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Polycystic ovary syndrome (PCOS) is a multifaceted endocrine disorder characterized 
by irregularities in gonadotropin secretion, hyperandrogenism, chronic anovulation, 
and polycystic ovarian morphology. In addition, it is often associated with metabolic 
dysfunctions, most notably insulin resistance (IR). This disorder affects approximately 
6–20% of individuals, primarily emerging during early adolescence, and considerably 
increases the risk of conditions such as impaired glucose tolerance, type 2 diabetes, 
endometrial cancer, cardiovascular diseases, dyslipidemia, and postpartum 
complications. To date, there is no standardized protocol for treating PCOS. 
Existing therapies primarily rely on personalized pharmacotherapy and lifestyle 
modifications. However, these treatments may often lead to adverse effects, and 
most medications prescribed for PCOS are used off-label and have not secured 
approval from the U.S. Food and Drug Administration specifically for this condition. 
Recently, natural compounds have garnered considerable attention due to their 
efficacy in hormone modulation and minimal toxicity. Substances such as myo-
inositol, resveratrol, berberine, and quercetin have shown promise in mitigating 
PCOS symptoms. Their multi-target properties offer the potential to achieve 
outcomes unattainable by single-target pharmaceuticals, particularly in managing 
heterogeneous conditions. This review aims to comprehensively analyze in vivo 
and in vitro research alongside clinical interventions to evaluate the influence of 
natural compounds on the prevalence of PCOS and their therapeutic potential. 
These investigations lay the groundwork for developing innovative therapeutic 
strategies for PCOS.
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1 Introduction

PCOS is a heterogeneous endocrine disorder characterized by abnormal gonadotropin 
secretion, hyperandrogenism, persistent anovulation, and polycystic ovarian morphology. It 
is also associated with metabolic irregularities such as insulin resistance (IR) (1, 2). The 
prevalence of PCOS ranges from 6 to 20%, primarily manifesting during early adolescence (3). 
PCOS significantly elevates the risk of impaired glucose tolerance, type 2 diabetes (4), 
endometrial cancer (5), cardiovascular diseases, dyslipidemia (6), and postpartum 
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complications (7). It also negatively impacts reproductive, metabolic, 
and psychological health (8). Research into the pathogenesis of PCOS 
remains limited (9), but current evidence highlights a notable 
association between hormonal fluctuations and PCOS pathogenesis, 
particularly in the levels of insulin, luteinizing hormone (LH), follicle-
stimulating hormone (FSH), androgens, estrogens, and progesterone 
(10) (Figure 1).

To our knowledge, no unified standard for treating PCOS 
currently exists (11, 12). Since it cannot be completely cured, clinical 
treatment focuses on individualized drug therapy targeting specific 
symptoms, particularly hormonal medications. However, side effects 
are relatively common. For instance, anti-androgen medications 
reduce the biological effects of androgens through various 
mechanisms, thereby improving hirsutism and restoring ovulation 
(13, 14), but they may have potential hepatotoxicity (15). Combined 
oral contraceptives, which contain progestins and/or estrogens, are the 
most widely used drugs for PCOS (16). They regulate the menstrual 
cycle, prevent endometrial hyperplasia, and alleviate hyperandrogenic 
symptoms. However, long-term use raises the risks of IR, venous 
thrombosis (17), and menopausal concerns (18). Anti-estrogen 
medications, such as clomiphene citrate (CC), are first-line treatments 
for anovulatory infertility (19), but they can overstimulate the ovaries, 
leading to multiple pregnancies (20). Metformin significantly 

improves IR and hyperandrogenism, and its combination with CC 
enhances its ovulation-inducing effect (21, 22). Studies have also 
found that metformin positively affects the offspring of PCOS-IR rats 
(23). However, although thiazolidinediones, which are also insulin 
sensitizers, may cause adverse effects such as fluid retention and 
weight gain, their use is not recommended (19). Spironolactone 
improves hirsutism (24) but may cause intermenstrual bleeding (25). 
In addition, most of these drugs are used off-label and have not been 
approved by the U.S. Food and Drug Administration (FDA) for PCOS 
treatment (26).

Despite challenges in PCOS targeted therapy, natural products 
are gaining attention for their broad therapeutic potential (27). 
These compounds notably affect hormone regulation, and, being 
primarily derived from natural sources such as plants, animals, or 
microbes, they generally exhibit favorable safety profiles with low 
toxicity. Moreover, most natural compounds have multifaceted 
properties, allowing them to achieve outcomes that single-target 
medications cannot, especially in heterogeneous diseases. They can 
serve as complementary therapies, improving efficacy, reducing 
side effects, and decreasing reliance on prescription drugs when 
combined with traditional treatments (28–30). Several reviews 
have examined the effects of natural compounds on PCOS, but 
they often lack an in-depth analysis of hormone regulatory 

FIGURE 1

Hormones are involved in the pathogenesis of PCOS. This figure depicts the mechanism by which hypothalamic release of gonadotropin-releasing 
hormone (GnRH) activates the pituitary gland, stimulating the secretion of luteinizing hormone (LH) and follicle-stimulating hormone (FSH). LH 
facilitates the conversion of cholesterol into androgens in the ovaries. Concurrently, FSH, aided by the enzyme aromatase, promotes the conversion of 
androgens into estrogens. The resulting increase in estrogen levels causes a spike in LH, which triggers ovulation, showcasing the positive feedback 
loop between estrogen and LH. After ovulation, the corpus luteum produces progesterone and estrogen. These hormones exert negative feedback on 
LH and FSH, thereby regulating their levels. This cyclical process represents the normal human menstrual cycle. However, in conditions like polycystic 
ovary syndrome (PCOS), this hormonal regulation may become impaired, resulting in abnormal hormone levels.
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FIGURE 2

Chemical structures of relevant natural compounds. The figure illustrates the chemical structures of all individual compounds discussed in the article 
that can affect hormone levels in PCOS, categorized by polyols, terpenoids, endogenous metabolites, alkaloids, phenolics, flavonoids, organic acids, 
vitamins, and trace elements.
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mechanisms or focus primarily on herbal extracts. This review 
aims to fill this gap. We  focus on single-component natural 
compounds with well-defined mechanisms, such as terpenes, 
polyols, phenolics, and flavonoids. By reviewing preclinical and 
clinical studies, we explore their hormonal effects and therapeutic 
potential in PCOS, thereby providing a more reliable basis for 
clinical treatment.

2 Methods

This review collected studies on the effects of natural compounds 
on hormonal regulation in PCOS by searching the PubMed and 
PubMed Central databases. The search terms included, but were not 
limited to, “Polycystic Ovary Syndrome,” “PCOS,” “hormonal 
regulation,” “natural compounds,” “natural products,” “insulin 
resistance,” and “hyperandrogenism.” All collected articles and their 
references were reviewed, with a focus on natural compounds with 
well-defined chemical structures. Studies were excluded if they were 
not peer-reviewed, not in English, unrelated to hormonal regulation, 
or involved complex multi-component formulations.

3 Natural compounds in PCOS 
management

This study primarily involves the following categories of natural 
compounds (Figure 2). Polyols are organic compounds with multiple 
hydroxyl groups (-OH) directly attached to saturated carbon atoms 
and are widely found in nature. Terpenoids are classified based on the 
number of isoprene units, including monoterpenes, diterpenes, 
triterpenes, tetraterpenes, and sesquiterpenes. With over 40,000 
known types, they are the largest class of plant metabolites, widely 
used in food, pharmaceuticals, chemicals, and biofuel development, 
with properties including antimalarial, anticancer, and hypoglycemic 
effects (31). Polysaccharides, complex macromolecules, are major 
components of traditional Chinese medicine, such as Astragalus, 
Ginseng, and Goji berries. Owing to their broad biological activities, 
they attract significant attention in research (32). Flavonoids, a 
subclass of phenolics, consist of two aromatic carbon rings connected 
by a three-carbon bridge. Both flavonoids and phenolics share several 
biological activities, such as antioxidant, anti-inflammatory, 
antimicrobial, anticancer, cardioprotective, and immune-boosting 
effects, which contribute significantly to disease prevention and 
treatment (33, 34). Alkaloids are organic compounds containing 
nitrogen atoms and exhibit potent antibacterial, antifungal, and 
antiviral activities. Although some are toxic, they also have significant 
therapeutic potential (35). Organic acids are compounds containing 
carboxyl groups (-COOH), which typically exhibit acidic reactions 
and may also contain other functional groups. Based on existing 
literature, other related compounds are classified as endogenous 
metabolites, vitamins, and trace elements.

4 Insulin in the pathogenesis of PCOS

Insulin is a primary anabolic hormone produced by 
pancreatic β-cells. It plays a crucial role in regulating the 

metabolism of glucose, lipids, and proteins. Its main function is 
to store energy when energy intake exceeds energy expenditure 
(36, 37). Under physiological conditions, insulin stimulates 
tissues such as the liver and adipose tissue to uptake glucose, 
helping to maintain glucose homeostasis. However, pathological 
conditions can lead to reduced insulin signaling and/or IR, 
resulting in decreased glucose transport. This may cause 
compensatory insulin secretion to sustain glucose homeostasis, 
which leads to hyperinsulinemia (38). IR refers to the decreased 
responsiveness of insulin-target tissues to physiological levels of 
insulin, which is a common feature of PCOS (39), although it is 
not included in the diagnostic criteria for PCOS. IR, along with 
resultant hyperinsulinemia, plays a significant role in synthesizing 
androgens beyond normal levels, primarily through two 
mechanisms. First, insulin enhances the responsiveness of human 
granulosa cells to LH (40). Elevated insulin levels can amplify LH 
stimulation, increasing androgen secretion and causing 
hyperandrogenemia (41, 42). Second, sex hormone-binding 
globulin (SHBG) acts as a transport protein for sex steroids. High 
insulin levels can inhibit serum SHBG levels, raising the 
concentration of free bioactive testosterone, ultimately leading to 
hyperandrogenemia (43, 44). Therefore, women with PCOS often 
have lower serum SHBG concentrations. In summary, insulin 
plays a critical role in the pathophysiology of PCOS.

4.1 The effect of natural compounds on 
insulin in PCOS models

4.1.1 Polyols
Artini et al. (45) conducted folic acid therapy in patients with 

PCOS and found that the combination of myo-inositol (MYO) 
and folic acid significantly reduced serum insulin levels, thereby 
improving oocyte quality and pregnancy rates. Another 
randomized double-blind trial with a similar methodology 
confirmed these results (46). Donà et  al. (47) examined 
erythrocytes in patients with PCOS before and after treatment. 
The results indicated that MYO may lower fasting serum insulin 
(FINS) levels through the insulin-related metabolic pathway, 
thereby improving IR-related hyperinsulinemia. Earlier studies 
also suggested that D-chiro-inositol (DCI) supplementation could 
lower serum insulin and enhance insulin sensitivity in PCOS 
patients with impaired glucose tolerance, thus improving 
ovulatory function (48).

4.1.2 Terpenoids
Research has indicated that lupeol treatment could downregulate 

the expression of TLR-4 and TLR-2 genes induced by DHEA in PCOS 
mice. This effect may arise from its antioxidant and anti-inflammatory 
properties, which result in reduced insulin levels in PCOS mice (49). 
A randomized double-blind placebo-controlled trial demonstrated 
that 12 weeks of coenzyme Q10 supplementation can lower serum 
insulin levels in patients with PCOS (50). Wen et al. (51) reported that 
astragaloside IV can reduce serum insulin levels in DHEA-induced 
PCOS rats in a dose-dependent manner, thereby improving 
IR. Furthermore, astaxanthin significantly reduced insulin levels in 
infertile PCOS patients and regulated glucose and lipid 
metabolism (52).
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4.1.3 Polysaccharides
Hu et  al. (53) discovered that Dendrobium nobile-derived 

polysaccharides lower insulin levels in PCOS rats induced by letrozole 
and a high-fat diet by activating SIRT2, which subsequently improves 
IR and restores glycolytic pathways. Zhou et al. (54) found that in a 
letrozole-induced PCOS model, Irpex lacteus polysaccharides reduced 
insulin levels by enhancing antioxidant enzyme expression, thereby 
regulating glucose and lipid metabolism. Studies have also indicated 
that trehalose may lower insulin levels in DHEA-induced PCOS mice 
by downregulating the ACE/AngII/AT1R pathway, thus alleviating 
related symptoms (55).

4.1.4 Alkaloids
An et  al. (56) executed a randomized controlled trial (RCT) 

involving patients with PCOS preparing for IVF treatment. They 
found that initial treatment with berberine induced a significant 
decrease in FINS levels among these patients, thus enhancing 
pregnancy outcomes. Similarly, Li et al. (57) observed that in a DHEA-
induced PCOS rat model, berberine effectively lowered FINS levels, 
showing superior efficacy in IR management compared with 
metformin. Furthermore, Yu et  al. (58) proposed that berberine’s 
mechanism for reducing serum insulin levels might involve the PI3K/
AKT signaling pathway.

4.1.5 Phenolics
Phenolics have garnered considerable attention in recent studies. 

Liang et al. (59) demonstrated that resveratrol modulates SIRT2 to 
lower serum insulin levels in a letrozole- and high-fat diet-induced rat 
model of PCOS, thereby alleviating ovarian damage in these rats. 
Similarly, Shah et al. (60) found that quercetin reduces serum insulin 
levels in letrozole-induced PCOS mice models, possibly linked to 
quercetin’s ability to decrease plasma vascular endothelial growth 
factor levels. Rezvan et al. (61) reported that quercetin may lower 
serum insulin levels in patients with PCOS by increasing adiponectin 
concentrations, which improves IR. In addition, research has shown 
that trans-anethole treatment can reduce insulin levels in testosterone-
induced PCOS rat models through its antioxidant properties and 
protective effects on liver and kidney tissues (62).

4.1.6 Flavonoids
Jamilian et  al. (63) conducted a randomized, double-blind, 

placebo-controlled trial whose findings indicated that prolonged 
administration of soy isoflavones for 12 weeks diminished serum 
insulin levels in individuals with PCOS, thereby enhancing their 
insulin sensitivity. Zhou et  al. (64) reported that total flavonoids 
sourced from Nervilia fordii lowered serum insulin levels in DHEA-
induced SD rat PCOS models. This effect may correlate with the 
modulation of the JAK2/STAT3 signaling pathway primarily 
influenced by IL-6. Furthermore, genistein substantially decreased 
serum insulin levels in estradiol valerate (EV)-induced Wistar rat 
models, consequently improving IR (65). In the subsequent two 
studies, the therapeutic benefits of genistein on insulin were reaffirmed 
(66, 67). Huang and Zhang (68) revealed that luteolin attenuated FINS 
concentrations in letrozole-induced and high-fat diet-induced PCOS 
rats by modulating the PI3K/AKT signaling pathway, thereby 
improving IR. In addition, fisetin has the potential to lower insulin 
levels in letrozole-induced Wistar rats PCOS models by enhancing the 
expression of SIRT1 and AMPK in the ovaries, thus regulating glucose 

homeostasis (69). Wu et al. (70) reported that in letrozole-induced 
PCOS SD rats, naringenin treatment reduced FINS levels and 
improved IR. The potential mechanism may involve the SIRT1/
PGC-1α signaling pathway and gut microbiota.

4.1.7 Organic acids
Shah et al. (71) demonstrated that gallic acid administration can 

decrease serum insulin levels in letrozole-induced PCOS mice. This 
effect may stem from the enhanced ovarian antioxidant capacity 
linked to gallic acid. In addition, another study identified that 
chlorogenic acid potentially lowers insulin levels in letrozole-induced 
PCOS mice by modulating adiponectin levels and improving 
antioxidant capacity (72). Mohammadi et  al. (73) showed that 
omega-3 fatty acid supplementation can diminish serum insulin levels 
in patients with PCOS by increasing adiponectin levels, thereby 
reducing the incidence of PCOS-associated complications. Research 
findings also indicate that caffeic acid may decrease FINS levels in 
PCOS rats by mitigating endoplasmic reticulum (ER) stress and 
oxidative stress, thus enhancing their insulin sensitivity (74). Further 
investigations revealed that pachymic acid can lower serum insulin 
levels in DHEA-induced PCOS mice by regulating the CYP-17, IRS-1, 
and GLUT4 protein expression, thereby effectively improving IR 
within the ovarian tissues of these mice (75).

4.1.8 Endogenous metabolites
A randomized, double-blind, placebo-controlled clinical trial 

revealed that a 12-week melatonin regimen significantly reduced 
serum insulin levels in PCOS patients, aiding glucose homeostasis. 
This effect is likely linked to melatonin’s ability to upregulate the 
expression of the peroxisome proliferator-activated receptor gamma 
(PPAR-γ) gene (76). In another RCT, Tauqir et al. (77) incorporated 
acetyl-L-carnitine into a treatment protocol with metformin and 
pioglitazone. After 12 weeks, the combination therapy exhibited 
markedly improved efficacy compared to the control group, 
confirming acetyl-L-carnitine’s role in lowering FINS levels and its 
synergistic effect with other pharmacotherapies.

4.1.9 Vitamins and trace elements
Research indicates that vitamin D supplementation effectively 

reduces serum insulin levels induced by EV in PCOS rat models and 
enhances their ovarian tissue protective mechanisms (78). In addition, 
Ashoush et al. (79) conducted an RCT with 100 patients with PCOS, 
who received 1,000 μg chromium picolinate (CrP) for 6 months. The 
results demonstrated that CrP lowered FINS levels, improved IR, 
enhanced ovulation, and regulated menstrual cycles, showcasing its 
effective therapeutic role in addressing PCOS.

Although insulin is not a reproductive hormone, it plays a crucial 
role in the multi-stage, comprehensive management of PCOS. It serves 
as an important link between PCOS and various related diseases. 
Therefore, studying the effects of natural compounds on insulin in 
PCOS is of significant interdisciplinary importance. Overall, 
flavonoids play a prominent role in regulating insulin levels in 
PCOS. The treatment approach involves modulating various signaling 
pathways such as JAK2/STAT3, PI3K/AKT, and SIRT1/PGC-1α, 
boosting SIRT1 and AMPK expression, and regulating gut microbiota. 
Organic acids and phenolics have also received considerable attention. 
However, research on alkaloids has primarily focused on berberine, 
especially the PI3K/AKT pathway. Moreover, other compounds also 
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enhance insulin sensitivity through various mechanisms, such as 
modulating ACE/AngII/AT1R, TLR-4, and TLR-2. These 
interventions not only improve ovulation function but also reduce the 
risk of diabetes, cardiovascular disease, and other PCOS-
related complications.

5 LH in the pathogenesis of PCOS

LH is secreted in a pulsatile pattern by gonadotrope cells in the 
pituitary gland. This secretion is directly stimulated by gonadotropin-
releasing hormone (GnRH) produced in the hypothalamus (80). LH 
is vital for follicular growth and maturation. In general, researchers 
often use LH pulse frequency to indirectly assess GnRH pulse activity. 
Under normal physiological conditions, LH promotes androgen 
production during the follicular phase, thereby facilitating estrogen 
synthesis and oocyte maturation. At the midpoint of the menstrual 
cycle, LH levels increase sharply, playing a crucial role in triggering 
ovulation. During the luteal phase, LH aids in progesterone secretion, 
although its concentration typically declines (81). In pathological 
contexts, excessive LH levels can inhibit follicular development (82). 
In patients diagnosed with PCOS, both the frequency and amplitude 
of GnRH pulses increase, selectively increasing LH levels. This leads 
to a significant increase in LH synthesis and secretion. The increased 
ovarian androgen production leads to hyperandrogenemia (83–85). 
In addition, the absence of an LH surge is a key characteristic of PCOS 
(10). Therefore, LH is crucial for understanding the pathophysiology 
of PCOS.

5.1 The effect of natural compounds on LH 
in PCOS models

5.1.1 Polyols
Artini et al. (45) found that folic acid, as a baseline treatment for 

patients with PCOS, significantly reduced LH levels after 12 weeks 
of combined treatment with MYO, helping to normalize the 
menstrual cycle. This suggests the effectiveness of MYO in lowering 
LH levels.

5.1.2 Terpenoids
Terpenoids have received considerable attention for their potential 

impact on PCOS. The study highlights that β-sitosterol may enhance 
gut microbiota balance in DHEA-induced PCOS mice, thereby 
lowering their LH levels (86). Yang et al. (87) established a PCOS rat 
model utilizing daily injections of human chorionic gonadotropin 
(HCG) and insulin (Ins) over 22 days. Their results indicated that 
cryptotanshinone effectively reduced LH levels in PCOS rats by 
influencing the HMGB1/TLR4/NF-κB signaling cascade, thereby 
alleviating reproductive dysfunction. A study revealed thymoquinone’s 
antioxidant and anti-apoptotic effects, which contributed to decreased 
LH levels in letrozole-induced PCOS rat models, thereby mitigating 
follicular atresia (88). In addition, paeoniflorin (89) and astragaloside 
IV (51) lowered serum LH concentrations in DHEA-induced PCOS 
rats by modulating the TGF-β1/Smads and PPARγ signaling pathway, 
promoting ovarian health and regulating the reproductive cycle. 
Rezaei-Golmisheh et al. (90) reported that lupeol attenuates LH levels 
in DHEA-induced PCOS mice models through its antioxidant 

capacity, thereby improving fertility outcomes. Other investigations 
demonstrated that crocetin lowers serum LH concentrations in 
DHT-induced PCOS mice by modulating kisspeptin neuron activity, 
which supports follicular maturation and reduces ovulatory issues 
(91). Finally, research findings indicate that ginsenoside compound K 
lowers LH levels in DHEA-induced PCOS rats by modulating 
CXCL14 expression in brown adipose tissue, thus restoring the estrous 
cycle (92). Türkmen et  al. (93) further established that nerolidol 
decreases LH concentrations in DHEA-induced PCOS SD rats, 
addressing hormone secretion irregularities.

5.1.3 Polysaccharides
The polysaccharide extracted from Irpex lacteus lowers LH levels 

in letrozole-induced PCOS rat models, improving hormonal balance, 
likely due to its antioxidant effects and suppression of the TGF-β1/
Smad signaling pathway (54).

5.1.4 Phenolics
Phenolics attract considerable research interest. Chen et al. (94) 

exposed neonatal SD rats to tributyltin to induce PCOS. This exposure 
altered LH concentrations, disrupted estrous cycles, and inhibited 
follicular development. Resveratrol reversed these effects by 
facilitating calcium ion transport and activating CaMKIIβ, thus 
facilitating the repair of transzonal projections. Shah and Patel (95) 
showed that quercetin could reduce LH levels in propionate 
testosterone-induced PCOS rats by inhibiting PI3K levels and 
CYP17A1 gene expression, thereby regulating ovarian steroidogenesis. 
Shah et al. (96) created a PCOS model in adult Swiss Albino mice 
using letrozole and identified that curcumin could lower LH levels by 
modifying the androgen-adiponectin balance in circulation, thus 
preventing ovarian dysfunction. Subsequently, Zhang et  al. (97) 
discovered that curcumin’s ability to reduce LH levels in DHEA-
induced PCOS rats might relate to inhibiting the ER stress-related 
IRE1α-XBP1 pathway alongside activating the PI3K/AKT signaling 
pathway. Zhou et al. (98) noted that rhamnocitrin could decrease LH 
levels in letrozole-induced PCOS SD rats, facilitating the recovery of 
ovarian tissue, possibly through enhanced PPAR-γ activity and the 
inhibition of the TGF-β1/Smad pathway. Furthermore, evidence 
suggests that eugenol might lower serum LH levels in EV-induced 
PCOS model Wistar rats by modulating COX-2 and PPAR-α gene 
expression, thereby ameliorating ovarian cysts (99).

5.1.5 Flavonoids
Flavonoids exhibit notable effects in PCOS models. Total flavonoids 

have been shown to reduce LH levels in DHEA-induced PCOS rats, 
restoring ovulation. This effect may be associated with modulation via 
the IL-6-mediated JAK2/STAT3 signaling pathway (64). Khezri et al. 
(65) found similar effects with genistein in EV-induced PCOS rats. In 
addition, silybin can lower LH levels in letrozole-induced PCOS rats 
through its antioxidant and anti-inflammatory actions, normalizing 
reproductive cycles and improving ovarian and uterine morphology 
(100). Baicalin may decrease LH levels in DHEA-induced PCOS rats 
by regulating miR-874-3p/FOXO3 and miR-144/FOXO1 expression in 
ovarian tissue (101). Luteolin has also shown potential to reduce LH 
levels in letrozole- and high-fat diet-induced PCOS rats, possibly 
through Nrf2 activation and antioxidant effects (68). Zheng et al. (102) 
propose that myricetin may lower LH levels in DHEA-induced PCOS 
mice by activating brown adipose tissue (BAT), improving ovarian 
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function and metabolic irregularities. Finally, Wu et al. (70) showed 
that naringenin significantly reduced LH levels and improved ovarian 
function in letrozole-induced PCOS SD rats.

5.1.6 Organic acids
Research reveals that omega-3 polyunsaturated fatty acids 

(PUFAs) can lower LH levels in DHEA-induced PCOS mice. This 
modulation may influence ovarian androgen production and its 
conversion (103). Lan et al. (104) found that sinapic acid decreases LH 
levels in letrozole-induced PCOS rats, aiding in regulating ovulation 
and alleviating ovarian fibrosis. In similar models, rosmarinic acid 
may reduce LH levels through its anti-inflammatory and anti-
angiogenic effects (105). Furthermore, chlorogenic acid has been 
shown to reduce LH levels in letrozole-induced PCOS model mice, 
likely linked to its effect on adiponectin levels, antioxidant capacity, 
and anti-inflammatory properties (72). Khoshvaghti et al. (106) found 
that ellagic acid can diminish LH levels in EV-induced PCOS model 
rats, facilitating the recovery of follicular development.

5.1.7 Endogenous metabolites
Tauqir et al. (77) found that acetyl-L-carnitine can lower LH levels 

in patients with PCOS, thereby restoring hormonal balance.

5.1.8 Vitamins
Studies indicate that vitamin D supplementation can lower LH 

levels in rat models of PCOS caused by EV, thus safeguarding ovarian 
tissue (78).

Research on regulating LH dysregulation in PCOS has 
predominantly focused on terpenoids, phenolics, and flavonoids due 
to their distinct chemical structures. These compounds have been 
shown to enhance gene expression modulation related to CXCL14, 
kisspeptin, CYP17A1, COX-2, and PPAR-α. In addition, several key 
signaling pathways, including HMGB1/TLR4/NF-κB, TGF-β1/Smads, 
IRE1α-XBP1, and PI3K/AKT/Nrf2, play a crucial role in regulating 
LH and metabolic homeostasis. In contrast, research on the regulatory 
effects of polysaccharides, polyols, vitamins, and other compounds on 
LH in PCOS is relatively limited, with only observational effects and 

FIGURE 3

Main intervention pathways of natural compounds in PCOS. This figure illustrates four primary intervention pathways of natural compounds in PCOS 
management: related signaling pathways, regulating gene expression, regulation of intestinal microbiota, and antioxidant activity. In addition, it includes 
some compounds and their targets, with symbols such as activation and inhibition arrows used to describe their mechanisms of action. For instance, 
berberine, curcumin, and luteolin activate the PI3K/AKT pathway, whereas cryptotanshinone inhibits the HMGB1/TLR4/NF-κB pathway. Paeoniflorin 
and Irpex lacteus polysaccharide suppress the TGF-β1/Smads pathway, and total flavonoids derived from Nervilia Fordii inhibit JAK2/STAT3 signaling. In 
addition, nicotinamide downregulates CYP17A1 gene expression, while ginsenoside compound, jujuboside A, and quercetin specifically activate 
CXCL14, CYP1A2, CYP19A1, and CYP11A1. Furthermore, naringenin and β-sitosterol modulate gut microbiota, whereas trehalose and thymoquinone 
mitigate oxidative stress. Finally, gallic acid and chlorogenic acid enhance the antioxidant capacity of the ovaries. PI3K, phosphoinositide 3-kinase; AKT, 
protein kinase B; HMGB1, high mobility group box 1; TLR4, Toll-like receptor 4; NF-κB, nuclear factor kappa B; TGF-β1, transforming growth factor-
beta 1; JAK2, Janus kinase 2; STAT3, signal transducer and activator of transcription 3; CYP17A1, cytochrome P450 family 17 subfamily A member 1; 
CXCL14, C-X-C motif chemokine ligand 14; CYP1A2, cytochrome P450 family 1 subfamily A member 2; CYP19A1, cytochrome P450 family 19 
subfamily A member 1; CYP11A1, cytochrome P450 family 11 subfamily A member 1.
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insufficient investigation into the underlying molecular and cellular 
mechanisms (Figure 3).

6 FSH in the pathogenesis of PCOS

FSH is a heterodimeric glycoprotein produced in pulses by the 
gonadotropic cells of the anterior pituitary. Its secretion is regulated 
by the pulsatile release of GnRH from the hypothalamus, along with 
factors such as neuropeptides like kisspeptin, gonadal steroids, 
inhibin, and others. A slower frequency of GnRH pulses typically 
enhances the synthesis and release of FSH (82, 107). Under normal 
physiological conditions, FSH initiates follicular growth and, via 
aromatase activity, enables granulosa cells to convert androgens into 
estrogens (81). Once a dominant follicle appears, FSH levels drop, 
causing the atresia of other follicles and halting their development 
(108). The dominant follicle thus becomes the sole candidate for 
ovulation. In patients with PCOS, disrupted neuroendocrine 
regulation leads to increased frequency and amplitude of GnRH 
pulses, while FSH secretion remains relatively suppressed at low 
normal levels (83, 85). This disruption results in impaired follicular 
development, potentially caused by pituitary desensitization from 
heightened GnRH stimulation (109). In summary, FSH plays a vital 
role in the pathophysiology of PCOS.

6.1 The effect of natural compounds on 
FSH in PCOS models

6.1.1 Polyols
For patients undergoing ovulation induction and intrauterine 

insemination, MYO supplementation can reduce the dosage of rFSH 
administered, resulting in favorable clinical outcomes (110).

6.1.2 Terpenoids
Terpene compounds have shown promise in recent studies. 

Research indicates that β-sitosterol can elevate FSH levels in DHEA-
induced PCOS model mice, likely due to its modulatory effects on gut 
microbiota (86). Alaee et al. (88) found that thymoquinone increases 
the transcription level of the GPx1 gene while decreasing Bax gene 
expression and the Bax/Bcl2 ratio. This occurs through the stimulation 
of the antioxidant system and the inhibition of apoptotic pathways, 
ultimately enhancing serum FSH levels in letrozole-induced PCOS 
model rats, thereby promoting follicular development. Findings have 
also revealed that crocetin can elevate serum FSH levels in 
DHT-induced PCOS model mice. This effect occurs by increasing 
AVPV-kisspeptin expression and reducing ARC-kisspeptin 
expression, thereby facilitating follicular development (91). In 
addition, Türkmen et al. (93) discovered that nerolidol can enhance 
FSH levels in DHEA-induced PCOS model SD rats, thereby regulating 
hormonal secretion disorders.

6.1.3 Phenolics
Phenolics play a crucial role in PCOS management. A triple-

blind RCT indicated that resveratrol may enhance FSH levels in 
patients with PCOS by lowering androgen-derived steroid 
concentrations (111). This process facilitates follicular maturation 
and improves oocyte quality, ultimately enhancing pregnancy 

outcomes. Shah et al. (96) established a PCOS model in adult Swiss 
Albino mice using letrozole. Their study revealed that curcumin, a 
turmeric extract, might boost FSH levels by exerting anti-
hyperlipidemic and antioxidant effects, along with raising 
circulating adiponectin levels. Furthermore, Zhang et  al. (97) 
demonstrated that curcumin’s therapeutic mechanism likely 
includes the inhibition of the IRE1α-XBP1 pathway associated 
with ER stress and the activation of the PI3K/AKT signaling 
pathway. Kokabiyan et al. developed a PCOS model in Wistar rats 
through continuous EV administration, discovering that eugenol 
could elevate serum FSH levels by modulating the expression of 
the COX-2 and PPAR-α genes, thereby enhancing follicular 
development (99). Zhou et  al. (98) reported that rhamnocitrin 
increases FSH levels in letrozole-induced PCOS rats and improves 
ovarian morphology by acting on the HPG axis. In addition, 
quercetin has been shown to elevate FSH levels in mature Parkes 
strain mice with letrozole-induced PCOS, effectively reversing 
follicular degeneration and reinstating normal ovarian 
function (60).

6.1.4 Flavonoids
Flavonoids have recently gained considerable interest in scientific 

research. Investigations reveal that genistein can boost FSH levels in 
PCOS model rats induced by EV, which leads to improved follicle 
development and maturation (65). Total flavonoids may elevate FSH 
levels in DHEA-induced PCOS model SD rat models by 
downregulating IL-6 expression, thereby supporting ovarian function 
recovery (64). Research conducted by Huang and Zhang (68) 
demonstrates that luteolin can increase FSH levels in PCOS model SD 
rats established with letrozole and a high-fat diet, which subsequently 
modulates the reproductive cycle and enhances ovarian morphology. 
Moreover, Wu et al. (70) reported that in letrozole-induced PCOS rats, 
naringenin caused hormonal changes similar to those caused 
by luteolin.

6.1.5 Organic acids
Shah et al. established PCOS mouse models using letrozole. Two 

separate studies found that gallic acid (71) and chlorogenic acid (72) 
both increased FSH levels in PCOS mice by regulating the expression 
of adiponectin and its receptor, thereby promoting follicular 
development. In addition, sinapic acid (SA) was shown to raise 
letrozole-induced FSH levels in PCOS model SD rats, influencing 
ovulation and alleviating ovarian fibrosis (104).

6.1.6 Vitamins
Two subsequent studies indicate that vitamin D supplementation 

may increase FSH levels in EV-induced PCOS rats, which in turn 
facilitates follicular generation and growth (78, 112).

Various natural compounds have demonstrated promising 
therapeutic effects in both preclinical and clinical models, promoting 
follicle maturation, restoring ovulatory function, and improving 
fertility outcomes by enhancing FSH levels. These compounds regulate 
various therapeutic mechanisms, from gut microbiota modulation to 
exerting antioxidant effects, highlighting the complexity of PCOS 
treatment and the need for multi-target strategies. With the 
widespread use of rFSH technology, understanding how these 
compounds interact with it could lead to more effective treatment 
options for PCOS patients.
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7 Androgens in the pathogenesis of 
PCOS

Androgens encompass hormones such as dehydroepiandrosterone 
sulfate (DHEAS), dehydroepiandrosterone (DHEA), androstenedione 
(A4), testosterone (T), and dihydrotestosterone (DHT). These 
hormones mainly originate from the adrenal glands and ovaries, 
where they are derived from cholesterol through enzymatic processes 
triggered by LH. As precursors of estradiol, androgens are vital for the 
normal functioning of ovarian physiology (113, 114). While many 
aspects of PCOS remain unclear, it is widely accepted that elevated 
androgen levels significantly contribute to the reproductive and 
metabolic complications associated with PCOS. Notably, in a large 
cohort of clinically hyperandrogenic individuals, 72.1% of females 
were diagnosed a PCOS diagnosis (115). Hyperandrogenemia is 
considered a principal clinical characteristic of PCOS (116). 
Furthermore, elevated androgen levels can impair hypothalamic 
sensitivity to progesterone and estradiol, thereby disrupting the 
inhibitory regulation of GnRH pulsatility. This disruption establishes 
a detrimental feedback loop between hyperandrogenemia and 
hypothalamic–pituitary–ovarian axis dysfunction (85). Increased 
levels of LH and insulin further stimulate androgen secretion, 
undermining ovarian function. In addition, excessive androgen 
production triggers lipolysis, raising free fatty acid levels, altering 
muscle tissue composition and performance, and leading to IR and 
hyperinsulinemia. Consequently, this creates a vicious cycle among 
IR, hyperinsulinemia, and hyperandrogenemia in patients with PCOS 
(117–119). In conclusion, androgens are essential in the 
pathophysiology of PCOS.

7.1 The effect of natural compounds on 
androgens in PCOS models

7.1.1 Polyols
Polyols play an important role in medical research. Artini et al. 

(45) found that a combination therapy of MYO and folic acid is more 
effective than folic acid alone in treating PCOS, significantly lowering 
serum testosterone levels and alleviating symptoms. Donà et al. (47) 
analyzed erythrocytes in patients with PCOS before and after 
treatment, observing that MYO substantially reduced serum 
testosterone and androstenedione levels through the phosphoinositide-
related signaling pathway, thereby alleviating systemic inflammation. 
Furthermore, studies indicate that DCI supplementation can diminish 
serum-free testosterone levels in patients with PCOS, thereby 
supporting ovulation (48). MYO and DCI maintain a critical balance 
within the human body. In PCOS-related studies, the optimal MYO/
DCI ratio is suggested to be 40:1 (120). Consequently, Fedeli et al. 
(121) found that at this ratio, MYO and DCI reduced serum DHEA 
levels in PCOS mice by modulating androgen enzyme expression and 
increasing CYP19A1 and FSHR synthesis.

7.1.2 Terpenoids
Terpenoids play a crucial role in various biological processes. Liu 

et al. (122) reported in Science that artemisinins inhibit the activity of 
cytochrome P450 family 11 subfamily A member 1 (CYP11A1) by 
directly interacting with lon peptidase 1 (LONP1). This inhibition 
results in reduced androgen synthesis in a DHEA-induced PCOS rat 

model, thereby enhancing fertility. Meanwhile, Malekinejad et al. (49) 
found that lupeol may regulate TLR-4 and TLR-2 gene expression and 
serum TNF-α levels in DHEA-induced PCOS mice, thereby reducing 
serum testosterone levels and treating hyperandrogenemia. A 
subsequent study indicated that its therapeutic effects are also 
associated with a reduction in oxidative stress biomarkers (90). Using 
the same inducer, Ye et al. (92) found that ginsenoside compound K 
also reduces serum testosterone levels in PCOS rats by stimulating 
CXCL14 expression in BAT. In similar models, nerolidol (93) 
improved reproductive endocrine function through its antioxidant 
effects, whereas astragaloside IV (51) exerted a comparable effect by 
enhancing autophagy. Huang et al. (123) established a PCOS model 
in Sprague Dawley rats by gavaging them with letrozole and a high-fat 
diet. They found that mogroside V treatment may reduce serum 
testosterone levels and promote follicular development and ovulation 
by upregulating the expression of LDHA, HK2, and PKM2. Another 
study found that crocetin can decrease serum testosterone levels in 
DHT-induced PCOS mice by restoring kisspeptin neurons (91). Yang 
et al. (87) demonstrated that cryptotanshinone lowers testosterone 
levels in HCG and Ins-induced PCOS rat models by inhibiting the 
HMGB1/TLR4/NF-κB signaling pathway, ultimately improving 
reproductive function. In addition, tanshinone IIA, also derived from 
Danshen, produces similar positive outcomes in estradiol-induced 
PCOS mice by regulating FSHR and aromatase expression (124).

7.1.3 Polysaccharides
Zhou et al. (54) found that the Irpex lacteus polysaccharide may 

decrease serum testosterone levels in letrozole-induced PCOS rats. 
This effect could reduce fat accumulation and improve ovarian 
fibrosis, possibly through inhibition of the TGF-β1/Smad pathway. 
Gao et  al. (55) induced a PCOS model using a high-fat diet and 
DHEA. Their research indicated that trehalose supplementation can 
reduce serum testosterone levels in PCOS model mice, thereby 
alleviating the associated symptoms. This beneficial effect likely stems 
from trehalose’s capability to alleviate oxidative stress and cell death 
in ovarian granulosa cells.

7.1.4 Alkaloids
An et al. (56) conducted an RCT to assess IVF preparation in 

patients with PCOS. The study showed that a 3-month pre-treatment 
with berberine significantly reduced serum total testosterone levels, 
thereby improving pregnancy outcomes. Shen et  al. (125) further 
studied DHEA-induced PCOS rats and suggested that berberine’s 
regulatory mechanism may involve cell apoptosis and the regulation 
of key signaling molecules, such as TLR4, LYN, PI3K, AKT, NF-κB, 
TNF-α, IL-1, and IL-6, and caspase-3 expression. In addition, the 
study indicated that nicotinamide could decrease serum testosterone 
levels in letrozole-induced PCOS rats by downregulating the gene 
expression of CYP17A1, thereby contributing to the regulation of the 
estrous cycle (126).

7.1.5 Phenolics
In a triple-blind RCT, researchers observed that resveratrol 

treatment significantly decreased serum testosterone levels in patients 
with PCOS. This decrease influenced the expression of the VEGF and 
HIF1 genes within the angiogenic pathways of granulosa cells, thereby 
enhancing pregnancy outcomes (111). Shah et al. (60) proposed that 
quercetin reduces serum testosterone levels in letrozole-induced 
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PCOS mice by upregulating CYP19a1 and CYP11a1, thus restoring 
normal ovarian function. Similarly, Shah and Patel (95) suggested that 
quercetin affects testosterone levels by suppressing the gene expression 
of CYP17A1 via the inhibition of the PI3K pathway. Research has 
demonstrated that curcumin normalizes serum testosterone levels in 
letrozole-induced PCOS rats (127). In a 12-week clinical study, 
curcumin also demonstrated its effectiveness in alleviating 
hyperandrogenism in patients with PCOS (128). Subsequently, Zhang 
et al. (97) reported that the effect of curcumin may be related to the 
inhibition of the ER stress-related IRE1α-XBP1 pathway and the 
activation of the PI3K/AKT signaling pathway. Zhou et  al. (98) 
identified that rhamnocitrin may decrease serum testosterone levels 
in letrozole-induced PCOS model SD rats by reducing 
malondialdehyde (MDA) production and increasing serum 
superoxide dismutase (SOD) activity, resulting in fewer cysts and 
improved ovarian morphology. Eugenol might lower serum 
testosterone levels in letrozole-induced PCOS model Wistar rats 
through the modulation of the COX-2 and PPAR-α gene expressions, 
thereby affecting glucose and lipid metabolism (99). Furthermore, 
Moradi Negahdari et  al. (129) reported that trans-anethole could 
dose-dependently reduce serum testosterone and DHEAS levels in 
testosterone-induced PCOS model rat models, exhibiting anti-
androgenic effects comparable to those of metformin.

7.1.6 Flavonoids
Flavonoids demonstrate considerable effects in the treatment of 

PCOS. Jamilian et al. (63) found that soy isoflavone supplementation 
lowers serum total testosterone levels in patients with PCOS, which 
assists in managing the condition. Research highlights that baicalin 
substantially reduces free testosterone levels in DHEA-induced PCOS 
rat models. This mechanism is linked to the miR-874-3p/FOXO3 and 
miR-144/FOXO1 pathways within ovarian tissues (101). Total 
flavonoids can produce similar positive effects by regulating the IL-6-
mediated JAK2/STAT3 signaling cascade (64).

In addition, research conducted by Peng et al. (130) on DHEA-
induced PCOS rat models demonstrated that apigenin effectively 
reduces serum testosterone levels, likely due to its antioxidant effects 
and the suppression of inflammatory cytokine expression. Similarly, 
silibinin also reduces testosterone levels in PCOS rats induced by 
letrozole through its antioxidant and anti-inflammatory properties 
(100). Li et al. (131) treated all patients with PCOS using a combination 
of Diane-35 and metformin, discovering that those in the puerarin 
subgroup markedly decreased their serum T levels by increasing 
SHBG and SOD levels in circulation, thus achieving a positive impact 
on hyperandrogenemia management. Moreover, luteolin was effective 
in normalizing estrous cycles and improving ovarian morphology 
while reducing serum T levels in letrozole- and high-fat diet-induced 
PCOS SD rat models (68). Fisetin, rutin, and naringenin all alleviate 
hyperandrogenism in letrozole-induced PCOS rats. Their mechanisms 
involve fisetin reducing CYP17A1 expression (69), rutin exerting 
antioxidant effects (132), and naringenin modulating the gut 
microbiota and the SIRT1/PGC-1α pathway (70).

7.1.7 Organic acids
Chlorogenic acid can decrease serum testosterone levels in 

letrozole-induced PCOS model mice, likely due to its regulation of 
adiponectin levels, antioxidant capacity, and anti-inflammatory effects 
(72). Shah et  al. (71) developed a PCOS model by administering 

letrozole via gavage to adult Parkes strain mice for 21 days. They found 
that gallic acid may lower serum testosterone levels in PCOS model 
mice by increasing the mRNA expression of CYP11a1 and CYP19a1. 
Research indicates that SA can enhance the serum activity of 
endogenous antioxidants and reduce malondialdehyde (MDA) 
production, thereby lowering serum testosterone levels in letrozole-
induced PCOS model rats, promoting follicular development and 
improving atresia (104). A previous study showed that omega-3 
polyunsaturated fatty acids can reduce serum testosterone levels in 
DHEA-injected PCOS model mice, potentially related to their anti-
inflammatory effects on the ovaries (103). Similarly, Chiang et al. (74) 
found that caffeic acid reduces androstenedione and testosterone 
levels in DHEA-induced PCOS rats by modulating protein expression 
in steroid hormone synthesis and ER stress. Prabhu et  al. (133) 
reported that administering γ-linolenic acid at a dose of 50 mg/kg can 
reduce serum and ovarian DHEA concentrations in DHEA-induced 
PCOS model rats, alleviating inflammation and improving 
tissue structure.

7.1.8 Vitamins
Vitamin D supplementation has been shown to decrease 

testosterone levels in EV-induced PCOS model rats, protecting 
ovarian tissues from PCOS-related damage (78). Izadi et al. observed 
that vitamin E can lower serum total testosterone levels in patients 
with PCOS, providing adjunctive treatment for the condition (134).

7.1.9 Endogenous metabolites
A study suggests that melatonin can exert effects comparable to 

metformin, significantly lowering testosterone levels in letrozole-
induced PCOS mice, thereby reducing uterine volume (135). Basheer 
et  al. (136) investigated melatonin’s effects, revealing it decreases 
serum testosterone levels in letrozole-induced PCOS model rats 
through the modulation of steroidogenic enzyme activity. Yu et al. 
(137) further identified that melatonin also reduces serum testosterone 
in patients with PCOS via the ERK pathway, which aids in 
oocyte development.

As one of the key hormones in PCOS, elevated androgen levels 
directly contribute to several typical clinical manifestations, including 
hirsutism, acne, and seborrheic dermatitis, primarily affecting 
appearance and quality of life, especially in younger patients. Early 
intervention using effective natural compounds may help alleviate 
these symptoms, thereby reducing the reliance on medication. Current 
research shows that androgen regulation in PCOS has been the most 
extensively studied, with various treatment mechanisms identified, 
including the upregulation of LDHA, HK2, and PKM2 expression, as 
well as the modulation of pathways such as IRE1α-XBP1 and ERK. In 
addition, signaling pathways such as TGF-β1/Smads and SIRT1/
PGC-1α could regulate multiple hormones. Further investigation into 
these mechanisms may reveal new therapeutic options for 
PCOS management.

8 Progesterone in the pathogenesis of 
PCOS

Progesterone plays a vital role in the pathogenesis and 
treatment of PCOS. This steroid hormone primarily originates 
from the ovarian corpus luteum, with smaller contributions from 
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the adrenal glands and placental synthesis during pregnancy (138, 
139). It facilitates several reproductive functions in women, 
including oocyte maturation, ovulation, menstruation, pregnancy, 
and mammary development (85). In addition, it plays an 
antagonistic role against androgens and estrogens. Under normal 
physiological circumstances, the cyclical increase in progesterone 
during the luteal phase reduces LH pulse frequency, leading to 
diminished GnRH pulses, which are essential for regulating the 
menstrual cycle and sustaining pregnancy. A recent study 
challenges conventional beliefs, suggesting that higher 
progesterone levels before ovulation may trigger the LH surge, 
leading to follicle rupture and ovulation (140). Women with PCOS 
often face experience infrequent or absent ovulation due to low 
progesterone levels. Furthermore, hypothalamic feedback 
sensitivity to progesterone diminishes, impairing the suppression 
of LH (GnRH) pulses and resulting in ongoing gonadotropin 
secretion dysregulation (85). Therefore, progesterone emerges as 
a crucial component in the pathophysiology of PCOS.

8.1 The effect of natural compounds on 
progesterone in PCOS models

8.1.1 Polyols
Research highlights the potential of polyols. Studies have 

shown that MYO supplementation can enhance luteal phase 
progesterone production in infertile women with PCOS, often 
restoring spontaneous fertility (141). Fedeli et al. (121) executed 
an animal study employing continuous light exposure on CD1 
mice to establish a PCOS model. The results indicated that a 40:1 
ratio of MYO to DCI could augment progesterone levels in PCOS-
affected mice. This result was achieved by promoting the synthesis 
of CYP19A1 and FSHR, ultimately improving the fertility 
outcomes in these experimental models.

8.1.2 Terpenoids
Research findings suggest that β-sitosterol may elevate 

progesterone levels in DHEA-induced PCOS mouse models by 
modulating gut microbiota, presenting a potential intervention for 
PCOS (86).

8.1.3 Alkaloids
Evidence indicates that nicotinamide can boost progesterone 

levels in letrozole-induced PCOS rat models by activating AMPK 
expression, thus regulating the estrous cycle (126).

8.1.4 Phenolics
Reddy et al. revealed that low and high doses of curcumin 

increased progesterone levels in letrozole-induced PCOS model 
rats, facilitating ovulation in a manner akin to CC. Subsequently, 
Shah et al. (96) noted that curcumin treatment might enhance 
progesterone concentrations through increased circulating 
adiponectin, thereby supporting ovulation and improving fertility. 
Kokabiyan et al. (99) reported that eugenol could elevate serum 
progesterone levels in EV-induced PCOS model rats by regulating 
the expression of the COX-2 and PPAR-α genes, thus 
enabling ovulation.

8.1.5 Flavonoids
Khezri et al. (65) established a PCOS model in rats induced by EV, 

which led to reduced ovarian corpus luteum and progesterone levels. 
Treatment with genistein improved these changes, thus promoting 
follicular maturation. Similarly, Peng et al. (130) found that apigenin 
supplementation can enhance progesterone levels in DHEA-induced 
PCOS model rats, an effect potentially attributed to its ability to mitigate 
oxidative stress and suppress inflammatory cytokine expression, 
specifically TNF-α and IL-6. Mihanfar et al. (69) established a PCOS 
model using Wistar rats induced by letrozole administration. The study 
indicated that fisetin treatment could increase luteal progesterone 
concentrations. This effect was possibly due to enhanced antioxidant 
activity, as supported by elevated levels of CAT, SOD, and GPx, as well 
as increased SIRT1 and AMPK expression in the ovaries. Chahal et al. 
(142) recently published findings confirming fisetin’s role in treating 
PCOS by modulating AMPK/SIRT1 signaling pathways in rats.

8.1.6 Organic acids
Chiang et al. (74) demonstrated that caffeic acid may enhance 

progesterone levels in rats by inhibiting the protein expression of 
3β-HSD, leading to the restoration of ovarian morphology and estrous 
cycle normalization. Shalaby et al. (105) found that rosmarinic acid 
can increase progesterone levels in letrozole-induced PCOS rats, and 
this effect may be related to its inhibition of the gene expression of 
IL-1β, TNF-α, and VEGF in their ovarian tissue.

8.1.7 Endogenous metabolites
Basheer et al. (136) established a PCOS model in Wistar rats using 

oral letrozole administration. Their findings indicated that melatonin 
treatment raises progesterone levels in rats by modulating 
steroidogenic enzyme activity (3β-HSD and 17β-HSD), thus restoring 
ovarian function in PCOS-affected rats.

8.1.8 Vitamins
Research indicates that vitamin D supplementation can elevate 

progesterone levels in PCOS model rats affected by environmental 
factors, thereby facilitating ovarian development (78).

Overall, these compounds may increase progesterone production 
and restore ovulation by reducing oxidative stress or promoting the 
expression of related genes. Although natural compounds hold 
significant therapeutic potential for PCOS, research on their effects on 
progesterone levels is still limited, with most studies concentrating on 
the regulation of other hormones.

9 Estrogens in the pathogenesis of 
PCOS

Estrogens are primarily produced in the ovaries via two distinct 
pathways. These pathways involve converting androstenedione and 
testosterone into estrone and estradiol. These hormones are vital for 
female reproduction (143). Under normal physiological conditions, 
estradiol modulates gonadotropins via a dual feedback mechanism. 
During the late follicular phase, estradiol from the dominant follicle 
prompts a surge in LH, which is triggered by rapid GnRH pulses, 
ultimately inducing ovulation. Subsequently, estradiol provides 
negative feedback on FSH released by the pituitary, leading to the 
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atresia of remaining follicles and ensuring the maturation of a single 
dominant follicle.

In PCOS, patients display impaired hypothalamic sensitivity to 
estradiol’s negative feedback. In addition, excess androgens can 
convert to estrogens in adipose tissue, increasing the-estrone-to-
estradiol ratio (144). Long-term exposure of endometrial tissue to 
elevated estrogen levels may result in atypical hyperplasia and possibly 
endometrial carcinoma. In conclusion, estrogens play a critical role in 
the pathology of PCOS (145).

9.1 The effect of natural compounds on 
estrogens in PCOS models

9.1.1 Polyols
A study by Fedeli et al. (121) found that a 40:1 combination of 

MYO and DCI can increase estradiol levels in a PCOS model 
maintained under continuous light exposure. This occurs through the 
regulation of androgen enzyme expression, along with increased 
synthesis of CYP19A1 and FSHR, thereby enhancing ovarian function.

9.1.2 Terpenoids
Terpenoids exhibit considerable effects on PCOS models. 

Research indicates that crocetin enhances serum E2 levels in 
DHT-induced PCOS model mice by regulating the expression of 
AVPV-kisspeptin and ARC-kisspeptin, thereby restoring estrogen 
feedback mechanisms. Jin et al. (124) discovered that tanshinone IIA 
elevates serum estradiol levels in PCOS model mice induced by 
estradiol, likely through the modulation of FSHR and aromatase 
expression, thus improving ovarian function. All three of the following 
compounds can regulate estrogen homeostasis in DHEA-induced 
PCOS rodents. Bandariyan et al. (146) found that lutein, through its 
antioxidant properties, restored oocyte number and function in mice. 
Jujuboside A may promote CYP1A2 gene expression regulated by 
AhR (147). Finally, Ye et  al. (92) demonstrated that ginsenoside 
compound K can stimulate CXCL14 gene expression, identifying it as 
a potential therapeutic target for PCOS.

9.1.3 Polysaccharides
Polysaccharides and glycosides also play a role. The Irpex lacteus 

polysaccharide significantly raises estradiol levels in letrozole-induced 
PCOS rats, restoring ovarian histological morphology. However, the 
precise underlying molecular mechanisms remain unclear (54). 
Furthermore, trehalose feeding can reduce E2 levels in DHEA-
induced PCOS model mice, possibly by regulating the ACE/AngII/
AT1R pathway in the ovaries to alleviate oxidative stress and apoptosis 
in granulosa cells (55).

9.1.4 Alkaloids
Yu et  al. (58) conducted an in  vivo investigation of letrozole-

induced PCOS in rats, observing increased levels of E2. Their findings 
indicate that berberine treatment may normalize hormonal 
imbalances by modulating the PI3K/AKT signaling pathway, leading 
to ovarian structure restoration.

9.1.5 Phenolics
Zhang et  al. (148) found that resveratrol treatment elevated 

estradiol levels in letrozole-induced PCOS rats, which may be related 

to the regulation of adiponectin-1 protein levels and aromatase 
expression in ovarian tissue. Reddy et al. (128) found that high doses 
of curcumin in letrozole-induced PCOS model rats could restore the 
estradiol concentrations reduced by aromatase inhibitors, further 
validating the phytoestrogen properties of curcumin (149). Belani 
et al. (150) examined granulosa cells from patients with PCOS and 
revealed that swertiamarin could elevate estradiol levels in the 
conditioned medium of insulin-resistant PCOS individuals, offering 
potential benefits for this patient population. Shah et al. (60) further 
suggested that quercetin might reinstate aromatase activity in PCOS 
model mice by enhancing CYP19a1 and CYP11a1 expression, leading 
to increased estrogen levels in letrozole-induced PCOS model mice, 
thus presenting a viable treatment option.

9.1.6 Flavonoids
Peng et  al. (130) demonstrated that administering apigenin 

increases estradiol levels in DHEA-induced PCOS model rats, likely 
due to its antioxidant properties and the suppression of inflammatory 
cytokines such as TNF-α and IL-6. Huang and Zhang (68) established 
PCOS rat models using letrozole and a high-fat diet. After luteolin 
treatment, they observed an increase in serum E2 levels, possibly due 
to the activation of the Nrf2 pathway. Mihanfar et al. (69) found that 
fisetin increased E2 levels in letrozole-induced PCOS rats, likely due 
to elevated CAT, SOD, and GPx levels and reduced CYP17A1 
expression. Wu et al. (70) found that naringenin caused the same 
changes in PCOS rats and proposed a positive correlation between 
estrogen and the gut microbiota. This points to the possibility that 
naringenin may improve PCOS-related endocrine disorders by 
modulating the gut microbiota.

9.1.7 Organic acids
Shah et  al. (71) identified that gallic acid may raise serum 

estrogen levels in letrozole-induced PCOS model mice by boosting 
the mRNA expression of CYP11a1 and CYP19a1. Research 
indicates that omega-3 polyunsaturated fatty acids can decrease E2 
levels in DHEA-induced PCOS mouse models (103). In addition, 
chlorogenic acid has been shown to enhance estrogen levels in 
letrozole-induced PCOS Parkes mice, potentially linked to 
increased adiponectin levels (72). Chiang et al. (74) subcutaneously 
injected DHEA into SD rats to generate a PCOS model, resulting in 
excessive estrogen production in granulosa cells; their findings 
indicated that caffeic acid treatment can lower estrogen levels in 
rats, thus restoring normal estrous cycles. Pachymic acid can reduce 
E2 levels in PCOS model mice induced by DHEA, thereby 
improving the endocrine environment and oocyte quality of PCOS 
model mice (75). Research shows that rosmarinic acid increases E2 
levels in letrozole-induced PCOS rats, mainly by reducing 
inflammation and angiogenesis (105).

9.1.8 Endogenous metabolites
Basheer et al. (136) utilized letrozole to establish a PCOS model 

in Wistar rats. Their research demonstrated that melatonin treatment 
could enhance estradiol levels by modulating the activity of 
steroidogenic enzymes (3β-HSD and 17β-HSD), thereby fostering 
reproductive health in individuals affected by PCOS. Furthermore, Yu 
et al. (137) uncovered that melatonin upregulates CYP19A1 expression 
via the ERK pathway, resulting in increased estrogen levels in patients 
with PCOS, which promotes oocyte development.
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TABLE 1 Effects and mechanisms of natural compounds on hormonal regulation in PCOS models.

Natural 
compounds

Structural 
classifications

Model Related mechanisms INS LH FSH Androgen Estrogen P References

Myo-inositol Polyols PCOS patients None ✓ ✓ ✓ ✓ (45–47, 141)

Red blood cells in PCOS patients

Through phosphoinositide-related signal 

transduction and insulin-related metabolic 

response pathways

D-chiro-inositol Polyols PCOS patients None ✓ ✓ (48)

Lupeol Terpenoids

Mouse: DHEA-induced

PCOS model

Regulating TLR-4 and TLR-2 gene 

expression, along with serum TNF-α levels; 

Through its antioxidant and anti-

inflammatory effects ✓ ✓ ✓ (49, 90)

Astragaloside IV Terpenoids

Rat: DHEA-induced

PCOS model

By activating the PPARγ pathway and 

increasing autophagy levels ✓ ✓ ✓ (51)

Astaxanthin Terpenoids Infertile PCOS patients None ✓ (52)

β-Sitosterol Terpenoids

Mouse: DHEA-induced

PCOS model By modulating gut microbiota homeostasis ✓ ✓ ✓ (86)

Cryptotanshinone Terpenoids

Rat: PCOS model induced by HCG and 

INS

Regulating the HMGB1/TLR4/NF-κB 

signaling pathway ✓ ✓ (87)

Tanshinone IIA Terpenoids

Mouse: E2-induced

PCOS model Regulating FSHR and aromatase expression ✓ ✓ (124)

Thymoquinone Terpenoids Rat: letrozole-induced PCOS model

Increasing GPx1 gene transcription and 

reducing the expression of the Bax gene and 

the Bax/Bcl2 ratio ✓ ✓ ✓ (88)

Paeoniflorin Terpenoids Rat: DHEA-induced PCOS model

Modulating the TGF-β1/Smads signaling 

pathway ✓ ✓ (89)

Crocetin Terpenoids

Mouse: DHT-induced

PCOS model Regulating kisspeptin neurons ✓ ✓ ✓ ✓ (91)

Ginsenoside 

compound K Terpenoids Rat: DHEA-induced PCOS model

Regulating CXCL14 expression in brown 

adipose tissue ✓ ✓ ✓ (92)

Nerolidol Terpenoids

Rat: DHEA-induced

PCOS model Through its antioxidant effects ✓ ✓ ✓ (93)

Artemisinins Terpenoids Rat: DHEA-induced PCOS model

Directly targeting LONP1 inhibits CYP11A1 

levels ✓ (122)

(Continued)
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TABLE 1 (Continued)

Natural 
compounds

Structural 
classifications

Model Related mechanisms INS LH FSH Androgen Estrogen P References

Mogroside V Terpenoids

Rat: letrozole- and High-fat diet-induced 

PCOS model

Increasing the expression of LDHA, HK2, 

and PKM2 ✓ (123)

Lutein Terpenoids Mouse: DHEA-induced PCOS model Through its antioxidant activity ✓ (146)

Jujuboside A Terpenoids Mouse: DHEA-induced PCOS model

Activation of AhR regulates CYP1A2 

expression ✓ (147)

Coenzyme Q10 Terpenoids PCOS patients None ✓ (50)

Dendrobium nobile 

polysaccharide Polysaccharides

Rat: letrozole- and high-fat diet-induced 

PCOS model Activating SIRT2 ✓ (53)

Irpex lacteus 

polysaccharide Polysaccharides Rat: letrozole-induced PCOS model

Enhancing antioxidant enzyme expression 

and inhibiting the TGF-β1/Smad pathway ✓ ✓ ✓ ✓ (54)

Trehalose Polysaccharides

Mouse: DHEA- and High-fat diet-induced 

PCOS model

Improving oxidative stress and apoptosis in 

ovarian granulosa cells by downregulating 

ACE/AngII/AT1R ✓ ✓ ✓ (55)

Berberine Alkaloids

Rat: DHEA-induced

PCOS model

Inhibiting apoptosis and regulating key 

signaling molecules (TLR4, LYN, PI3K, 

AKT, NF-kB, TNF-α, IL-1, IL-6, caspase-3)

✓ ✓ ✓ ✓ (56–58, 125)

Rat: letrozole-induced PCOS model Mediating via PI3K/AKT pathway

Nicotinamide Alkaloids Rat: letrozole-induced PCOS model Downregulating CYP17A1 gene expression 

and activating AMPK expression

✓ ✓ (126)

Resveratrol Phenolics Rat: letrozole- and High-fat diet-induced 

PCOS model

Regulating SIRT2 ✓ ✓ ✓ ✓ ✓ (59, 94, 111, 148)

Rat: PCOS model based On TBT exposure Facilitating calcium ion transport and 

activating CaMKII β to repair projections

Rat: letrozole-induced PCOS model Regulating nesfatin-1 protein levels and 

aromatase expression in ovarian tissue

PCOS patients Influencing gene expression of VEGF and 

HIF1 in particle cells

Quercetin Phenolics Mouse: letrozole-induced PCOS model Reducing plasma vascular endothelial 

growth factor levels and increasing the 

expression of CYP19A1 and CYP11A1

✓ ✓ ✓ ✓ ✓ (60, 61, 95)

PCOS patients Increasing adiponectin levels

(Continued)
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TABLE 1 (Continued)

Natural 
compounds

Structural 
classifications

Model Related mechanisms INS LH FSH Androgen Estrogen P References

Rat: testosterone-induced PCOS model Inhibiting PI3K to suppress CYP17A1 gene 

expression

Trans-Anethole Phenolics Rat: testosterone-induced PCOS model Related to its antioxidant capacity and 

protective effect on liver and kidney tissues

✓ ✓ (62, 129)

Curcumin Phenolics Rat: DHEA-induced PCOS model Inhibiting the IRE1 α-XBP1 pathway and 

activating the PI3K/AKT signaling pathway

✓ ✓ ✓ ✓ ✓ (96, 97, 127, 128)

Mouse: letrozole-induced PCOS model Regulating the balance of circulating 

Testosterone and adiponectin

Rat: letrozole-induced PCOS model Regulating the PTEN and IRS1/PI3K/

GLUT4 pathways

PCOS patients None

Rhamnocitrin Phenolics Rat: letrozole-induced PCOS model Through its antioxidant activity; increasing 

PPAR - γ activity in the ovaries and 

inhibited the TGF-β 1/Smad pathway

✓ ✓ ✓ (98)

Eugenol Phenolics Rat: EV-induced PCOS model Regulating the expression of Cox-2 and 

PPAR-α genes

✓ ✓ ✓ ✓ (99)

Swertiamarin Phenolics Granulocytes in PCOS patients None ✓ (150)

Total flavonoids Flavonoids Rat: DHEA-induced

PCOS model

Regulating the IL-6 mediated JAK2/STAT3 

signaling pathway

✓ ✓ ✓ ✓ (64)

Genistein Flavonoids Rat: EV-induced PCOS model None ✓ ✓ ✓ ✓ (65–67)

Luteolin Flavonoids Rat: letrozole- and high-fat diet-induced 

PCOS model

Regulating the PI3K/AKT/Nrf2 signaling 

pathway

✓ ✓ ✓ ✓ ✓ (68)

Fisetin Flavonoids Rat: letrozole-induced PCOS model Increase expression of SIRT1 and AMPK in 

ovaries; Reducing CYP17A1 expression; 

through its antioxidant activity

✓ ✓ ✓ ✓ (69, 142)

Naringenin Flavonoids Rat: letrozole-induced PCOS model Modulating gut microbiota and the SIRT1/

PGC-1ɑ signaling pathway

✓ ✓ ✓ ✓ ✓ (70)

Silibinin Flavonoids Rat: letrozole-induced PCOS model Through its antioxidant and anti-

inflammatory properties

✓ ✓ (100)

Baicalin Flavonoids Rat: DHEA-induced

PCOS model

Regulating the expression of miR-874-3p/

FOXO3 and miR-144/FOXO1 genes

✓ ✓ (101)

(Continued)
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TABLE 1 (Continued)

Natural 
compounds

Structural 
classifications

Model Related mechanisms INS LH FSH Androgen Estrogen P References

Myricetin Flavonoids Mouse: DHEA-induced

PCOS model

Activating brown adipose tissue ✓ (102)

Apigenin Flavonoids Rat: DHEA-induced PCOS model Exerting antioxidant activity and 

suppressing the expression of inflammatory 

cytokines (TNF-α and IL-6)

✓ ✓ ✓ (130)

Puerarin Flavonoids PCOS patients Increasing levels of SHBG and SOD in the 

blood

✓ (131)

Rutin Flavonoids Rat: letrozole-induced PCOS model Through its antioxidant activity ✓ (132)

Gallic acid Organic acids Mouse: letrozole-induced PCOS model Regulating Adipo R1 and adiponectin 

expression; Enhancing CYP11a1 and 

CYP19a1 mRNA levels; Boosting ovarian 

antioxidant capacity

✓ ✓ ✓ ✓ (71)

Chlorogenic acid Organic acids Mouse: letrozole-induced PCOS model Regulating adiponectin receptors and their 

antioxidant capacity

✓ ✓ ✓ ✓ ✓ (72)

Omega-3 fatty acids Organic acids PCOS patients

Mouse: DHEA-induced

PCOS model

Increasing adiponectin levels suppressing 

ovarian inflammation

✓ ✓ ✓ ✓ (73, 103)

Caffeic acid Organic acids Rat: DHEA-induced Alleviating endoplasmic reticulum stress ✓ ✓ ✓ ✓ (74)

PCOS model Oxidative stress, and inhibiting the 

expression of 3β-HSD protein

Pachymic acid Organic acids Mouse: DHEA-induced PCOS model Regulating CYP-17, IRS-1, and GLUT4 

expression and their anti-inflammatory 

effects

✓ ✓ ✓ (75)

Sinapic acid Organic acids Rat: letrozole-induced

PCOS model

Through its antioxidant activity ✓ ✓ ✓ (104)

Rosmarinic acid Organic acids Rat: letrozole-induced

PCOS model

Through its anti-inflammatory and anti-

angiogenic effects

✓ ✓ ✓ ✓ (105)

γ-Linolenic acid Organic acids Rat: DHEA-induced

PCOS model

Through its anti-inflammatory effects ✓ (133)

Melatonin Endogenous 

metabolites

PCOS patients Through the ERK pathway ✓ ✓ ✓ ✓ (76, 135–137)

(Continued)
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9.1.9 Vitamins
Studies have indicated that vitamin D supplementation can elevate 

estradiol concentrations in EV-induced PCOS model rats, thereby 
facilitating ovarian development (78).

As previously discussed, estrogen levels are typically elevated in PCOS 
patients, whereas they are often lower in PCOS animal models. This 
difference is influenced by the use of specific experimental inducers. For 
example, letrozole inhibits aromatase, thereby preventing estrogen 
synthesis and resulting in lower estrogen levels. This is a characteristic of 
the experimental model, not reflective of the natural state of PCOS. In 
animal models, researchers generally focus more on the mechanisms of 
androgen excess and ovulation disorders. Nevertheless, observing estrogen 
changes in animals treated with natural compounds remains valuable. 
Analyzing these changes helps us better understand the regulatory 
mechanisms, which can offer important insights for clinical treatment.

10 Prospects and conclusion

This article classifies natural compounds based on their chemical 
structures and biological sources, including polyols, terpenes, phenolics, 
flavonoids, polysaccharides, alkaloids, organic acids, endogenous 
metabolites, vitamins, and trace elements. It explores their effects on 
insulin, LH, FSH, androgens, estrogens, and progesterone, as well as their 
molecular and cellular mechanisms, which are crucial for understanding 
their therapeutic potential. Studies show that natural compounds 
regulate oxidative stress, apoptosis, signaling pathways, and protein gene 
expression through multiple targets, maintaining hormonal homeostasis 
and alleviating PCOS symptoms. Target molecules include CYP19A1, 
CYP11A1, CYP1A2, IRS-1, GLUT4, SIRT1, SIRT2, CXCL14, kisspeptin, 
CYP17A1, and Cox-2, while major signaling pathways include AMPK, 
PI3K/AKT, TGF-β1/Smad, JAK2/STAT3, HMGB1/TLR4/NF-κB, 
IRE1α-XBP1, and SIRT1/PGC-1α. In addition, natural compounds may 
regulate hormone levels in PCOS through mechanisms such as 
increasing adiponectin levels, reducing endoplasmic reticulum stress, 
and modulating the gut microbiota (Table 1).

The analysis shows that different types of natural compounds 
selectively affect specific hormones. For example, terpenes are more 
effective in regulating androgens, while flavonoids are particularly 
effective in modulating insulin and LH. These properties highlight 
the targeted therapeutic potential of natural compounds. Future 
research could explore these compounds further to develop more 
effective treatments for PCOS.

Natural compounds are an important source for clinical drug 
research, but their application in PCOS still faces several challenges. 
Despite positive results in animal studies, translating these findings into 
effective clinical treatments remains a challenge, especially in 
determining standardized dosages and treatment durations, where 
individual differences must be considered. In addition, the safety and 
long-term effects of some natural compounds have yet to be  fully 
verified and require further clinical data. Future research should 
capitalize on the multi-target advantages of natural compounds, explore 
their mechanisms of action in greater depth, and investigate their 
potential for combination with conventional drugs. Mechanisms such 
as oxidative stress, inflammation, and IR play a central role in both 
PCOS and many other metabolic and inflammatory diseases. Therefore, 
interdisciplinary research across these diseases could integrate existing 
therapeutic strategies and provide new insights. Moreover, the T
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regulatory effects of natural compounds on the gut microbiota and 
other PCOS-related hormones, such as anti-Klebsiella toxin, 
adiponectin, and inhibin, should be  further explored. Through 
continued research, we aim to develop treatments with fewer side effects 
and greater efficacy, offering new therapeutic options for PCOS patients.
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