Bio (Hangzhou, China), Carnosine was 
purchased from Sigma-Aldrich (St. Louis, MO, USA). CCK-8, BCA, 
ROS, SOD, GSH, MAD assay Kits and penicillin–streptomycin (100×) 
were purchased from Beyotime Laboratories (Shanghai, China).

2.2 Building of BSA/glucose glycation 
model

The method from Ou et al. (30) was used with minor modifications 
to determine the inhibitory effect of peptides on AGEs formation. In 
brief, BSA (20 mg/ml) and glucose (80 mmol/L) were dissolved in 
0.2 M PBS (pH 7.4), Sodium azide (0.02%) was added to prevent 
bacterial growth, and the mixtures were incubated at 37°C for 3, 7, 14, 
21, and 28 days.

The control groups were set up as follows: Group A without 
adding any samples; Group B without adding D-Glu and any samples; 
Group C without adding BSA and any samples; Group D without 
adding BSA; and Group E without adding D-Glu. There were five 
control groups in total. The experiment was conducted in triplicate.

2.3 Determination of NEG and AGEs 
products

2.3.1 Effect of EDYGA and DLLCIC on NEG 
formation by UV–vis

Nonenzymatic glycosylation (NEG) analysis was performed as 
described by Wu et al. (31). BSA (20 mg/ml) and glucose (80 mmol/L) 
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were dissolved in 0.2 M PBS (pH 7.4), followed by the addition of 
peptides (0.25, 0.50, 0.75, 1.00 mg/ml). Sodium azide (0.02%) was 
subsequently added, and the mixture was incubated at 37°C for 3, 7, 
14, 21, and 28 days. The modified NEG levels were then assessed to 
evaluate the peptides’ inhibitory effects on NEG formation. The 
amount of NEG formed was quantified by measuring absorbance at 
530 nm using a UV–visible spectrophotometer (UV-2000, UNICO 
Instruments Co., Ltd., China), as calculated using Equation 1.

 

Sample Contrald Contrale
NEG

Contrala Contralb Contralc

A A A
IR 1 100%

A A A
− −

= − ×
− −  

(1)

2.3.2 Effect of EDYGA and DLLCIC on AGEs 
formation measured by fluorescence 
spectrophotometry

To determine the direct effect of peptides on AGEs formation, an 
assay was performed as described by Ou et  al. (30) with minor 
changes. BSA (20 mg/ml) and glucose (80 mmoL/L) were dissolved in 
0.2 M PBS (pH 7.4), followed by the addition of peptides (0.25, 0.50, 
0.75, and 1.00 mg/ml). Sodium azide (0.02%) was then added, and the 
mixture was incubated at 37°C for 3, 7, 14, 21, and 28 days, 
respectively. Thus, altered AGE levels were determined to assess the 
effects of peptides on the inhibition of AGEs formation. The number 
of AGEs formed was evaluated by measuring the fluorescence 
intensity at 370/440 nm (excitation/emission) using an F-7000 
fluorescent photometer (Hitachi, Tokyo, Japan), as calculated using 
Equation 2.

 

Sample Contrald Contrale
AGEs

Contrala Contralb Contralc

F F F
IR 1 100%

F F F
− −

= − ×
− −  

(2)

2.4 FTIR analysis

FTIR spectroscopy was employed to examine structural alterations 
in glucose-modified protein at varying AGEs concentrations. After 
freeze-drying, the sample was mixed with dried KBr (1:100) in agate 
mortar and uniformly crushed into fragments with a spectral range of 
4,000 ~ 400 cm−1. Scans were performed 32 times using a Perkin 
Elmer Spectrum 100 FTIR spectrometer (PerkinElmer, Inc., 
USA) (32).

2.5 Determination of glycated protein by 
SDS-PAGE

The experimental procedure described by Gu et  al. (33) was 
followed with slight modifications. Under conditions where penicillin 
sodium and streptomycin sulfate were used to inhibit microbial 
growth, 20 mg/ml BSA was incubated with 80 μM glucose in the 
presence or absence of 1 mg/ml EDYGA or Carnosine in 0.2 M PBS 
(pH 7.4) at 37°C for 28 days. The influence of glucose on BSA 
modification and the inhibitory actions of EDYGA and carnosine 
were examined using SDS-PAGE, employing a 4% stacking gel and a 

12% Separating gel. A sample volume of 2.5 μL was loaded into each 
lane, and the gels were subsequently stained with Coomassie Brilliant 
Blue R250. Collect the staining solution, add the decoloring solution 
(V methanol: V glacial acetic acid: V distilled water = 25: 10: 65), 
decolorize on the shaker overnight until the gel background color is 
removed, and the protein band is clearly recognizable. Electrophoresis 
was conducted with the Mini Gel III system (BioRad, Hercules, CA).

2.6 Molecular docking

The molecular docking simulations were conducted using MOE 
software, following Khan’s method with some modifications (34). The 
crystal structure of BSA (PDB ID: 4OR0) was obtained from the RCSB 
Protein Data Bank.1 Before docking, each structure was processed 
using the “QuickPrep” function in MOE software, which involved 
removing bound ligands and water molecules, adding hydrogen 
atoms, and performing energy minimization. The EDYGA and 
DLLCIC peptide sequences were then constructed and docked with 
the prepared BSA molecule, with each peptide undergoing 30 
docking runs.

2.7 Cell culture

HUVEC cells were obtained from CAMS Cell Culture Center 
(Beijing, China), and cultured in endothelial cell medium (Sciencell, 
San Diego, California, USA) with 10% fetal bovine serum and 1% 
streptomycin–penicillin. The culture conditions contained a 
humidified atmosphere (95% air and 5% CO2 at 37°C), with a sterile 
water tray placed inside the incubator to provide the required 
humidity. Subculture the cells until they reach a state of 
normal growth.

2.8 Cell proliferation assay

Cell proliferation assay was performed using a CCK-8 agent 
according to the manufacturer’s protocol. After treatment, HUVEC 
cells (1,000 cells/well) were seeded into a 96-well plate and incubated 
overnight. Cells were treated with either vehicle (control) or different 
doses of peptides (1, 5, 10, 20, and 50 μM) 12 h before AGEs (500 μg/
ml) stimulation and incubated for an additional 12 h. 10 μL of CCK-8 
agent were added into the 96-well plate and incubated for 4 h at 
37°C. Then, the plate was transferred into a microplate reader and the 
OD value was detected at 450 nm (Infinite E Plex, TECAN, 
Switzerland). Each test was established in three repetitions.

2.9 Statistical analysis

Data were expressed as the mean ± standard deviation (SD) of 
three replicated determinations and analyzed by SPSS 22 (SPSS Inc., 
Chicago, IL, USA). Data were analyzed using one-way analysis of 

1 http://www.rcsb.org/
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variance (ANOVA). EC50 values were calculated using GraphPad 
Prism 5. A value of p < 0.05 was considered statistically significant. 
Graphs were drawn by Origin 19 (OriginLab Inc., Northampton, 
Massachusetts, USA).

3 Results and discussion

3.1 Effect of EDYGA and DLLCIC on NEG 
formation

Protein glycation generally consists of three reaction stages: early, 
intermediate, and late stage. In the early stage, carbonyl groups of 
reducing sugars react with free amino groups to form unstable early 
oxidation products. These Schiff bases further undergo rearrangement 
to form stable products-Amadori products (35). Nonenzymatic 
glycosylation (NEG) is an early glycosylation product formed by a 
complex series of non-enzymatic reactions between protein and 
glucose in the body.

The formation of NEG in the BSA/glucose system (3, 7, 14, 21, 
28 days) treated with different concentrations of EDYGA and 
DLLCIC was evaluated. Figure  1 showed that EDYGA and 

DLLCIC inhibited the formation of NEG when added at 
concentrations ranging from 0.25 to 1.00 mg/ml. Carnosine is 
known to act as an antioxidant by inhibiting protein glycation, the 
production of metal chelates, and the accumulation of AGE 
during aging (36, 37). Similar to the positive control, carnosine, 
both EDYGA and DLLCIC exhibited an increased inhibitory rate 
of NEG formation with prolonged treatment time and higher 
concentration. After 28 days of incubation, 1.00 mg/ml of EDYGA 
and DLLCIC resulted in reductions in NEG formation of 30.98 
and 33.03%, respectively, which are close to the 43.75% observed 
with the positive control (Figure 1D). This indicates that both 
EDYGA and DLLCIC exhibit significant inhibitory effects on 
NEG formation. Notably, at concentrations ranging from 0.25 to 
0.75 mg/ml, the inhibitory rates of EDYGA and DLLCIC were 
higher than that of the positive control, carnosine, suggesting that 
both peptides exhibit more potent inhibition of NEG formation. 
In summary, the findings suggest that both EDYGA and DLLCIC 
significantly inhibit NEG formation, with increasing inhibition 
rates correlating with prolonged treatment duration and higher 
concentrations. Moreover, at lower concentrations, their 
inhibitory efficacy surpasses that of carnosine, with DLLCIC 
exhibiting a slightly higher inhibition rate than EDYGA.

FIGURE 1

Effect of EDYGA, DLLCIC, and Carnosine on NEG formation in the BSA/glucose system. BSA (20 mg/mL), glucose (80 μM), and peptides (0.25, 0.50, 
0.75, and 1.00 mg/mL) were incubated in PBS at 37°C in the dark for 3, 7, 14, 21, and 28 days. (A) Effect of 0.25 mg/mL peptides on NEG formation. 
(B) Effect of 0.50 mg/mL peptides. (C) Effect of 0.75 mg/mL peptides. (D) Effect of 1.00 mg/mL peptides. Significant differences (p < 0.05) are 
indicated by different letters.
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3.2 Effect of EDYGA and DLLCIC on AGEs 
formation

AGEs were characterized based on their fluorescence properties. 
The formation of AGEs was assessed using a fluorescence 
spectrophotometer (38). The content of AGEs in each group was 
quantified by measuring the fluorescence intensity at the characteristic 
wavelength of AGEs. The data presented in Figure 2 indicate that the 
AGEs inhibitory rates of all three peptides at varying concentrations 
initially increase, followed by a decline, eventually stabilizing. This 
suggests that the inhibitory capacity of these peptides diminishes over 
prolonged treatment, possibly due to the development of some level 
of tolerance. At a concentration of 0.25 mg/ml, carnosine consistently 
outperforms EDYGA and DLLCIC in AGEs inhibition across all 
treatment durations. At 0.5 mg/ml, the inhibitory effects of the three 
peptides are comparable, with DLLCIC showing an inhibition rate 
equal to that of carnosine at days 7 and 14, indicating robust inhibitory 
efficacy. Although EDYGA shows a reduced inhibitory effect relative 
to DLLCIC, its inhibition remains statistically significant. At 1.0 mg/
ml, the inhibitory effects of the Pelodiscus sinensis peptides approach 
or even exceed those of carnosine. The AGEs inhibitory rates of 

EDYGA and DLLCIC are closely associated with both treatment 
duration and concentration. Overall, these two peptides demonstrate 
the strongest inhibitory effects at higher concentrations and during 
the mid-term treatment period (14 days). While the inhibitory effects 
of the Pelodiscus sinensis peptides are inferior to carnosine at low 
concentrations, their efficacy gradually approaches or even exceeds 
that of carnosine at higher concentrations and longer treatment 
durations, particularly in the case of DLLCIC, which exhibits a 
sustained inhibitory effect. Wu and Yen (39) reported that rutin, 
quercetin, kaempferol, and epigallocatechin gallate (EGCG) exhibited 
inhibitory activities of 86.4, 79.5, 68.7, and 65.8%, respectively, after 
7 days of incubation. These results are comparable to the maximum 
inhibitory activities of EDYGA and DLLCIC, which were 72.6 and 
78.2%, respectively, after 7 days. This similarity suggests that EDYGA 
and DLLCIC are also effective in preventing high glucose-mediated 
protein modifications.

Our previous studies have shown that EDYGA and DLLCIC have 
strong antioxidant activity (27). Khanam et al. (34) found that the 
antioxidant activity of natural products is closely related to the 
antiglycative activity. Therefore, the inhibition effect on NEG and 
AGEs formation may be attributed to their antioxidant activity.

FIGURE 2

Effect of EDYGA, DLLCIC, and Carnosine on AGEs formation in the BSA/glucose system. BSA (20 mg/mL), glucose (80 μM), and peptides (0.25, 0.50, 
0.75, and 1.00 mg/mL) were incubated in PBS at 37°C in the dark for 3, 7, 14, 21, and 28 days. (A) Effect of 0.25 mg/mL peptides on AGEs formation. 
(B) Effect of 0.50 mg/mL peptides. (C) Effect of 0.75 mg/mL peptides. (D) Effect of 1.00 mg/mL peptides. Significant differences (p < 0.05) are indicated 
by different letters.
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3.3 SDS-PAGE analysis

BSA is a common protein widely used in glycation studies due to its 
abundance in plasma since it can be glycated at multiple sites (40). The 
inhibitory effects of EDYGA and DLLCIC on protein glycation were assessed 
using a BSA/glucose glycation model. As depicted in Figure 3A, SDS-PAGE 
analysis was conducted to examine BSA incubated with glucose, in the 
presence or absence of EDYGA or DLLCIC. The original BSA showed a 
distinct band at 66 kDa (Figure 3A, ‘lane 1’). This result is similar to the 
findings of Liu et al. (41). The non-glycated BSA band was observed around 
70 kDa. However, BSA incubated with glucose without EDYGA or DLLCIC 
(Figure 3, ‘channel 2’) displayed a lighter color of the band because the active 
group of the BSA protein decreased after reacting with glucose. This causes the 
BSA molecule to bind less Coomassie Brilliant Blue, resulting in a lighter 
protein band after glycosylation. These results demonstrated that EDYGA or 
DLLCIC could inhibit AGEs generation in vitro.

Research has shown that EDYGA and DLLCIC contain electron-
donating groups on the benzene ring (notably 3-methoxy and 
4-hydroxyl), which can form a resonance-stabilized phenoxy radical, 

allowing them to function as natural antioxidants. The inhibitory effect 
of EDYGA and DLLCIC on AGEs formation is probably attributed to 
their capability of scavenging free radicals (27). It has been reported that 
the ability of antioxidants such as ferulic acid and resveratrol to inhibit 
AGEs has been studied using SDS-PAGE, yielding similar results (42, 43).

FTIR spectra of the BSA/glucose system incubated for 21 days 
with and without 1.00 mg/ml EDYGA (or DLLCIC) were analyzed 
in the range of 4,000–400 cm−1 (Figure 3B). In the main bands of 
proteins in the IR region, the amide A peak position occurs in the 
3,400–3,300 cm−1 region (mainly N-H stretch), while the amide 
I peak position occurs in the 1,600–1,700 cm−1 region (mainly C=O 
stretch) (44, 45). The amide II band was located from 1,500 to 
1,600 cm−1 (C-N stretch coupled with N-H bending mode) (7). The 
amide I peak mainly reflects the secondary structure of the protein. 
In the BSA/glucose system, band positions (amide I  & II) of 
EDYGA (or DLLCIC)-treated groups were stronger than the 
control group, indicating more unaffected amide bonds and amino 
groups were present in the solution containing EDYGA 
(or DLLCIC).

FIGURE 3

Effect of EDYGA and DLLCIC on AGEs formation in BSA/glucose system. BSA (20 mg/mL) and glucose (80 μM) and EDYGA (1.00 mg/mL) (or DLLCIC) 
were mixed in PBS and incubated in dark at 37°C for 28 days, respectively. (A) SDS-page (B) FTIR spectra.
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It has been demonstrated that peaks at 1,000 cm−1 (O-H and C-C 
bonds) (46, 47) are enhanced, indicating that a glycosylation reaction 
between protein and reducing sugar occurred. Compared with the 
control group, the peak at 1,000 cm−1 is attenuated in EDYGA (or 
DLLCIC) treated groups. Thus, FTIR analysis of the BSA/glucose 
system with and without EDYGA (or DLLCIC) corroborates that 
EDYGA (or DLLCIC) plays an important role in maintaining the 
secondary structure of protein, and inhibiting the formation of AGEs. 
The result is similar to the findings of Wang et al. (48); myricetin and 
its derivatives protect the secondary structure of BSA by inducing 
binding with the protein, thereby preventing BSA glycation. Yang et al. 
(49) demonstrated as well that Citral inhibits AGE formation by 
competitively cross-linking with BSA.

3.4 Docking EDYGA and DLLCIC to BSA 
domain

As shown in Table 1, DLLCIC interacts with BSA residues, such 
as Lys114, Asp111, and Glu424, primarily through hydrogen bonding. 
Hydrogen bonds are critical forces in molecular binding, indicating a 
high affinity between DLLCIC and BSA at the binding site. 
Additionally, there are hydrophobic interactions, for example, with 
Leu112 and Pro113, which contribute to the stable binding of DLLCIC 
to the protein (50, 51). These hydrophobic interactions not only 
enhance the ligand’s binding stability but also bolster its antioxidant 
capacity. Amino acid residues such as Lys114 and Glu424 are often 
found at the active sites of proteins and are closely linked to 
antioxidant reactions. The hydrogen bond formed by Lys114 may 
involve BSA’s active center, potentially impacting its function. The 
lysine residues have been shown to be hotspots for BSA glycation due 

to their high nucleophilic activity (52). The presence of a thiol group 
in DLLCIC, as suggested in the Figure  4, might interact with 
surrounding residues, which could help reduce the generation of free 
radicals, thereby enhancing antioxidant activity. Like many natural 
compounds, these molecules effectively protect the structural integrity 
of proteins and inhibit non-enzymatic glycation by competitively 
binding to proteins through hydrogen bonds or van der Waals forces 
(53). By binding to these residues, DLLCIC could indirectly enhance 
or modulate BSA’s antioxidant enzyme activity, thereby strengthening 
the antioxidant defense mechanisms.

As shown in Table  2, EDYGA interacts with multiple BSA 
residues, including Lys114, Asp111, Lys523, and Glu519, through 

TABLE 1 DLLCIC molecular docking ligand interactions report.

Receptor Interaction Distance E (kcal/
mol)

Glu424 (A) H-donor 3.89 −0.7

Lys114 (A) H-acceptor 2.96 −0.7

Asp111 (A) H-acceptor 3.32 −1.0

FIGURE 4

Results of the all atoms docking of DLLCIC and EDYGA with BSA protein. (A) Docking results of DLLCIC with the BSA molecule. (B) Docking results of 
EDYGA with the BSA molecule.

TABLE 2 EDYGA molecular docking ligand interactions report.

Receptor Interaction Distance E (kcal/
mol)

Asp111 (A) H-donor 2.99 −10.2

Lys114 (A) H-acceptor 3.08 −0.5

Leu112 (A) H-acceptor 3.11 −1.6

Lys523 (A) H-acceptor 2.99 −4.4
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FIGURE 5

The Effect of EDYGA and DLLCIC on cytotoxicity of AGEs. (A) Cell viability assessed by CCK-8 method for EDYGA and DLLCIC’s recovery effects 
against AGEs damage. (B) Control group: cells cultured with medium for 24 h. (C) AGEs group: cells treated with AGEs (500 μg/mL) for 24 h. 
(D) EDYGA treatment group: cells treated with 20 μM EDYGA for 12 h, followed by AGEs (final concentration 500 μg/mL) for an additional 12 h. 
(E) DLLCIC treatment group: cells treated with 20 μM DLLCIC for 12 h, followed by AGEs (final concentration 500 μg/mL) for an additional 12 h.

hydrogen bonding. These hydrogen bonds likely stabilize the binding 
between EDYGA and BSA, indicating a high binding affinity for 
EDYGA. Similar to DLLCIC, EDYGA also engages in hydrophobic 
interactions with several residues within BSA, such as Leu112, Pro420, 
and Ile522. These hydrophobic interactions play a crucial role in 
stabilizing the ligand-protein complex, which may contribute to its 
antiglycation effects. While DLLCIC primarily binds to the central site 
of BSA, EDYGA forms interactions across a broader region, including 
with Lys523. This suggests that the two peptides may inhibit the 
formation of AGEs through different mechanisms. Both EDYGA and 
DLLCIC exhibit binding capabilities with BSA, and through stable 
hydrogen bonds and hydrophobic interactions, they may inhibit the 
formation of AGEs, thereby enhancing protection against 
glycosylation damage. The binding of DLLCIC to the core site exhibits 
stronger binding affinity, which may contribute to its enhanced activity.

3.5 Effect of EDYGA and DLLCIC on 
cytotoxicity of AGEs

As shown in Figure 5A, compared to the AGEs group, pretreatment 
with all concentrations of EDYGA and DLLCIC significantly (p < 0.01) 
increased the viability in AGEs-exposed cells. Miroliaei et al. (54) 
demonstrated that the treatment of four mammalian cell lines 
(peripheral blood mononuclear cells, human embryonic kidney cells—
HEK293, normal human fibroblasts, and Chinese hamster ovary cells) 
with glycated proteins (AGEs) resulted in a significant decrease in cell 
viability, dropping from nearly 90% to a range of 37.13–41.35%. This 
finding confirms that AGEs can lead to a substantial reduction in cell 
viability. Using Origin software, we  analyzed the cell viability of 
EDYGA and DLLCIC at different concentrations and calculated their 

half-maximal effective concentration (EC50) values. The EC50 for 
EDYGA was found to be  17.64 μM, while that for DLLCIC was 
15.08 μM. For convenience, we selected concentrations of 20 μM for 
both EDYGA and DLLCIC to study their protective mechanisms.

Morphological changes in HUVECs cells treated with AGEs were 
examined by microscopy. The control group cells exhibited typical 
morphology with rounded nuclei and uniformly stained chromatin. 
However, after incubation with AGEs, the number of damaged cells 
increased significantly (Figure 5C). In the study by Gong et al. (55), 
HK-2 cells were treated with CML concentrations exceeding 0.8 mg/
ml for 72 h. Over time, the cells gradually shifted from their normal 
elliptical and tightly packed arrangement to a spindle shape. Eventually, 
they transformed into myofibroblasts, leading to detachment and cell 
death. Pretreated with EDYGA and DLLCIC (20 μM) significantly 
(p < 0.01) decreased the number of damaged cells compared to AGEs 
damaged group. This suggests that both EDYGA and DLLCIC have 
inhibitory effects on the formation of AGEs, as indicated by the results 
shown in the Figures 5D,E. DLLCIC appearing to be more effective.

4 Conclusion

The study demonstrated that the peptides EDYGA and DLLCIC, 
derived from Pelodiscus sinensis, exhibit significant antiglycation 
activities by inhibiting the formation of NEG and AGEs. Both peptides 
showed comparable or even superior inhibitory effects compared to 
the well-known antiglycation agent, carnosine, particularly at higher 
concentrations and prolonged incubation times. The study also 
revealed that these peptides can maintain the secondary structure of 
proteins, as evidenced by FTIR analysis and SDS-PAGE, and enhance 
cell viability in AGEs-induced cytotoxic conditions. The molecular 
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docking simulations provided insight into the mechanisms by which 
these peptides exert their effects, suggesting that the hydrogen 
bonding and hydrophobic interactions between the peptides and BSA 
residues play crucial roles in their antiglycation activity. Specifically, 
DLLCIC exhibited stronger binding to the central site of BSA, 
potentially contributing to its slightly higher efficacy compared to 
EDYGA. However, there are some limitations to this study. Firstly, the 
bioavailability and in vivo efficacy of these peptides remain unclear. 
Future studies should focus on their pharmacokinetics and therapeutic 
effects in animal models. Secondly, while the study suggests 
antioxidant properties, the exact molecular mechanisms of AGE 
inhibition by EDYGA and DLLCIC are not fully understood. Further 
research is needed to elucidate the pathways involved. Additionally, a 
broader range of peptide concentrations and longer treatment 
durations should be tested to optimize conditions for AGE inhibition.

Given the increasing incidence of glycation-related diseases, such as 
diabetes and its complications, the findings of this study offer promising 
potential for the development of EDYGA and DLLCIC as natural 
antiglycation agents. Future research should focus on in vivo studies to 
further validate these findings and explore the clinical applicability of 
these peptides. Additionally, investigations into the synergistic effects of 
these peptides with other natural compounds could pave the way for the 
development of more effective antiglycation therapies.
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