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Lipid metabolism encompasses the processes of digestion, absorption, synthesis, 
and degradation of fats within biological systems, playing a crucial role in sustaining 
normal physiological functions. Disorders of lipid metabolism, characterized 
by abnormal blood lipid levels and dysregulated fatty acid metabolism, have 
emerged as significant contributors to intervertebral disk degeneration (IDD). 
The pathogenesis of IDD is multifaceted, encompassing genetic predispositions, 
nutritional and metabolic factors, mechanical stressors, trauma, and inflammatory 
responses, which collectively facilitate the progression of IDD. Although the precise 
mechanisms underlying IDD remain incompletely elucidated, there is substantial 
consensus regarding the close association between lipid metabolism disorders 
and its development. Intervertebral disks are essential for maintaining spinal 
alignment. Their primary functions encompass shock absorption, preservation 
of physiological curvature, facilitation of movement, and provision of stability. The 
elasticity and thickness of these disks effectively absorb daily impacts, safeguard 
the spine, uphold its natural curvature and flexibility, while also creating space 
for nerve roots to prevent compression and ensure normal transmission of nerve 
signals. Research indicates that such metabolic disturbances may compromise 
the functionality of cartilaginous endplates (CEP) and nucleus pulposus (NP), 
thereby facilitating IDD’s onset and progression. The CEP is integral to internal 
material exchange and shock absorption while mitigating NP herniation under 
mechanical load conditions. As the central component of intervertebral disks, NP 
is essential for maintaining disk height and providing shock-absorbing capabilities; 
thus, damage to these critical structures accelerates IDD progression. Furthermore, 
lipid metabolism disorders contribute to IDD through mechanisms including 
activation of endoplasmic reticulum stress pathways, enhancement of oxidative 
stress levels, induction of cellular pyroptosis alongside inhibition of autophagy 
processes—coupled with the promotion of inflammation-induced fibrosis and 
fibroblast proliferation leading to calcification within intervertebral disks. This 
review delineates the intricate interplay between lipid metabolism disorders and 
IDD; it is anticipated that advancing our understanding of this pathogenesis will 
pave the way for more effective preventive measures and therapeutic strategies 
against IDD in future research.
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1 Introduction

IDD is characterized by a multifaceted process of aging and 
damage to the intervertebral disk (IVD), driven by intricate molecular 
mechanisms, which ultimately culminate in significant clinical 
manifestations (1). As illustrated in Figure  1, the primary 
manifestations encompass a reduction in the number of nucleus 
pulposus cells (NPCS), dysregulation of extracellular matrix 
metabolism, diminished levels of type II collagen, calcification, and 
apoptosis of endplate chondrocytes, among others (2) (Figure 1). Low 
back pain (LBP) is a hallmark clinical manifestation of IDD and 
represents one of the primary contributors to global productivity loss 
(3). It has been reported that 26 to 42% of IDD patients experience 
LBP (4), LBP continued to be  the predominant contributor to 
disability-adjusted life years (YLDs) on a global scale. Lower back pain 
and the associated YLDs escalate as individuals age, peaking around 
age 85. Notably, across all age demographics, the prevalence of lower 
back pain is significantly higher among women than men (5). Despite 
the significant prevalence and severity of LBP, there remains a lack of 
curative or effective disease-modifying therapies, primarily due to an 
insufficient understanding of its underlying pathogenesis. IDD is 
thought to arise from a multifactorial interplay of biomechanical 
stress, metabolic disturbances, and nutritional deficiencies; 
nevertheless, the precise pathological mechanisms underlying IDD are 
still inadequately defined (6, 7). Lipid metabolism encompasses the 
processes of digestion, absorption, synthesis, and degradation of fats, 
mediated by various enzymes within the body. The metabolic products 
include lipid mediators, fatty acids, and cholesterol derivatives. Under 
physiological conditions, lipid mediators play a crucial role in human 
growth and development, metabolic regulation, and tissue remodeling 
(8). Dysregulation of lipid metabolism has been implicated in the 
pathogenesis of obesity, hyperlipidemia, and hypercholesterolemia (9). 
Research indicates a multifaceted relationship between dysregulated 
lipid metabolism and IDD (10). Factors influencing lipid metabolism, 
such as body weight, body mass index (BMI), and blood lipid levels, 
significantly correlate with IDD progression. Notably, elevated 

triglyceride (TG) levels have been identified as a critical risk 
factor for IDD. In individuals with obesity, the prevalence of 
hypertriglyceridemia is markedly increased, and hyperlipidemia has 
been linked to cellular metabolic dysfunction and inflammation in 
disk cells (11).

A recent study investigating the influence of obesity on IDD has 
identified CXCL16 as a potential diagnostic biomarker for both obesity 
and IDD, highlighting its role in regulating fatty acid metabolism and 
facilitating IDD progression (12). In murine models of degenerative 
intervertebral disk disease, more than 50 lipid metabolites have been 
identified that exhibit significant expression differences (13). 
Preliminary investigations have identified CYP27A1, FAR2, and 
CYP1B1 as promising diagnostic biomarkers, further substantiating 
their critical involvement in the pathogenesis of IDD associated with 
lipid metabolism (14). In recent years, researchers have conducted 
extensive investigations into the regulatory mechanisms underlying 
lipid metabolism disorder signals and their impact on the aging and 
calcification of intervertebral disk endplate chondrocytes (EPCs). 
Their findings indicate that oxidized low-density lipoprotein (ox-LDL) 
and its receptor LOX-1 activate the ROS/P38-MAPK/NF-κB signaling 
pathway, promoting EPC senescence and calcification. This work offers 
novel insights into the intricate relationship between lipid metabolism 
disorders and IDD (10). Although lipid metabolism disorders are 
recognized as significant contributors to the pathogenesis of IDD, the 
precise mechanisms underlying their effects remain inadequately 
understood. This review aims to provide a comprehensive discussion 
on the role of lipid metabolism disorders in IDD development and to 
investigate their potential mechanistic pathways further.

2 An overview of the structure and 
function of the intervertebral disk

The IVD is a complex structure situated between adjacent vertebrae, 
comprising three interrelated tissues: NP, AF, and CEP. The NP 
functions as the central component of the IVD and is characterized by 

FIGURE 1

Illustrates the primary manifestations of intervertebral disk degeneration (By Figdraw).
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its highly hydrated, gel-like consistency, which contains predominantly 
type II collagen fibers (15). NP cells modulate the metabolic processes 
of the extracellular matrix (ECM) by synthesizing proteoglycans and 
collagen. The ECM predominantly comprises type II collagen fibers and 
proteoglycans, including aggrecan and versican. Type II collagen fibers 
confer essential mechanical strength to NP, while glycoproteins with 
negatively charged side chains preserve tissue volume and shape 
through their remarkable water-binding capacity, thereby endowing NP 
with exceptional elasticity and swelling properties due to water 
absorption. This structural integrity is crucial for maintaining 
intervertebral disk height and alleviating pressure, thus safeguarding the 
vertebrae and spinal cord from potential injury (16, 17). As individuals 
age or experience degenerative changes, the ECM of the IVD undergoes 
a loss of components and structural degradation, resulting in 
diminished disk height and functional impairment. Consequently, 
maintaining an optimal balance between collagen fibers and 
proteoglycans within NP is essential for preserving IVD health and 
functionality. The annulus fibrosus (AF), which encases NP, constitutes 
an organized structure comprising several adjacent concentric layers of 
collagen (18). This structure endows the AF with favorable mechanical 
properties when subjected to compressive loading (18). In particular, 
the outer layer exhibits a type I collagen content as high as 95%, which 
imparts essential tensile strength to IVD. However, transitioning toward 
the inner layer and approaching the nucleus, there is a marked reduction 
in type I collagen content, dropping to less than 5%. Conversely, type II 
collagen content gradually diminishes as it nears the outer layer of the 
annulus fibrosus. This specific structural arrangement facilitates tensile 
resistance that limits the radial expansion of the nucleus under 
compressive loading conditions, thereby aiding in maintaining normal 
physiological curvature of the spine (15, 19). Furthermore, the IVD 
represents the largest avascular tissue structure in the human body, with 
cellular material exchange predominantly occurring through diffusion 
via microscopic pores on its end plates. This distinctive physiological 
characteristic renders the IVD particularly vulnerable to degenerative 
changes (1). The endplate is a bony-cartilaginous structure composed 
of two distinct components: the CEP and the bony endplate (BEP). 
These components physically confine NP and annulus fibrosus (AF) 
within their anatomical confines. Beyond its mechanical support 
function, the CEP, characterized by a dense layer of type II collagen-rich 
hyaline cartilage, anchors IVD to adjacent vertebral bodies. Moreover, 
the CEP plays a crucial role in regulating fluid exchange and nutrient 
and metabolic waste transport. Acting as a semipermeable barrier 
between the IVD and vertebral bodies, it facilitates nutrient transfer 
from nearby blood vessels to the IVD, providing essential nutritional 
support for its maintenance (17). In conclusion, the intervertebral disk 
is vital to preserving the stability, flexibility, and protection of the spinal 
cord and nerve roots. Any injury or degenerative alterations to the 
intervertebral disk can result in functional impairments of the spine, 
potentially leading to a spectrum of spine-related pathologies. 
Consequently, ensuring the health of the intervertebral disk is vital for 
preventing spinal disorders and promoting overall well-being.

3 The etiology and pathological 
progression of IDD

The IDD represents a multifaceted pathological process 
characterized by the interplay of various factors and stages. Although 

the precise mechanisms underlying IDD remain incompletely 
understood, The pathogenesis of the condition is influenced by a 
multitude of factors, as illustrated in Figure 2. These factors encompass 
genetic predisposition, nutritional influences, mechanical stressors, 
traumatic events, inflammatory responses, cellular senescence, and 
degenerative processes, all of which significantly contribute to the 
development and progression of the disease (6, 20) (Figure 2). These 
factors contribute to an imbalance between the degradation and 
synthesis of the intervertebral disk, resulting in the deterioration of 
the extracellular matrix and a subsequent loss of function (6). The 
following is a brief overview of the main causes of IDD and its 
pathological changes.

3.1 Genetic factors

The primary biological function of IVD is to connect adjacent 
vertebrae and transmit loads throughout the spine while serving as a 
critical shock absorber between vertebrae. In the normal aging 
process, the shape and structure of the intervertebral disk gradually 
deteriorate, which is traditionally believed to be  caused by the 
cumulative effects of epigenetic, metabolic, and environmental factors 
(21). Recent genetic studies have elucidated that the pathogenesis of 
IDD may be influenced by many genetic markers and susceptibility 
genes, which potentially interact with environmental and lifestyle 
factors. For instance, polymorphisms in genes encoding proteoglycans, 
such as ACAN, have been associated with IDD. Regarding disk 
herniation and IDD, research has indicated that genetic 
polymorphisms impacting the extracellular matrix components of 
fibrocartilaginous cell, such as COL11A1, may play a significant role 
in IDD (22–25). Mice harboring a mutation in the Col9a1 gene display 
progressive IDD characteristics, potentially attributable to 
compromised synthesis or assembly of the non-fibrillar Col9a1 chain 
(26); polymorphisms in the COL9A2 and COL9A3 genes have been 
associated with sciatica and IDD within the Finnish population (27, 
28). Recently, Li et al. (14) conducted a comprehensive investigation 
into the role of lipid metabolism-related genes in immune infiltration 
processes, revealing that CYP27A1, FAR2, and CYP1B1 are pivotal 
lipid metabolism-associated genes significantly contributing to the 
pathogenesis of IDD. Furthermore, several studies have investigated 
the genetic correlation between lower back pain and IDD. These 
investigations have revealed that the genetic contributions to lower 
back pain and IDD overlap by a proportion ranging from 7 to 23% 
(29, 30). The estimated heritability of progressive changes in IDD over 
5 years varies from 47 to 66% (31). In evaluating the genetic 
underpinnings of severe IVD, it has been determined that heritability 
in the lumbar region is approximately 64%, while in the cervical 
region, it reaches as high as 79% (32). These findings suggest that 
genetic factors significantly contribute to the pathogenesis and 
manifestation of disk disease.

3.2 Nutritional and metabolic factors

The intervertebral disk is positioned within a closed environment 
that lacks direct blood supply, and its material exchange with the 
external environment is exclusively facilitated through the cartilage 
endplates of adjacent vertebrae (33). IDD is intricately linked to the 
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calcification and hypertrophy of the cartilage and bone endplate (34); 
this reduction in efficiency diminishes the transport of nutrients and 
other bioactive factors to AF and NP (34, 35). In normal cartilage 
endplates, the three-dimensional network of type II collagen is essential 
for restraining the excessive expansion of NP, thereby preserving the 
relative stability of the tissue architecture. This structural characteristic 
mitigates the outward diffusion of water within NP and facilitates 
nutrient transfer from the vertebral body to the IVD (36). Nonetheless, 
daily spinal movements can induce microscopic damage to the 
cartilage endplate and the fibrocartilage ring, leading to degenerative 
alterations and calcification of the cartilage endplate. This process may 
obstruct its porous structure, thereby hindering the transport of 
nutrients from external sources to NP (18). Therefore, the imbalance 
in material exchange resulting from the degeneration of the cartilage 
endplate can lead to metabolic disorders in the cells within NP, which 
are responsible for maintaining the homeostasis of the collagen matrix. 
This shift toward a fibrotic phenotype results in the loss of water within 
NP, impairs the load-bearing capacity of the nucleus, reduces disk 
height, and ultimately leads to IDD (18). Wong et al. (37) demonstrated 
that elevated levels of collagen, sulfated glycosaminoglycans (sGAGs), 
and minerals within the extracellular matrix can hinder nutrient 
diffusion, consequently impacting the viability and functionality of NP 
cells. Recent reports indicate that identical defects in CEP components 
are significantly associated with more severe disk degeneration in 
patients with lower back pain (38). Additionally, Yin et  al. (39) 
obstructed the nutrient supply pathway to the endplate in ovine 
vertebral models through cement injection. Imaging results obtained 

at 48 weeks indicated that disk height was significantly reduced, and 
degeneration was markedly more pronounced in the group with the 
obstructed nutrient supply pathway compared to the normal control 
group. Building upon these studies, Habib et al. (33) introduced the 
novel concept of modifying the extracellular matrix of the entire 
intervertebral disk under conditions of compressive loading for the first 
time. Their research revealed a reduction in sGAG content by 33.5% in 
human samples and 40% in bovine samples within enzyme-treated 
extracellular matrix intervertebral disks. This finding underscores the 
potential to enhance nutrient transport—such as cholesterol—within 
the intervertebral disk through extracellular matrix modification, 
offering a promising new strategy for addressing IDD.

The studies mentioned above collectively indicate that nutritional 
and metabolic factors are pivotal in the progression of 
IDD. Consequently, ensuring an adequate supply of nutrients to the 
intervertebral disk is essential for delaying the onset of IDD.

3.3 Biomechanical factors

The intervertebral disk is crucial in preserving spinal flexibility 
while facilitating the transfer of compressive forces between adjacent 
vertebrae. Typically, the intervertebral disk endures loads resulting 
from flexion and extension, rotation, and various other movements 
(40). Nevertheless, persistent degenerative changes at the 
organizational, cellular, and molecular levels can substantially modify 
the disk’s morphology and physiological properties, diminishing its 

FIGURE 2

Factors contributing to degenerative alterations in intervertebral disks (By Figdraw).
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capacity to endure compressive forces (41). In recent years, there has 
been a growing recognition of the significance of biomechanical 
factors in IDD. The IVD, as a distinct closed biomechanical entity, 
comprises substructures with varying mechanical properties; any 
impairment to the mechanical integrity of these substructures can 
adversely affect the overall mechanical functionality of the IVD (42). 
Prior research demonstrated that abnormal mechanical loading on the 
spine accelerated the degradation of the disk matrix, promoted neural 
invasion, induced pyroptosis, and ultimately contributed to IDD (43).

At the movement level, flexion, extension, and rotation of the spine 
may alter the microstructural components of intervertebral disks—such 
as collagen, elastin, and proteoglycans—thereby ultimately affecting 
stress distribution within degenerative intervertebral disks (44). Two 
critical factors contributing to IDD are the length and magnitude of axial 
compressive forces. An increase in the magnitude of axial compressive 
loads results in heightened strain curvature within the posterior lateral 
region of the IVD; however, this also leads to reduced compliance, 
hindering the reorientation of its fibrous structure and causing strain 
amplitude to remain relatively constant. As loading intensifies, the 
posterior lateral region becomes increasingly vulnerable to stress 
recruitment, thereby elevating injury susceptibility and potentially 
facilitating the progression of IDD (45). During flexion, the strain 
magnitude in the posterior lateral region of the AF significantly increases, 
with tensile forces in the AF fibers becoming concentrated at the junction 
between the posterior lateral fiber structure and the endplate. When fully 
flexed forward, fibers in this region undergo stretching, curling, and 
straightening, resulting in a flattened configuration that extends to 
approximately 50–90% of their original length—nearly achieving a 
vertical orientation—which renders them highly susceptible to 
substantial pressure (46). This suggests that the development of bony 
spurs at the periphery of vertebral bodies and lesions at the interface 
between endplates and annulus fibrosus in IDD is more pronounced in 
regions experiencing stress concentration. Furthermore, stress 
distribution appears to be increasingly localized toward the margins of 
the intervertebral disk, particularly when areas of diminished 
intervertebral disk height coincide with zones of axial stress concentration 
(47). Furthermore, Xu et al. (48) employed a three-dimensional finite 
element model to investigate the alterations in stress within the 
intervertebral disk during spinal rotation, revealing that the deformation 
strain of the intervertebral disk exhibits directional characteristics during 
axial rotation. Under physiological loading conditions, the deformation 
pattern of the intervertebral disk during lateral rotation is nearly 
symmetrical. The maximum compressive strain is observed in the 
intervertebral disk’s posterior region opposite the rotation direction. In 
contrast, maximal tensile strain occurs in its anterior region aligned with 
the direction of rotation, specifically at the junction between ligamentum 
flavum and cartilage endplate. Consequently, during axial rotation of the 
spine, the posterior lateral region of the intervertebral disk experiences 
elevated compressive stress under axial loading conditions, particularly 
in scenarios involving greater compressive forces, which may represent 
a significant risk factor for IDD.

At the cellular level, loading conditions are pivotal in the 
pathogenesis of IDD. Mechanical stimuli profoundly influence cells’ 
physiology, indicating a reciprocal relationship between mechanical and 
biochemical factors that enhances their synergistic effects (8). Moreover, 
these factors can modify the cellular microenvironment by altering pH 
levels, hydration status, and permeability, subsequently impacting cell 
viability. Additionally, the phenotype and behavior of IVD cells are also 

modulated by mechanical stimuli (49). The investigation revealed that 
intermittent cyclic mechanical tension activates the canonical Wnt 
signaling pathway and the E-cadherin/β-catenin complex, thereby 
facilitating the degeneration of intervertebral disk endplate cartilage 
(50). Intermittent cyclic loading similarly induces morphological 
alterations in disk endplate cells, transitioning from polygonal to 
elongated shapes. Over time, the expression levels of type II collagen, 
aggrecan, and SOX-9 in these cells exhibit a time-dependent decline, 
whereas those of type I collagen, X-type collagen, and osteocalcin show 
an increase. These findings indicate that intermittent cyclic loading can 
directly promote the degeneration of disk endplate chondrocytes, 
resulting in the downregulation of chondrogenic gene expression 
alongside the upregulation of osteogenic gene expression (35). In 
summary, comprehending and modulating the biomechanical 
environment is crucial for preventing and managing IDD.

3.4 Other factors

In addition to the factors mentioned above, the progression of IDD 
is influenced by a variety of other elements, including inflammation, 
smoking, aging, and trauma, each contributing to the pathological 
processes associated with IDD through distinct mechanisms. In the 
pathological process of IDD, inflammatory factors, including tumor 
necrosis TNF-α, IFN-γ, and various interleukins, play a key role, 
particularly in promoting inflammatory responses (51). Chen et al. 
(52) revealed a positive feedback loop involving the activation of the 
IL-3β/NF-κB-NLRP1 inflammasome, where IL-1β stimulates myeloid 
cells. This is the first time it has been recorded that IL-1β increases 
NLRP3 inflammasome activity to aggravate IDD and promotes its 
expression in response to stimulation. Furthermore, a retrospective 
study showed that TNF-α not only accelerates the degeneration of the 
intervertebral disk but also exacerbates pain, with its concentration 
being positively correlated with the degree of degeneration (53). 
Recent research has elucidated the detrimental effects of unhealthy 
lifestyle choices, including obesity, alcohol misuse, and smoking, on 
human health. Notably, these adverse behaviors are associated with an 
elevated risk of inflammatory degenerative diseases, including 
IDD. Staszkiewicz et al. (54) highlighted that the degenerative process 
of IDD is influenced by lifestyle variations, which in turn affect the 
concentrations of neurotrophic factors NT-3 and NT-4, thereby 
facilitating the progression of IDD. Finally, the investigation conducted 
by Hutchinson et al. (55) examined the relationship between age and 
IDD. The results indicated that a comparative analysis of the lumbar 
spines of 6-month-old and 12-month-old mice revealed more 
pronounced degenerative alterations in the latter group. This study 
underscores that age is a critical determinant influencing both the 
progression and severity of IDD.

4 The association between lipid 
metabolic disorders and IDD

4.1 The implications of lipid metabolic 
disorders in IDD

Lipid metabolism encompasses digestion, absorption, synthesis, 
and degradation of fats in living organisms facilitated by various 
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enzymes. The metabolic products generated through this pathway 
include lipid mediators such as leptin, adiponectin, and progranulin 
(56), along with fatty acids and cholesterol derivatives (8). Leptin, a 
hormone secreted by adipose tissue, exhibits a positive correlation 
with body weight and plays a crucial role in the pathogenesis of IDD 
(57). Previous studies have investigated the relationship between 
leptin and IDD using bovine intervertebral disk model systems. The 
findings indicate that leptin alone has a relatively minor effect on 
cellular energy metabolism; however, within a pro-inflammatory 
environment, leptin demonstrates significant synergistic effects with 
cytokines, particularly IL-6. This interaction markedly enhances the 
production of NO, MMPs, and the expression of pro-inflammatory 
cytokines, thereby facilitating the progression of IDD (58). Similarly, 
Chen et  al. examined the relationship between single nucleotide 
polymorphisms (SNPs) of the leptin gene (LEP) and plasma leptin 
levels in patients suffering from IDD. They also analyzed how gender 
and obesity status influenced this association. The study included a 
total of 303 Taiwanese IDD patients and was the first to demonstrate 
a significant correlation between LEP gene polymorphisms and leptin 
levels specifically in obese women with IDD. Leptin is known to play 
a crucial role in the degenerative processes affecting intervertebral 
disks by promoting inflammatory responses and facilitating 
extracellular matrix degradation. However, further research is 
necessary to validate these findings across larger sample sizes and 
diverse ethnic populations (59). Adiponectin is an adipokine that 
exhibits dysregulation in obesity and plays a significant role in various 
pathological processes, including degenerative disk disease (60). Bin 
et al. (61) reported a decrease in the expression levels of adiponectin 
in IDD and NPCs. Furthermore, adiponectin has been shown to 
inhibit the expression of TNF-α in degenerated NPCs, thereby 
potentially delaying IDD. Recently, Hiroki et al. (62) discovered that 
the adiponectin receptor agonist AdipoRon can protect IVD from 
degeneration both in  vivo and in  vitro. Numerous studies have 
demonstrated that Progranulin (PGRN) exerts anti-inflammatory 
effects in both Rheumatoid Arthritis (RA) and Osteoarthritis (OA) 
(63). Elevated levels of PGRN are correlated with the amelioration of 
clinical symptoms. In a murine model of IDD, the absence of PGRN 
accelerates the degenerative process, as evidenced by an increase in 
osteoblast markers, depletion of proteoglycans, and upregulation of 
inflammatory mediators (64). The involvement of PGRN in IDD may 
be  linked to its regulation of cytokines such as IL-10 and IL-17, 
potentially mediated through TNFR1 and TNFR2 (65). Notably, 
engineered variants of PGRN are anticipated to inhibit the 
degeneration process induced by TNF-α, indicating that PGRN 
represents a promising therapeutic target for IDD, which necessitates 
further investigation in human studies (66). Jianye et  al. (67) 
demonstrated that the activity of the arachidonic acid metabolic 
pathway is positively correlated with the severity of IDD, and this 
metabolic activity is significantly enhanced in macrophages and 
neutrophils. Xiang et  al. (68) investigated the role of n-3 
polyunsaturated fatty acids (PUFAs) in IDD and its underlying 
mechanisms. By establishing IDD models in both wild-type (WT) and 
transgenic (TG) mice, the study demonstrated that TG mice exhibited 
an increased content of n-3 PUFAs and a reduced n−6/n−3 PUFAs 
ratio, which significantly decelerated the progression of IDD as well 
as the aging process of intervertebral disk cells.

Lipid metabolic disorders are widely recognized as a significant 
contributor to the onset and progression of various diseases, including 

cancer, type 2 diabetes, and osteoarthritis (69). Additionally, lipid 
metabolic disorders may contribute to the progression of 
atherosclerosis, resulting in diminished blood flow to the lumbar 
region and consequently heightening the risk of IDD, sciatica, and 
lower back pain (70, 71). Research indicates that elevated cholesterol 
levels may increase the risk of spinal degenerative disorders, including 
lumbar degeneration (72, 73). This may be attributed to obesity or 
being overweight (74). A case–control study conducted in China 
revealed that the ratios of total cholesterol (TC) to high-density 
lipoprotein cholesterol (HDL-C) and low-density lipoprotein 
cholesterol (LDL-C) to HDL-C were significantly associated with disk 
herniation. Furthermore, patients exhibiting elevated serum LDL-C 
levels demonstrated an increased risk of developing disk herniation, 
indicating that serum lipid profiles may serve as valuable predictors 
of disk degeneration within the Chinese population (75). Shortly 
thereafter, a comprehensive cross-sectional survey conducted among 
Japanese adults aged 40–64 residing in a foreign country revealed an 
association between HDL-C levels and the ratio of LDL-C to HDL-C 
with lower back pain (76). Similarly, Liang et  al. conducted a 
comprehensive analysis of the influence of lipid metabolic disorders 
on IDD and arrived at significant conclusions. Their findings indicate 
that elevated cholesterol levels in the bloodstream play a pivotal role 
in the pathogenesis of IDD, thereby underscoring the potential 
association between lipid metabolic disorders and IDD (77). A study 
investigating the severity of disk degeneration revealed that elevated 
triglyceride (TG) levels and abdominal obesity exert a more 
pronounced influence on the extent of disk degeneration, suggesting 
their pivotal role in the pathogenesis of IDD. Nonetheless, this 
investigation was constrained by a limited patient cohort and focused 
exclusively on phenotypes characterized as “healthy lipid but obese” 
and “dyslipidemic but not obese” (78). Recently, Huang et al. (72) 
conducted a comprehensive evaluation of the association between 
serum lipid levels and the extent of IDD, revealing that age, high-
density lipoprotein, and triglycerides significantly influence the degree 
of degeneration in patients with symptomatic lumbar degenerative 
disk disease who do not have underlying health conditions.

4.2 The impact of lipid metabolic 
byproducts on the functionality of CEP

The CEP is the primary conduit for nutrient delivery and 
metabolite exchange within the IVD (79). Previous research has 
demonstrated that a significant and independent decline in the CEP 
is associated with IDD, indicating that this decline may be a primary 
factor in the pathogenesis of IDD (80). Moreover, calcification of the 
CEP compromises its roles in nutrient transport, pressure regulation, 
and metabolite exchange within the intervertebral disk, thereby 
accelerating the onset and progression of IDD. Additionally, CEP near 
blood vessels may be  an early indicator or be  affected by lipid 
metabolism disorders (4).

Cartilage tissue is widely recognized for its high content of 
saturated fatty acids, which play a critical role in preserving its 
structural integrity and physiological functionality (81). Disruptions 
in lipid composition or metabolic processes can compromise the 
functional capacity of cartilage (81). Pathological calcification of 
cartilaginous tissue results in irreversible degeneration of the CEP, 
thereby obstructing the material exchange pathway between the 
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intervertebral disk and the vertebral vein. This obstruction leads to a 
continuous deterioration of the internal metabolic environment 
within the intervertebral disk, consequently accelerating its 
degeneration. Li et  al. (82) identified a ferritin-like iron-binding 
protein known as LTF, demonstrating a marked reduction in 
expression within degenerated human and rat CEP tissues. The 
downregulation of LTF is associated with enhanced calcification, 
accelerated aging, and degradation of the extracellular matrix in 
human chondrocytes.

Furthermore, an animal study has demonstrated that cholesterol 
is crucial in facilitating the differentiation and maturation of 
chondrocytes (83). As a critical component of cell membranes, 
cholesterol plays a pivotal role in maintaining membrane function 
and fluidity; thus, any alteration in its levels may disrupt these 
properties, potentially resulting in aberrant cellular behavior and 
excessive cholesterol accumulation (84). Consequently, 
hypercholesterolemia could facilitate lipid oxidation and deposition 
within tissues, ultimately contributing to cartilage degeneration 
(85). A comprehensive examination of risk and lifestyle factors in 
patients with degenerative spinal diseases indicates that elevated 
levels of low-density lipoprotein cholesterol and triglycerides are 
correlated with a heightened risk of disk herniation (86). Oxidized 
low-density lipoprotein (ox-LDL) is a product of lipid peroxidation 
derived from the oxidative modification of low-density lipoprotein 
(LDL), which serves as a significant pathogenic factor in lipid 
metabolism disorders (87, 88). Tang et al. thoroughly investigated 
the effects of lipid metabolism disorders, particularly 
hyperlipidemia (HLP), on IDD. Their systematic analysis confirmed 
that HLP contributes to the degeneration of cartilage endplates and 
enhances the expression of oxidized low-density lipoprotein 
(ox-LDL) and its receptor LOX-1, thereby promoting both aging 
and calcification of the CEP, which ultimately facilitates the 
progression of IDD in the context of persistent lipid metabolism 
disturbances (10).

In addition to the studies above, certain metabolic byproducts of 
lipids have been shown to exert specific effects on the cartilage end 
plate, as reported by Chen et al. (85). Their research indicates that 
under conditions of estrogen deficiency, these byproducts can 
promote osteoclastogenesis, resulting in pathological alterations in the 
cells of the cartilage end plate. In the investigation conducted by 
Zhang et al. (89), the effects of melatonin on apoptosis and calcification 
in terminal cells were thoroughly examined. The findings indicated 
that melatonin intervention significantly reduced the apoptosis rate in 
terminal cells and inhibited cell calcification, thereby decelerating 
IDD progression. The research team led by Han et al. (90) investigated 
the influence of leptin on calcification of the CEP. By developing a rat 
model of IDD, they found that during CEP cell calcification, there was 
a significant increase in leptin expression levels, which closely 
correlated with the progression of IDD. This study indicates that leptin 
may facilitate CEP cell calcification. In a survey conducted by Hua 
et al. (91), a positive correlation was observed between IDD and the 
levels of matrix metalloproteinase-1 (MMP-1) and leptin. Subsequent 
investigations further elucidated the effects of leptin on MMP-1 
expression in human intervertebral disk chondrocyte-derived stem 
cells, particularly SV40 cells, along with its underlying mechanisms. 
The findings revealed that leptin activated the RhoA/ERK1/2/NF-kB 
signaling pathway, thereby enhancing MMP-1 expression in SV40 
cells and facilitating the progression of IDD.

The collective findings of this research underscore the pivotal role 
of lipid metabolism and its derivatives in preserving cartilage tissue 
health, including that of the cartilage endplate. They also elucidate a 
potential association between dysregulation of lipid metabolism and 
IDD. This discovery offers significant insights for further investigation 
into the implications of aberrant lipid metabolism in the 
pathogenesis of IDD.

4.3 The impact of lipid metabolic 
byproducts on the functionality of NP

The unique structural composition of NP endows it with 
exceptional elasticity and a remarkable capacity for water absorption 
and swelling, which are crucial for preserving the height of 
intervertebral disks and providing cushioning against mechanical 
stress, thereby safeguarding the vertebrae and spinal cord from 
potential injury (16, 17). In the pathological progression of IDD, the 
excessive aging and apoptosis of NPCs are pivotal factors. Cholesterol, 
a crucial byproduct of lipid metabolism, has been extensively 
acknowledged for its significant influence on the pathogenesis of 
degenerative disk diseases. Apolipoprotein E (ApoE), a structural 
protein associated with high-density lipoprotein, is essential in 
maintaining cholesterol homeostasis (92). Zhou et al. (93) found that 
knocking out ApoE promoted apoptosis of NP and AF cells, ECM 
degradation, and calcification of CEP. Cholesterol levels were elevated 
in both human and rat degenerative NP tissues. Their in vitro studies 
showed that cholesterol loading upregulated the pro-cholesterol-
regulating element-binding protein 1 (SREBP1) expression, leading to 
endoplasmic reticulum stress. They found that knocking out SREBP1 
weakened cholesterol-induced NP cell apoptosis and restored the 
production of aggrecan and type II collagen, which helped slow down 
the progression of IDD (94). Recent research has demonstrated that, 
alongside apoptosis, pyroptosis represents a critical form of cell death 
implicated in IDD (95). Research indicates that the concentration of 
apoptotic cell death markers in degenerative intervertebral disk tissue 
is significantly elevated compared to normal intervertebral disk 
tissue (96).

Moreover, SD rats subjected to a high-cholesterol diet exhibited 
more pronounced IDD compared to those on a normal diet. Recent 
studies have confirmed that the degeneration of intervertebral disks is 
intricately linked to the onset of pyroptosis in NP cells. This form of 
pyroptosis is characterized by dysregulated fatty acid metabolism 
within NP cells under degenerative pathological conditions, while an 
inflammatory microenvironment and extracellular matrix degradation 
further exacerbate this process (97). To address this issue, Wang 
developed a composite of fibrinogen hydrogels (FG@PEV), which 
effectively modulates the abnormal fatty acid metabolism in NPCs by 
regulating the synthesis and degradation of the extracellular matrix. 
This intervention prevents cell pyroptosis and mitigates disk 
degeneration (97). It has been reported that the expression levels of 
adiponectin, a fatty factor with anti-inflammatory properties, are 
significantly downregulated in the degenerated NP of humans. The 
study conducted by Wu et al. corroborated this finding, demonstrating 
that adiponectin can effectively inhibit lipopolysaccharide-induced 
apoptosis in NPCs (98). Chen et al. underscored the pivotal role of 
palmitic acid (PA) in the pathogenesis and disease-associated 
phenotypes of IDD. Their findings revealed a significant accumulation 
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of lipid droplets in the nuclei of NPCs in late-stage IDD samples. 
Subsequent investigations indicated that the abnormal buildup of PA 
in IDD-affected spinal cord cells resulted in lipid droplet formation 
and cellular senescence, which is attributable to prolonged PA 
exposure (99). Under physiological conditions, serum levels of leptin 
are directly proportional to body fat storage. By binding to its receptors 
(leptin receptor, LepR) on target cells, leptin activates associated 
signaling pathways that play a crucial role in processes such as 
inflammation and cellular metabolism (100). Gao et  al. (101) 
investigated NP cells derived from surgical specimens of 20 patients 
suffering from degenerative disk disease or scoliosis, with an average 
age of 36 years. Their findings revealed a significant decline in the 
proportion of leptin receptor-positive (LepR-positive) cells with 
increasing degrees of disk degeneration, from 75% at grade II to 32% 
at grade V, according to the Pfirrmann classification.

Additionally, obesity has been demonstrated to facilitate IDD 
through non-mechanical pathways, with the underlying mechanism 
involving alterations in free fatty acid concentrations that may 
adversely affect cellular metabolism (11). Zhang et al. (11) conducted 
a retrospective study to review the IDD severity of 128 volunteers. 
They compared it with obesity-related factors, including body weight, 
body mass index (BMI), and serum lipid levels. The study found that 
volunteers in the IDD group had increased age, BMI, and serum 
triglyceride levels. Further animal experiment results showed that 
obesity aggravates the development of IDD by activating the MAPK 
signaling pathway, leading to increased apoptosis of NPCs and 
imbalanced extracellular matrix metabolism. The global trend of 
physical inactivity has contributed to a rising incidence of diseases 
such as obesity and diabetes (102, 103). To address this issue, Zhengqi 
et al. (104) examined the interaction between exercise and IDD. Their 
study revealed that Meteorin-like protein (Metrnl) (105), a newly 
identified muscle-derived factor involved in lipid metabolism 
regulation, was upregulated in the muscles, serum, and NP tissue of 
exercised rats. Specifically, Metrnl enhances lipid utilization in NPCs 
by activating peroxisome proliferator-activated receptor α (PPARα), 
which subsequently activates carnitine palmitoyltransferase 1A 
(CPT1A), the rate-limiting enzyme in fatty acid β-oxidation. This 
metabolic pathway mitigates extracellular matrix degradation and 
cellular senescence in NPCs. However, another study demonstrated 
that high-fat diet-induced obesity is associated with LBP but not with 
structural degeneration of the intervertebral disk (106). Therefore, the 
relationship between obesity and IDD appears to be complex and 
multifaceted, warranting further investigation into their 
potential connections.

Interestingly, Recent studies have intriguingly highlighted the 
potential involvement of the gut microbiome and its metabolic 
byproducts in the pathogenesis of IDD. Wang et al. (107) identified 
that Allobaculum, belonging to the Firmicutes phylum and Clostridia 
genus, was significantly associated with lipid metabolic products and 
played a crucial role in IDD development.

5 The molecular mechanisms 
underlying lipid metabolic disorders 
promoting IDD development

Figure 3 demonstrates that lipid metabolism disorders can lead to 
a range of detrimental effects, including heightened oxidative stress, 

induction of endoplasmic reticulum stress, activation of immune cells, 
pyroptosis, apoptosis, suppression of autophagy, and the promotion 
of intervertebral disk cartilage calcification through various 
mechanisms (108), collectively influencing the onset and progression 
of IDD (Figure 3). These mechanisms are interconnected, forming a 
complex network that drives the pathological advancement of 
IDD. Therefore, it is crucial to investigate the underlying mechanisms 
by which lipid metabolism disorders contribute to IDD to develop 
novel therapeutic strategies.

5.1 Lipid metabolic disorders promote IDD 
development by activating oxidative stress 
response

Oxidative stress is the dysregulation between the production of 
reactive oxygen species (ROS) and the functionality of the antioxidant 
defense system within biological systems. ROS encompasses a group 
of highly reactive and unstable chemical entities, which may or may 
not include free radicals, such as superoxide anion, hydroxyl radical, 
hydrogen peroxide, and hypochlorite ion (109, 110).

In the pathological progression of IDD, the substantially generated 
reactive oxygen species (ROS) suggest a correlation between the rate 
of disk degeneration and elevated ROS (111). Huang et al. revealed 
that the levels of various oxidative stress biomarkers, such as 
phospholipase A, fructosamine, malondialdehyde, oxidative potential, 
total peroxide, advanced oxidation protein products, and nitric oxide 
(NO), were significantly elevated in the plasma of patients with IDD 
or in rat models. These elevations may damage DNA, disrupt lipid 
metabolism, and affect protein synthesis (112). Pathological lipid 
metabolic disorders trigger the beta-oxidation of fatty acids, resulting 
in the accumulation of toxic metabolic byproducts that subsequently 
impair cellular function through various mechanisms, including 
excessive production of ROS, endoplasmic reticulum stress, and 
mitochondrial dysfunction (109, 110). Consequently, lipid metabolic 
disorders and oxidative stress exhibit a significant correlation in IDD.

Lipid metabolic disorders may influence the development or 
progression of IDD through its interactions with oxidative stress. 
Previous research has demonstrated that oxidized low-density 
lipoprotein (ox-LDL) can induce excessive expression of dynamin-
related protein 1 (Drp1) and promote the production of mitochondrial 
ROS, which in turn leads to apoptosis of AF cells and accelerates the 
progression of IDD (113). Ferroptosis is a newly identified form of 
regulated cell death, distinguished by dysregulation of iron 
metabolism, lipid peroxidation, and a Fenton reaction facilitated by 
free iron ions. In their study, Yang et  al. (114) investigated the 
involvement of ferroptosis in the pathogenesis of IDD. Utilizing an 
in vitro experimental model, the research team noted alterations in the 
expression levels of ferroptosis markers under oxidative stress 
conditions alongside increased lipid peroxidation levels. These 
findings underscore the potential contribution of oxidative stress-
induced ferroptosis to the development of IDD. In a recent study, Yao 
et  al. (13) developed an IDD model. They demonstrated that the 
activity of the transcription factor BACH1 was significantly elevated 
in IDD tissues derived from rats. The findings indicated that BACH1 
plays a crucial role in mediating oxidative stress, iron dysregulation, 
and lipid metabolism within NPCs by modulating the HMOX1/GPX4 
signaling pathway, thereby facilitating the progression of IDD.
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Additionally, some researchers have identified iron overload as a 
significant risk factor for IDD. Wang et al. (79) have elucidated the 
mechanisms through which iron overload induces oxidative stress and 
ferroptosis, subsequently promoting calcification of the cartilage 
endplate via comprehensive experimental investigations. Furthermore, 
Yang et al. (115) investigated the protective effects of astaxanthin (Ast) 
on intervertebral disk degeneration-related endplates of the vertebral 
body and elucidated its potential molecular mechanisms. The study 
revealed that astaxanthin ECM stability mitigates calcium deposition 
and reduces apoptosis in CEP cells by activating the Nrf-2/HO-1 
signaling pathway, promoting mitophagy, alleviating oxidative stress, 
and inhibiting ferroptosis in CEP cells. The elevation of tissue stiffness 
is intricately associated with various pathological processes, including 
fibrosis, inflammation, and aging. During the degenerative progression 
of intervertebral disks, the matrix stiffness of NP progressively 
increases. Research conducted by Ke et al. (116) indicates that in NP 
cells exhibiting heightened stiffness, there is an upregulation in the 
expression of Acyl-CoA synthetase long-chain family member 4 
(ACSL4), which subsequently facilitates lipid peroxidation and 
ferroptosis within NP cells.

Moreover, oxidative stress is implicated in the aging of 
intervertebral disk cells (111), while monoacylglycerol lipase (MAGL) 
serves as the principal enzyme responsible for the hydrolysis of 
2-arachidonoylglycerol (2-AG), facilitating the breakdown of 
monoglycerides into glycerol and fatty acids. MAGL is pivotal in 
various pathological processes, including pain, inflammation, and 
oxidative stress. In this study, Fan et al. employed an NPC aging model 

induced by lipopolysaccharide (LPS) alongside a rat IDD model 
induced by needle puncture to investigate the role of MAGL in both 
ex vivo and in vivo contexts related to IDD. The findings strongly 
indicate that inhibiting MAGL can significantly attenuate disk aging 
through its interaction with STING and may delay the progression of 
IDD (117).

5.2 Lipid metabolic disorders promote IDD 
development by eliciting an endoplasmic 
reticulum stress response

Numerous studies have demonstrated that endoplasmic 
reticulum stress (ERS) is a critical factor in the degeneration of IDD 
(118–120). Considering that the intervertebral disk is a region of 
high mechanical stress for protein synthesis, the endoplasmic 
reticulum (ER) is consequently more vulnerable to the pressures 
associated with protein synthesis and folding (121). The ER plays a 
crucial role in preserving the intervertebral disk’s normal 
physiological structure and function. Endoplasmic reticulum stress 
(ERS) activates cellular apoptosis and is linked to inflammation, 
oxidative stress levels, and calcium homeostasis (121). ERS can 
be  triggered by the abnormal accumulation of misfolded or 
improperly folded proteins, and it is implicated in the 
pathophysiological mechanisms underlying musculoskeletal 
disorders, including IDD (118, 122, 123). Notably, the unfolded 
protein response (UPR) enhances the surface area of the endoplasmic 

FIGURE 3

Molecular mechanisms underlying lipid metabolic disorders that facilitate the progression of intervertebral disk degeneration (By Figdraw).
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reticulum membrane by upregulating genes associated with lipid 
metabolism, thereby increasing the capacity of the endoplasmic 
reticulum (124). Likewise, recent investigations provide additional 
evidence supporting the intricate relationship between lipid 
metabolism and the endoplasmic reticulum (125, 126). Previous 
research has unequivocally demonstrated that cholesterol is integral 
to the pathogenesis of IDD. In this context, Yan et  al. (94) 
experimentally observed that rat NP cells with exogenous cholesterol 
exhibited enhanced pyroptosis and ECM degradation. These results 
further substantiate the pivotal role of ER stress in mediating 
cholesterol-induced pyroptosis and ECM degradation in NP cells. 
Chen et al. (127) clarify that LPS activates the endoplasmic reticulum 
stress (ERS)-C/EBP homologous protein (CHOP) signaling pathway 
and the ERS-mediated autophagy process, inducing pyroptosis in 
NPCs and thus delaying the progression of IDD. Bone marrow-
derived mesenchymal stem cell exosomes (MSC-exosomes) mitigate 
endoplasmic reticulum stress-induced apoptosis and enhance IDD 
recovery by activating the AKT and ERK signaling pathways (122). 
Hydrogen sulfide (H2S) is a gaseous signaling molecule that has 
garnered significant attention for its anti-apoptotic properties in 
various degenerative diseases. The study conducted by Xu et  al. 
further elucidates the role of H2S in mitigating endoplasmic 
reticulum stress and mitochondrial damage within NPCs, thereby 
conferring protective effects against IDD (128). Teng et al. conducted 
a comprehensive investigation into the effects of fucoxanthin (FX) 
on oxidative stress-induced damage in NP cells, elucidating its 
potential molecular mechanisms through both in vivo and in vitro 
experiments. Their findings indicate that oxidative stress triggers 
endoplasmic reticulum stress (ERS), apoptosis, and ECM degradation 
within NP cells (129). Eicosapentaenoic acid (EPA) is an endogenous 
omega-3 fatty acid present in various plant and animal sources, 
playing a pivotal role in the growth and development of mammals 
(130). Prior research has demonstrated that EPA can selectively 
augment the autophagic activity within cells (131). Building upon 
this discovery, Lin et al. investigated the mechanisms underlying the 
role of EPA in IDD. Their experimental findings demonstrate that 
EPA significantly enhances autophagy activity in NPCs, mitigates 
endoplasmic reticulum stress, reduces cellular apoptosis, and confers 
a protective effect on ECM synthesis and degradation. Moreover, 
in vivo studies reveal that EPA ameliorates IDD progression induced 
by needle puncture in rat models (131).

5.3 Lipid metabolic disorders promote IDD 
development by triggering cellular 
pyroptosis/apoptosis/inhibiting autophagy

Autophagy is crucial in removing dysfunctional and excessive 
cellular organelles, such as peroxisomes, mitochondria, nuclei, 
lysosomes, and ribosomes, ensuring cell survival. During the process 
of organelle degradation, autophagosomes serve to supply essential 
nutrients to the cell. The lipid catabolism occurring within the 
autophagosome/lysosome facilitates the release of fatty acids for 
mitochondrial oxidation, ultimately leading to the generation of 
acetyl-CoA (132). The activation of autophagy serves a vital protective 
role in IDD by promoting cell survival and inhibiting apoptosis, 
thereby underscoring its fundamental function in cellular protection 

(133). Furthermore, autophagy-mediated cell death, a distinct form of 
autophagic cell death that operates independently of other cell death 
modalities, has been unequivocally characterized (134).

Recent reports indicate a significant interplay between lipid 
metabolism and autophagy. Li et al. (135) demonstrate that starvation-
induced autophagy markedly influences lipid metabolism, 
encompassing free fatty acid, glycerophospholipid, and sphingolipid 
metabolism. These findings elucidate the pivotal role of autophagy in 
lipid metabolic processes, particularly its regulatory function in 
energy production and autophagosome formation, as well as its 
implications for cellular protection and apoptosis under nutritional 
stress conditions. Cheng et al. (136) explored how damage caused by 
partner-mediated autophagy (CMA) in the degradation process of 
phospholipase Cγ1 (PLCG1) promotes cell aging and IDD through 
the regulation of CMA on intracellular calcium flux. The study 
confirms that PLCG1 is a key mediator of CMA in regulating 
intracellular calcium flux in cells. Due to the blockage of CMA, 
PLCG1 accumulates abnormally, leading to calcium overload and 
inducing cellular senescence of NPCs, thus causing IDD. Dan et al. 
(137) demonstrated that the overexpression of ARRB1 inhibits 
apoptosis and extracellular matrix degradation in rats, enhances 
autophagy in NPCs, and attenuates the progression of IDD. Li et al. 
(138) found that compressive stress can induce autophagy in NPCs 
through the modulation of the PI3K/AKT/mTOR signaling pathway 
associated with ROS, subsequently activating the JNK signaling 
pathway, thereby ameliorating IDD induced by compressive stress. 
Zhang et al. (139) established a model of chondrocyte endplate stem 
cell (CESC) degeneration induced by tensile loading in a large rabbit 
model experiment in 2023. They found that inhibiting the expression 
of JNK and ERK could suppress the phosphorylation of Raptor and 
mTOR, thereby improving autophagy levels in the mTOR signaling 
pathway and alleviating the degradation of CESC.

Generally, autophagy is intricately linked to the mechanisms of 
cell apoptosis and cell death (140, 141). A complex interplay exists 
between autophagy and apoptosis, characterized by the involvement 
of various shared regulatory factors and signaling pathways (142). 
Irisin is a myokine released from the membrane-bound precursor 
protein fibronectin type III domain-containing protein 5 (FNDC5) 
following proteolytic cleavage, and its levels are elevated in response 
to physical exercise (143); as an exercise-induced myokine, it facilitates 
lipid metabolism (144, 145). Based on these results, Zhou et al. (146) 
investigated the role of FNDC5/irisin in mediating the effects of 
physical activity on IDD. For the first time, they confirm from a 
muscle-derived factor perspective that physical activity modulates 
autophagy levels within the NP of intervertebral disks via FNDC5/
irisin, thereby mitigating the progression of IDD. Wang et al. (147) 
demonstrated that KuA (salidroside) mitigates neuronal cell death, 
ECM deposition, and inflammatory responses induced by LPS in 
NPCs through the activation of the phosphatidylinositol 3-kinase/
protein kinase B (PI3K/Akt) signaling pathway, thereby contributing 
to the alleviation of IDD.

Pyroptosis, a recently identified form of inflammatory 
programmed cell death occurring in macrophages, is contingent upon 
the activation of caspase-1. Beyond its role in significantly diminishing 
immune cell populations, pyroptosis can also incite excessive 
inflammatory responses within the organism, resulting in tissue and 
organ damage and potentially culminating in mortality (148, 149). The 
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study conducted by Wu et  al. unequivocally established a direct 
correlation between pyroptosis and ferroptosis in the progression of 
IDD. Their findings reveal that glutamine facilitates the 
deubiquitination of Nrf2 while concurrently inhibiting lipid oxidation 
in NPCs, thereby effectively mitigating cellular processes induced by 
oxidative stress, including pyroptosis, ferroptosis, and ECM 
degradation (150). Recent investigations by scholars have elucidated 
the role of EZH2-H3K27me3-mediated epigenetic silencing in the 
activation of NLRP3 and NAIP/NLRC4 inflammasome pathways, 
thereby inducing pyroptosis in NPCs (151). Similarly, Yu et  al. 
demonstrated that PR/SET domain 1 (PRDM1) expression was 
markedly elevated in degenerated NP and NPCs. Furthermore, they 
found that the overexpression of PRDM1 intensifies pyroptosis in 
NPCs, thereby facilitating the progression of IDD (152).

6 Conclusion

Lipid metabolic disorders are widely recognized as a contributing 
factor to the onset and progression of various diseases, including 
cancer, type 2 diabetes mellitus (T2DM), and osteoarthritis (69). Jin 
et al. (153) employed Mendelian randomization analysis to evaluate 
the relationship between T2DM and IDD. Their study found that, 
even after adjusting for body mass index (BMI), T2DM remains a 
causally related risk factor for IDD. According to previous studies, 
T2DM induced by leptin receptor knockout can lead to IDD through 
increased MMP3 levels and exacerbated cellular apoptosis (154). 
Ding-Qiang et  al. (155) utilized Mendelian randomization (MR) 
analysis in conjunction with genome-wide association study (GWAS) 
data to investigate the causal relationship between T2DM and IDD, as 
well as to quantify the mediating effect of triglycerides in this 
association. The results demonstrated that T2DM increases the risk of 
IDD, with a portion of this increased risk mediated by TG. Specifically, 
TG accounts for 11.4% of the effect of T2DM on IDD.

In addition, lipid metabolic disorders contribute to the 
progression of atherosclerosis, resulting in diminished blood flow to 
the lumbar region and consequently heightening the risk of IDD, 
sciatica, and lower back pain (70, 71). A recent study examined 
intervertebral disk cells obtained from patients with IDD and  
healthy subjects, revealing that the levels of various lipid 
metabolites—including triacylglycerol, diacylglycerol, fatty acids, 
phosphatidylcholine, lysophosphatidylinositol, and sphingomyelin—
were significantly reduced in degenerated intervertebral disk cells. 
Conversely, the levels of bile acids and ceramides were found to 
be elevated. These findings suggest a metabolic shift in intervertebral 
disk cells from glycolysis toward fatty acid oxidation, which may 
ultimately contribute to cell death and facilitate the progression of IDD 
(156). As mentioned above, Kaye et al. (112) observed that the levels of 
various oxidative stress biomarkers—such as phospholipase A, 
fructosamine, malondialdehyde, peroxidation potential, total hydrogen 
peroxide, advanced oxidation protein products, and NO—were 
significantly elevated in the plasma of patients with IDD or in rat 
models. These alterations may contribute to DNA damage and disorders 
in lipid metabolism and protein synthesis. Yan et al. (94) conducted 
experiments that demonstrated rat NP cells treated with exogenous 
cholesterol exhibited accelerated pyroptosis and degradation of 
ECM. These findings underscore the critical role of endoplasmic 

reticulum stress in mediating cholesterol-induced pyroptosis in NP 
cells, as well as the subsequent degradation of ECM. The findings of 
Dan et al. demonstrated that the overexpression of ARRB1 can inhibit 
apoptosis and extracellular matrix degradation in rat cells, promote 
autophagy in NPCs, and delay the progression of IDD (137). Zhang 
et al. (139) established a model of chondral endplate stem cell (CESC) 
degeneration induced by tensile load in a large white rabbit model. 
Their findings indicate that the inhibition of JNK and ERK expression 
can suppress the phosphorylation of Raptor and mTOR, thereby 
enhancing the autophagy levels of CESC within the mTOR signaling 
pathway and mitigating its degradation. In summary, Lipid metabolic 
disorders primarily contribute to the degeneration of CEP, NP and 
other structures through the activation of inflammatory responses, 
which in turn trigger endoplasmic reticulum stress, elevate oxidative 
stress levels, promote cell death and pyroptosis, and inhibit autophagy. 
These interconnected mechanisms form a complex network that 
collectively drives the pathological progression of IDD. The significance 
of lipid metabolism in IDD has garnered increasing attention within the 
academic community. A deeper understanding of lipid metabolism’s 
role in IDD elucidates the underlying mechanisms of lumbar 
intervertebral disk degenerative diseases. It offers novel strategies and 
targets for their prevention and treatment. For instance, Wang et al. (97) 
developed a natural hydrogel composite that ameliorates IDD by 
modulating fatty acid metabolism and inhibiting pyroptosis in NPCs. 
A cross-sectional observational study investigated the relationship 
between lipid-lowering medications and degenerative disk disease, 
sciatica, and LBP, revealing a significant positive correlation between 
the non-use of statins and the incidence of LBP (157). Zhang et al. (158) 
substantiated this perspective, demonstrating that rosuvastatin is a 
promising therapeutic agent for ameliorating IDD.

Lipid metabolites have the potential to serve as biomarkers for 
intervertebral disk injury, offering novel insights for early diagnosis and 
treatment. Nevertheless, current research faces several limitations: the 
pathological mechanisms underlying IDD are exceedingly complex, 
encompassing genetic, biomechanical, and cellular biological factors, 
among others. Lipid metabolism represents merely one facet of this 
intricate process. Our understanding of how lipid metabolism interacts 
with these various factors remains limited. Many studies predominantly 
utilize animal models or in  vitro cell experiments that may not 
adequately replicate the complexities inherent to human 
IDD. Furthermore, given that IDD is a protracted developmental 
process, numerous investigations lack long-term follow-up data; thus, 
our comprehension of the enduring effects of lipid metabolic disorders 
on IDD is constrained. Future research should prioritize 
interdisciplinary collaboration and comprehensive approaches to 
elucidate fully the pathological mechanisms associated with IDD and 
devise holistic prevention strategies. Through such collaborative efforts 
across disciplines, significant advancements in preventing and treating 
IDD are anticipated.
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