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Objectives: The global prevalence of diabetes is continuously rising, and the 
gut microbiota is closely associated with it. The Dietary Index for Gut Microbiota 
(DI-GM) assesses the impact of diet on the microbiota, but its association with 
diabetes risk remains unclear. This study aims to investigate the association 
between DI-GM and the risk of diabetes and analyze the mediating roles of 
phenotypic age and body mass index (BMI).

Methods: Utilizing data from the National Health and nutrition examination 
survey (NHANES) 1999–2018, we included 17,444 adults aged 20 years and older. 
DI-GM (score range: 0–13) was calculated based on dietary recall. Diabetes 
was diagnosed based on laboratory results and self-reported information. 
Multivariable logistic regression was used to analyze the association between 
DI-GM and diabetes, adjusting for relevant covariates. Mediation analysis 
evaluated the roles of phenotypic age and BMI.

Results: After adjusting for confounders, higher DI-GM scores were significantly 
associated with a lower risk of diabetes (OR = 0.93, 95% CI = 0.90–0.96, 
p < 0.001). Compared to the group with DI-GM scores of 0–3, those with scores 
of 5 (OR = 0.76, 95% CI = 0.67–0.86) and ≥ 6 (OR = 0.77, 95% CI = 0.68–0.88) 
had significantly reduced diabetes risk. Phenotypic age and BMI accounted for 
41.02 and 25.57% of the association between DI-GM and diabetes, respectively.

Conclusion: Higher DI-GM scores are associated with a lower risk of diabetes, 
partially mediated through reduced phenotypic age and BMI.
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1 Introduction

Diabetes is a metabolic disease characterized by hyperglycemia, primarily classified into 
type 1 and type 2 diabetes, with type 2 diabetes mellitus (T2DM) accounting for the majority 
(1). According to the Global Burden of Disease study, the incidence and prevalence of diabetes 
have significantly increased over the past decades, becoming a major global public health 
challenge (2). Diabetes not only reduces patients’ quality of life but also increases the risk of 
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complications such as cardiovascular disease, nephropathy, and 
retinopathy, imposing a heavy economic burden on individuals and 
society (3) Therefore, exploring effective prevention and management 
strategies to address the diabetes epidemic is urgently needed.

In recent years, the role of the gut microbiota in metabolic 
diseases has received widespread attention. Studies have shown that 
dysbiosis of the gut microbiota is closely associated with insulin 
resistance, chronic inflammation, and glucose metabolism disorders 
(4, 5). Therefore, maintaining a healthy gut microbiota may be a 
potential avenue for preventing and managing diabetes. Diet is a key 
factor influencing the composition and function of the gut 
microbiota. Different dietary patterns can significantly alter the 
diversity and metabolic products of the gut microbiota, thereby 
affecting the host’s metabolic health (6). Accordingly, Kase et al., 
based on a review of 106 articles on adult diet and gut microbiota 
relationships, proposed a new dietary index—the Dietary Index for 
Gut Microbiota (DI-GM)—to assess the impact of diet on the gut 
microbiota (7). DI-GM includes 14 dietary components that are 
beneficial or detrimental to the gut microbiota and effectively 
reflects the association between dietary quality and gut 
microbiota diversity.

Moreover, biological age and obesity are important factors 
influencing diabetes risk. Phenotypic age is an aging indicator based 
on biomarkers, reflecting an individual’s health status and disease 
risk (8, 9). Obesity, usually measured by Body Mass Index (BMI), is 
one of the main risk factors for diabetes (10). Previous studies have 
shown that dysbiosis of the gut microbiota can accelerate biological 
aging processes and promote inflammation in adipose tissue, 
increasing the risk of metabolic diseases (11, 12). Therefore, 
exploring the association between DI-GM and diabetes, as well as the 
mediating roles of phenotypic age and BMI, is of significant 
research value.

However, current research on the relationship between DI-GM 
and diabetes risk remains limited. To fill this research gap, this study 
utilized a large representative sample from the National Health and 
Nutrition Examination Survey (NHANES) to investigate the 
association between DI-GM and the risk of diabetes. Additionally, 
we analyzed the mediating roles of phenotypic age and BMI in this 
association. Our study contributes to a deeper understanding of the 
complex relationships among diet, gut microbiota, biological age, and 
diabetes, providing new scientific evidence for the prevention and 
intervention of diabetes.

2 Methods

2.1 Data source

This study used data from the NHANES 1999–2018. NHANES 
is a continuous cross-sectional survey based on the 
non-institutionalized population in the United States, collecting 
participants’ health, nutrition, and demographic data through a 
multistage probability sampling method. The data used were 
derived from public files and were approved by the National Center 
for Health Statistics Ethics Review Board, with all participants 
providing written informed consent. This study follows the 
Strengthening the Reporting of Observational Studies in 
Epidemiology (STROBE) reporting guidelines.

2.2 Study design and population

Participants were adults aged 20 years and older who took part in 
NHANES from 1999 to 2018. During initial screening, individuals 
lacking diabetes diagnosis data, components of the DI-GM, 
phenotypic age, BMI data, and covariates were excluded. A total of 
17,444 eligible participants were included in the analysis, of whom 
3,334 were diagnosed with diabetes (Figure 1).

2.3 Definition of diabetes

Diabetes was diagnosed based on laboratory test results and self-
reported information provided in NHANES. Diagnostic criteria 
included any of the following: physician diagnosis of diabetes, glycated 
hemoglobin (HbA1c) level ≥ 6.5%, fasting blood glucose 
level ≥ 7.0 mmol/L, random or 2-h oral glucose tolerance test (OGTT) 
blood glucose level ≥ 11.1 mmol/L, or use of diabetes medication/
insulin. Participants meeting any of these criteria were classified as 
having diabetes (13).

2.4 Assessment of the dietary index for gut 
microbiota

The DI-GM is a novel dietary quality assessment index based on 
the relationship between diet and gut microbiota, aiming to reflect the 
potential impact of dietary patterns on gut microbiota diversity and 
identify dietary characteristics that help maintain a healthy gut 
microbiota (7). The dietary data from NHANES were obtained 
through a 24-h recall method (Automated Multiple-Pass Method, 
AMPM) developed by the United States Department of Agriculture 
(USDA) (14). This standardized interview procedure, administered by 
professionally trained interviewers, captures all foods and beverages 
consumed within the previous 24 h. During data collection, NHANES 
implemented uniform training for interviewers and employed 
standardized protocols and tools, thereby minimizing interviewer bias 
and recall bias from participants (15). For the calculation of DI-GM 
and the analysis of other diet-related variables, we took the average of 
two independent 24-h dietary recall interviews for each participant. 
DI-GM consists of 14 food or nutrient components, including 10 
considered beneficial for gut microbiota diversity—avocado, broccoli, 
chickpeas, coffee, cranberries, fermented dairy products, fiber, green 
tea (this component may be omitted in some analyses due to NHANES 
not specifically recording green tea consumption), soy, and whole 
grains—and 4 components considered detrimental to gut microbiota 
diversity—red meat, processed meats, refined grains, and high-fat 
diets (≥40% of total energy from fat). Scoring is based on sex-specific 
median intake levels: for beneficial components, a score of 1 is 
assigned if intake is above the median and 0 if below; for detrimental 
components, a score of 1 is assigned if intake is below the median and 
0 if above (for high-fat diets, a score of 1 is assigned if fat intake is less 
than 40% of total energy). The components along with scoring criteria 
for the DI-GM can be  found in Supplementary Table 1. The total 
DI-GM score ranges from 0 to 13, with beneficial components 
contributing 0 to 9 points and detrimental components contributing 
0 to 4 points. Higher scores indicate greater potential dietary benefits 
to the gut microbiota. Based on previous research, DI-GM scores were 
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divided into four categories based on quartiles: 0–3, 4, 5, and ≥ 6 
points (16).

2.5 Definition of phenotypic age and BMI

Phenotypic age was calculated based on an algorithm involving 10 
clinical biomarkers, including chronological age (CA), albumin, 
creatinine, blood glucose, C-reactive protein, lymphocyte percentage, 
mean corpuscular volume, red cell distribution width, alkaline 
phosphatase, and white blood cell count (17). BMI was calculated by 
dividing weight in kilograms by height in meters squared.

2.6 Covariates

Based on previous research and clinical judgment, multiple 
potential confounding variables were considered, including age, gender, 
race, marital status, education level, poverty income ratio (PIR), physical 
activity, smoking status, alcohol intake, cardiovascular disease (CVD), 
hypertension, and hyperlipidemia (18, 19). Specific definitions are as 

follows: Age was treated as a continuous variable, recording participants’ 
actual age. Gender recorded participants’ gender. Race was categorized 
as non-Hispanic White, others (non-Hispanic Black, Mexican 
American, other Hispanic, and other races). Marital status was 
categorized as married/living with a partner and unmarried/other 
(including widowed, divorced, or separated). PIR was divided into three 
categories: 1–1.3, 1.31–3.50, and > 3.50 (20). Education level was 
classified as less than high school, high school or equivalent, and more 
than high school. Smoking status was categorized as never smokers 
(smoked less than 100 cigarettes in their lifetime), former smokers 
(smoked more than 100 cigarettes but are currently non-smokers), and 
current smokers (smoked more than 100 cigarettes and currently smoke 
occasionally or daily) (21). Participants were categorized according to 
alcohol intake as never (< 12 drinks in their lifetime), former (≥ 12 
drinks in 1 year and did not drink last year or did not drink last year but 
drank ≥12 drinks in their lifetime), or current drinkers (including heavy 
alcohol use [≥3 drinks per day for females, ≥4 drinks per day for males, 
or binge drinking ≥4 drinks on the same occasion for females or ≥ 5 
drinks for males on 5 or more days per month], moderate alcohol use 
[≥2 drinks per day for females, ≥3 drinks per day for males, or binge 
drinking ≥2 days per month], and mild alcohol use [≤1 drink per day 

FIGURE 1

Flow chart of the screening of the NHANES 1999–2018 participants.

https://doi.org/10.3389/fnut.2025.1519346
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Huang et al. 10.3389/fnut.2025.1519346

Frontiers in Nutrition 04 frontiersin.org

for females, ≤2 drinks per day for males]) (22). Physical activity time 
was a continuous variable indicating the time spent in walking, cycling, 
work, and recreational activities per week, categorized into three levels: 
inactive (0 MET-min/week), insufficiently active (1–599 MET-min/
week), and sufficiently active (≥600 MET-min/week) (23). CVD: Self-
reported diagnosis of coronary heart disease, angina, stroke, myocardial 
infarction, or congestive heart failure. Hypertension was defined by an 
average systolic blood pressure ≥ 140 mmHg and/or diastolic blood 
pressure ≥ 90 mmHg, self-reported diagnosis, or use of antihypertensive 
medications (21); hyperlipidemia was defined as meeting any one of the 
following criteria: (1) use of lipid-lowering medications; (2) 
hypertriglyceridemia (≥150 mg/dL); (3) hypercholesterolemia (total 
cholesterol ≥200 mg/dL, or LDL ≥130 mg/dL, or HDL <40 mg/dL).

2.7 Statistical analysis

All statistical analyses were performed using R statistical software 
and Free Statistics software. Statistical significance was defined as a 
two-sided p-value < 0.05. Continuous variables were described using 
means and standard deviations (SD), and categorical variables were 
expressed as percentages. Group differences were compared using 
chi-square tests, two-sample independent t-tests, and Mann–Whitney 
U tests.

To evaluate the association between DI-GM and the risk of 
diabetes, multivariable logistic regression models were constructed to 
calculate odds ratios (OR) and their 95% confidence intervals (CI). 
The models included: Model 1: Crude model without adjustment for 
any covariates. Model 2: Fully adjusted model, adjusting for all 
potential confounders listed above. Additionally, DI-GM was divided 
into four categories (0–3, 4, 5, ≥6) to explore the effect of DI-GM 
grouping on diabetes risk. Furthermore, we performed an analysis for 
each individual components of DI-GM to assess their independent 
associations with diabetes risk. Restricted cubic spline (RCS) analysis 
was employed to assess the potential nonlinear relationship between 
DI-GM and diabetes, setting four knots at the 5th, 35th, 65th, and 
95th percentiles of DI-GM scores. Subgroup analyses were conducted 
based on variables such as age, gender, physical activity, smoking 
status, alcohol intake, CVD, hypertension, and hyperlipidemia to 
assess the consistency of the association across different populations.

Sensitivity analyses included: (1) Multiple Imputation: Missing 
data were handled using the multiple imputation method with 
chained equations (MICE), generating five imputed datasets. Logistic 
regression analyses were repeated on these datasets. (2) Propensity 
Score Matching (PSM): A 1: 1 PSM was conducted using “diabetes 
status” (presence or absence of diabetes) as the primary matching 
variable to address potential confounding. Logistic regression 
analyses were then conducted on the matched sample. (3) Following 
the NHANES analytical guidelines, we accounted for the complex 
sampling design and incorporated mobile examination center (MEC) 
sample weights into our analysis to address batch effects, including 
variations in data collection time periods and geographic distribution 
(24). This adjustment ensures that our findings are representative of 
the U.S. population and accounts for potential biases arising from 
differences in sampling methods across survey cycles. To evaluate the 
association between DI-GM and the risk of diabetes, we constructed 
multivariable logistic regression models to calculate ORs with their 
corresponding 95% CIs. Detailed information regarding the weighted 

analysis can be found in the Supplementary materials. Mediation 
analyses explored the roles of phenotypic age and BMI using the 
Sobel test and bootstrap method with 1,000 simulations to calculate 
95% CIs of the mediation effect. The mediation effect was expressed 
as the proportion mediated.

3 Results

3.1 Participant characteristics

As shown in Table 1, the study included 17,444 participants from 
NHANES 1999–2018, of whom 3,334 were diagnosed with diabetes 
and 14,110 did not have diabetes. The average age was 50.62 years 
(SD = 17.59). Compared to non-diabetic individuals, participants with 
diabetes were older (61.26 vs. 48.11 years, p < 0.001) and had a higher 
proportion of males (51.83% vs. 48.86%, p = 0.002). Significant 
differences were also observed in race, income ratio, education level, 
smoking and alcohol status, physical activity level, and comorbidities 
such as CVD, hypertension, and hyperlipidemia (p < 0.05).

3.2 Association between DI-GM and 
diabetes

As shown in Table 2, multivariable logistic regression indicated 
that higher DI-GM scores were significantly associated with a lower 
risk of diabetes. In the crude model, each unit increase in DI-GM was 
associated with a 3% decrease in the odds of having diabetes 
(OR = 0.97, 95% CI = 0.94–0.99, p = 0.01); in the adjusted model, the 
association was more pronounced (OR = 0.93, 95% CI = 0.90–0.96, 
p < 0.001). Compared to the group with DI-GM scores of 0–3, those 
with scores of 5 (OR = 0.76, 95% CI = 0.67–0.86, p < 0.001) and ≥ 6 
(OR = 0.77, 95% CI = 0.68–0.88, p < 0.001) were significantly 
associated with lower odds of having diabetes.

Further analysis showed that higher scores for detrimental dietary 
components were significantly associated with increased diabetes risk 
(OR = 0.85, 95% CI = 0.82–0.89, p < 0.001), whereas scores for beneficial 
components were not significantly associated (p = 0.794). Analysis of 
individual components of DI-GM revealed the following results: Among 
the beneficial components, whole grains (OR = 1.12, 95% CI = 1.02–
1.22, p = 0.015) were associated with a higher risk of diabetes, while 
coffee (OR = 0.89, 95% CI = 0.82–0.98, p = 0.012) was linked to a lower 
risk in the adjusted model. Other beneficial components, including fiber, 
fermented dairy, avocados, and soybeans, did not demonstrate significant 
associations after adjustment for confounders (Supplementary Table 2). 
RCS analysis (Figure 2) indicated a linear association between DI-GM 
and diabetes risk (p = 0.556). Subgroup analyses demonstrated that the 
negative association between DI-GM and diabetes was significant in 
most subgroups, indicating the applicability and robustness of DI-GM 
across different populations (Figure 3).

3.3 Sensitivity analysis

Multiple imputation results showed that the negative association 
between DI-GM and diabetes remained significant in the adjusted 
model (OR = 0.93, 95% CI = 0.89–0.96, p < 0.001). PSM analysis 
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TABLE 1 Characteristics of the NHANES 1999–2018 participants.

Variables Total (n = 17,444) Without diabetes Diabetes p-value

Number of participants 17,444 14,110 3,334

Age, Mean ± SD 50.62 ± 17.59 48.11 ± 17.52 61.26 ± 13.41 < 0.001

Gender, n (%) 0.002

  Male 8,622 (49.43) 6,894 (48.86) 1728 (51.83)

  Female 8,822 (50.57) 7,216 (51.14) 1,606 (48.17)

Race, n (%) < 0.001

  Non-Hispanic White 8,298 (47.57) 6,945 (49.22) 1,353 (40.58)

  Others 9,146 (52.43) 7,165 (50.78) 1981 (59.42)

Marital status, n (%) 0.313

  Married/ Living with partner 10,765 (61.71) 8,733 (61.89) 2032 (60.95)

  Never married/Other 6,679 (38.29) 5,377 (38.11) 1,302 (39.05)

PIR group, n (%) < 0.001

  1–1.3 4,963 (28.45) 3,904 (27.67) 1,059 (31.76)

  1.31–3.50 6,911 (39.62) 5,493 (38.93) 1,418 (42.53)

  >3.50 5,570 (31.93) 4,713 (33.40) 857 (25.70)

Education level, n (%) < 0.001

  Less than high school 4,032 (23.11) 2,988 (21.18) 1,044 (31.31)

  High school or equivalent 4,144 (23.76) 3,312 (23.74) 832 (24.96)

  Above high school 9,268 (53.13) 7,810 (55.35) 1,458 (43.73)

Smoking status, n (%) < 0.001

  Never 9,374 (53.74) 7,716 (54.68) 1,658 (49.73)

  Former 4,567 (26.18) 3,416 (24.21) 1,151 (34.52)

  Current 3,503 (20.08) 2,978 (21.11) 525 (15.75)

Alcohol intake, n (%) < 0.001

  Never 2,196 (12.59) 1,679 (11.90) 517 (15.51)

  Former 3,431 (19.67) 2,417 (17.13) 1,014 (30.41)

  Current 11,817 (67.74) 10,014 (70.97) 1803 (54.08)

Physical activity, n (%) < 0.001

  Inactive 4,432 (25.41) 3,156 (22.37) 1,276 (38.27)

  Insufficiently active 3,335 (19.12) 2,713 (19.23) 622 (18.66)

  Sufficiently active 9,677 (55.47) 8,241 (58.41) 1,436 (43.07)

CVD, n (%) < 0.001

  No 15,404 (88.31) 12,926 (91.61) 2,478 (74.33)

  Yes 2040 (11.69) 1,184 (8.39) 856 (25.67)

Hypertension, n (%) < 0.001

  No 9,807 (56.22) 8,891 (63.01) 916 (27.47)

  Yes 7,637 (43.78) 5,219 (36.99) 2,418 (72.53)

Hyperlipidemia, n (%) < 0.001

  No 4,716 (27.04) 4,295 (30.44) 421 (12.63)

  Yes 12,728 (72.96) 9,815 (69.56) 2,913 (87.37)

DI-GM score, Mean ± SD 4.52 ± 1.52 4.54 ± 1.52 4.46 ± 1.52 0.01

DI-GM group, n (%) 0.234

  0–3 4,446 (25.49) 3,553 (25.18) 893 (26.78)

  4 4,363 (25.01) 3,529 (25.01) 834 (25.01)

(Continued)
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results were consistent with multiple imputation, further supporting 
the robustness of the main findings (Table 3). In Supplementary Table 3, 
the weighted analysis confirmed the stability of the association 
between DI-GM and diabetes risk.

3.4 Mediation analysis

As shown in Figure 4, mediation analysis explored the mediating 
roles of BMI and phenotypic age. Higher DI-GM scores were 
associated with lower BMI (β = −0.21, 95% CI = −0.28 to −0.13, 
p < 0.001) and lower phenotypic age (β = −0.26, 95% CI = −0.36 to 
−0.16, p < 0.001). Increases in BMI (OR = 1.06, 95% CI = 1.05–1.06, 
p < 0.001) and phenotypic age (OR = 1.09, 95% CI = 1.08–1.10, 
p < 0.001) significantly increased diabetes risk. BMI accounted for 
25.57% (95% CI = 12.12–95.80%, p = 0.012) and phenotypic age for 
41.02% (95% CI = 23.01–99.82%, p = 0.002) of the association 
between DI-GM and diabetes.

4 Discussion

This study systematically evaluated the association between 
DI-GM and diabetes risk and explored the mediating roles of 
phenotypic age and BMI. Our results showed that higher DI-GM 
scores were significantly associated with a lower risk of diabetes, 

partially mediated through inverse in phenotypic age and BMI. This 
finding underscores the complex relationships among dietary 
patterns, gut microbiota, biological aging, weight control, 
and diabetes.

Previous studies have shown that dysbiosis of the gut microbiota 
is closely associated with insulin resistance, chronic inflammation, and 
glucose metabolism disorders (25). Diet is a key factor influencing the 
gut microbiota; different dietary patterns can lead to significant 
changes in gut microbiota diversity and metabolic products (6). Our 
findings support these views, indicating that optimizing diet to 
promote a healthy gut microbiota can reduce the risk of diabetes. 
Notably, we  found that higher scores for dietary components 
detrimental to the gut microbiota (such as red meat, processed meats, 
refined grains, and high-fat diets) were significantly associated with 
increased diabetes risk. This is consistent with previous studies; 
excessive consumption of these foods has been shown to reduce gut 
microbiota diversity, promote the proliferation of harmful bacteria, 
and induce inflammatory responses and metabolic disorders (26, 27). 
For example, high-fat diets can decrease the proportion of 
Bacteroidetes and increase the proportion of Firmicutes, affecting 
energy metabolism (28). In contrast, foods rich in dietary fiber and 
phytochemicals (such as whole grains, legumes, and fruits) help 
increase beneficial gut bacteria like Bifidobacterium and Lactobacillus, 
produce short-chain fatty acids, and improve insulin sensitivity (29).

However, scores for beneficial dietary components, except for 
coffee, were not significantly associated with a lower risk of diabetes. 

TABLE 1 (Continued)

Variables Total (n = 17,444) Without diabetes Diabetes p-value

  5 4,201 (24.08) 3,426 (24.28) 775 (23.25)

  ≥6 4,434 (25.42) 3,602 (25.53) 832 (24.96)

Beneficial to gut microbiota 2.00 (1.00, 3.00) 2.00 (1.00, 3.00) 2.00 (1.00, 3.00) 0.778

Unfavorable to gut microbiota 2.31 ± 1.03 2.32 ± 1.02 2.27 ± 1.04 0.005

BMI (kg/m2), Mean ± SD 29.42 ± 6.88 28.69 ± 6.52 32.54 ± 7.46 < 0.001

Phenotypic age, Mean ± SD 50.13 ± 21.0 45.86 ± 19.40 68.18 ± 17.64 < 0.001

DI-GM, dietary index for gut microbiota; BMI, Body Mass Index; PIR, poverty income ratio; CVD, cardiovascular disease.

TABLE 2 Association between DI-GM and diabetes.

Characteristics Diabetes

Crude model Adjusted model

OR (95% CI) p-value OR (95% CI) p-value

DI-GM 0.97 (0.94–0.99) 0.01 0.93 (0.90–0.96) <0.001

DI-GM group

  0–3 Ref Ref

  4 0.94 (0.85–1.04) 0.252 0.86 (0.77–0.97) 0.014

  5 0.90 (0.81–1.00) 0.054 0.76 (0.67–0.86) <0.001

  ≥6 0.92 (0.83–1.02) 0.116 0.77 (0.68–0.88) <0.001

  Trend test 0.081 <0.001

Beneficial to gut microbiota 0.99 (0.96–1.02) 0.397 1.00 (0.97–1.04) 0.794

Unfavorable to gut microbiota 0.95 (0.91–0.98) 0.005 0.85 (0.82–0.89) <0.001

DI-GM, dietary index for gut microbiota; PIR, poverty income ratio; CVD, cardiovascular disease; CI, Confidence interval; OR, Odd Ratio.

https://doi.org/10.3389/fnut.2025.1519346
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Huang et al. 10.3389/fnut.2025.1519346

Frontiers in Nutrition 07 frontiersin.org

This may be due to various factors. First, the impact of diet on the gut 
microbiota is complex and individualized; dietary habits, genetic 
background, and lifestyle factors may influence results (30). Second, 
beneficial effects may require a longer duration to manifest, which our 
cross-sectional design could not capture (31). Additionally, dietary 
intake data based on 24-h recalls may not fully reflect long-term 
dietary patterns.

The inclusion of phenotypic age and BMI in the mediation 
analysis in this study was primarily based on an exploratory 
perspective, aiming to identify potential mediating pathways between 
the DI-GM and diabetes. This approach also seeks to provide 
theoretical support and directions for future longitudinal studies or 
interventional trials. Specifically, phenotypic age, as a metric that 
quantifies overall health status and the degree of biological aging, was 
selected because accelerated biological aging is commonly observed 
in patients with diabetes (32). Moreover, biological aging is closely 
associated with alterations in gut microbiota composition and changes 
in dietary behaviors (33). BMI, a widely used indicator of obesity, was 
included due to its established role as a critical risk factor for diabetes 
(10). Poor dietary habits and gut microbiota dysbiosis may contribute 
to obesity and insulin resistance, thereby increasing the risk of 

developing diabetes (34). Thus, phenotypic age and BMI are important 
mediators that may play a key role in the “diet-gut microbiota” 
pathway and its association with diabetes. The mediation analysis 
showed that phenotypic age and BMI had significant mediating effects 
in the association between DI-GM and diabetes. This implies that 
higher DI-GM scores may reduce diabetes risk by lowering biological 
age and controlling weight. Phenotypic age reflects biological aging, 
and accelerated aging is associated with increased risks of diabetes and 
other chronic diseases (35). The gut microbiota can influence aging 
processes by regulating inflammatory responses, oxidative stress, and 
metabolic functions (36, 37). For instance, dietary fiber enhances the 
growth of butyrate-producing bacteria such as Faecalibacterium and 
Roseburia, which produce SCFAs that reduce inflammation and 
oxidative stress, thereby delaying aging (38). Furthermore, the gut 
microbiota is closely related to obesity, affecting energy intake and fat 
storage, thereby influencing BMI (39, 40). Improving diet to promote 
a healthy gut microbiota may help delay aging, control weight, and 
reduce diabetes risk.

Strengths of this study include the use of the large, nationally 
representative NHANES dataset, enhancing external validity. 
We adjusted for multiple potential confounders to reduce bias and 

FIGURE 2

Association between DI-GM and diabetes in NHANES 1999–2018 participants by RCS. DI-GM, dietary index for gut microbiota; PIR, poverty income 
ratio; CVD, cardiovascular disease; RCS, restricted cubic spline. The model was adjusted for age, gender, race, marital status, education level, PIR, 
physical activity, smoking status, Alcohol intake, CVD, Hypertension, and Hyperlipidemia.
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validated the robustness of results through sensitivity analyses and 
PSM. However, limitations exist. First, the cross-sectional design 
cannot establish causality. Longitudinal studies and randomized 
controlled trials are needed to confirm causal associations. Second, 
dietary intake data were self-reported, possibly introducing recall 
bias. Future studies may use more objective dietary assessment 
methods. Third, unmeasured confounders, such as genetic factors 
and direct gut microbiota sequencing data, may influence results. 

Additionally, due to NHANES limitations, we could not account for 
green tea consumption, potentially underestimating DI-GM scores.

Future research should explore mechanistic relationships among 
diet, gut microbiota, biological age, and metabolic diseases. 
Understanding how specific dietary components affect the gut 
microbiota can aid in developing personalized dietary interventions. 
Considering individual variability, studies should focus on specific 
effects in different populations.

FIGURE 3

Subgroup analyses of the Association between DI-GM and diabetes among participants. DI-GM, dietary index for gut microbiota; PIR, poverty income 
ratio; CVD, cardiovascular disease; CI, Confidence interval; OR, Odd Ratio. The model was adjusted for age, gender, race, marital status, education 
level, PIR, physical activity, smoking status, Alcohol intake, CVD, Hypertension, and Hyperlipidemia.
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5 Conclusion

In summary, this study found that a higher DI-GM score was 
associated with a lower prevalence of diabetes, partly mediated  
by reductions in phenotypic age and BMI. Although we   

did not directly measure changes in the gut microbiome,  
these findings highlight the importance of dietary patterns in 
metabolic health. Future research and interventions leveraging the 
DI-GM may help inform strategies to reduce the burden 
of diabetes.

TABLE 3 Sensitivity analyses.

Diabetes

Crude model Adjusted model

OR (95% CI) p-value OR (95% CI) p-value

Multiple imputations of missing data 0.94 (0.91–0.97) <0.001 0.93 (0.89–0.96) <0.001

Propensity score matching 0.98 (0.96–1.00) 0.046 0.93 (0.90–0.96) <0.001

DI-GM, dietary index for gut microbiota; PIR, poverty income ratio; CVD, cardiovascular disease; CI, Confidence interval; OR, Odd Ratio.

FIGURE 4

Mediation analysis of phenotypic age and body mass index in the association between DI-GM and diabetes. DI-GM, dietary index for gut microbiota; 
BMI, Body Mass Index; PIR, poverty income ratio; CVD, cardiovascular disease; CI, Confidence interval; OR, Odd Ratio. The models were adjusted for 
age, gender, race, marital status, education level, poverty-to-income ratio (PIR), physical activity, smoking status, alcohol intake, cardiovascular disease 
(CVD), hypertension, hyperlipidemia, as well as BMI and phenotypic age, with mutual adjustment performed between BMI and phenotypic age to 
account for their potential interdependence in the analysis.

https://doi.org/10.3389/fnut.2025.1519346
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Huang et al. 10.3389/fnut.2025.1519346

Frontiers in Nutrition 10 frontiersin.org

Data availability statement

Publicly available datasets were analyzed in this study. All data 
entered into the analysis were from NHANES, which is publicly 
accessible to all.

Ethics statement

The studies involving humans were approved by NCHS Ethics 
Review Board (ERB) Approval. The studies were conducted in 
accordance with the local legislation and institutional requirements. 
The participants provided their written informed consent to 
participate in this study.

Author contributions

YxH: Conceptualization, Data curation, Formal analysis, 
Methodology, Supervision, Writing – original draft, Writing – review & 
editing. XbL: Conceptualization, Data curation, Formal analysis, 
Methodology, Supervision, Writing – original draft, Writing – review & 
editing. CL: Formal analysis, Writing – original draft. XC: Formal analysis, 
Writing – original draft. YL: Formal analysis, Writing – original draft. YsH: 
Software, Writing – original draft. YW: Supervision, Writing – review & 
editing. XqL: Supervision, Writing – review & editing.

Funding

The author(s) declare that financial support was received for the 
research, authorship, and/or publication of this article. This study was 
supported by China Scholarship Council(grant no. 201906070289), 
Startup Fund for Scientific Research, Fujian Medical University 
(grant no. 2022QH1268). The funders had no role in the study design, 
analysis, decision to publish, nor preparation of the manuscript.

Acknowledgments

We thank Huanxian Liu (Department of Neurology, Chinese PLA 
General Hospital, Beijing, China) for his valuable comments on the 
study design and manuscript.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Generative AI statement

The authors declare that no Gen AI was used in the creation of 
this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated 
organizations, or those of the publisher, the editors and the 
reviewers. Any product that may be evaluated in this article, or 
claim that may be made by its manufacturer, is not guaranteed or 
endorsed by the publisher.

Supplementary material

The Supplementary material for this article can be found online 
at: https://www.frontiersin.org/articles/10.3389/fnut.2025.1519346/
full#supplementary-material

References
 1. Chivese T, Werfalli MM, Magodoro I, Chinhoyi RL, Kengne AP, Norris SA, et al. 

Prevalence of type 2 diabetes mellitus in women of childbearing age in Africa during 
2000–2016: a systematic review and meta-analysis. BMJ Open. (2019) 9:e024345. doi: 
10.1136/bmjopen-2018-024345

 2. Lin X, Xu Y, Pan X, Xu J, Ding Y, Sun X, et al. Global, regional, and national burden 
and trend of diabetes in 195 countries and territories: an analysis from 1990 to 2025. Sci 
Rep. (2020) 10:14790. doi: 10.1038/s41598-020-71908-9

 3. Cole JB, Florez JC. Genetics of diabetes mellitus and diabetes complications. Nat 
Rev Nephrol. (2020) 16:377–90. doi: 10.1038/s41581-020-0278-5

 4. Yang G, Wei J, Liu P, Zhang Q, Tian Y, Hou G, et al. Role of the gut microbiota in 
type 2 diabetes and related diseases. Metabolism. (2021) 117:154712. doi: 10.1016/j.
metabol.2021.154712

 5. Scheithauer TPM, Rampanelli E, Nieuwdorp M, Vallance BA, Verchere CB, 
van Raalte DH, et al. Gut microbiota as a trigger for metabolic inflammation in 
obesity and type 2 diabetes. Front Immunol. (2020) 11:571731. doi: 10.3389/
fimmu.2020.571731

 6. Hills RD Jr, Pontefract BA, Mishcon HR, Black CA, Sutton SC, Theberge CR. Gut 
microbiome: profound implications for diet and disease. Komp Nutr Diet. (2022) 
11:1–16. doi: 10.1159/000523712

 7. Kase BE, Liese AD, Zhang J, Murphy EA, Zhao L, Steck SE. The development and 
evaluation of a literature-based dietary index for gut microbiota. Nutrients. (2024) 
16:1045. doi: 10.3390/nu16071045

 8. Wang T, Duan W, Jia X, Huang X, Liu Y, Meng F, et al. Associations of combined 
phenotypic ageing and genetic risk with incidence of chronic respiratory diseases in the 
UK biobank: a prospective cohort study. Eur Respir J. (2024) 63:2301720. doi: 
10.1183/13993003.01720-2023

 9. Wu JW, Yaqub A, Ma Y, Koudstaal W, Hofman A, Ikram MA, et al. Biological age 
in healthy elderly predicts aging-related diseases including dementia. Sci Rep. (2021) 
11:15929. doi: 10.1038/s41598-021-95425-5

 10. Ottosson F, Smith E, Ericson U, Brunkwall L, Orho-Melander M, Di Somma S, 
et al. Metabolome-defined obesity and the risk of future type 2 diabetes and mortality. 
Diabetes Care. (2022) 45:1260–7. doi: 10.2337/dc21-2402

 11. Badal VD, Vaccariello ED, Murray ER, Yu KE, Knight R, Jeste DV, et al. The gut 
microbiome, aging, and longevity: a systematic review. Nutrients. (2020) 12:3759. doi: 
10.3390/nu12123759

 12. Tilg H, Zmora N, Adolph TE, Elinav E. The intestinal microbiota fuelling 
metabolic inflammation. Nat Rev Immunol. (2020) 20:40–54. doi: 10.1038/
s41577-019-0198-4

 13. Liu H, Zhang S, Gong Z, Zhao W, Lin X, Liu Y, et al. Association between migraine. 
And cardiovascular disease mortality: a prospective population-based cohort study. 
Headache. (2023) 63:1109–18. doi: 10.1111/head.14616

 14. Food Surveys Research Group. USDA ARS. (2024) Available at: https://www.ars.
usda.gov/northeast-area/beltsville-md-bhnrc/beltsville-human-nutrition-research-
center/food-surveys-research-group/ [Accessed December 22, 2024]

https://doi.org/10.3389/fnut.2025.1519346
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/articles/10.3389/fnut.2025.1519346/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnut.2025.1519346/full#supplementary-material
https://doi.org/10.1136/bmjopen-2018-024345
https://doi.org/10.1038/s41598-020-71908-9
https://doi.org/10.1038/s41581-020-0278-5
https://doi.org/10.1016/j.metabol.2021.154712
https://doi.org/10.1016/j.metabol.2021.154712
https://doi.org/10.3389/fimmu.2020.571731
https://doi.org/10.3389/fimmu.2020.571731
https://doi.org/10.1159/000523712
https://doi.org/10.3390/nu16071045
https://doi.org/10.1183/13993003.01720-2023
https://doi.org/10.1038/s41598-021-95425-5
https://doi.org/10.2337/dc21-2402
https://doi.org/10.3390/nu12123759
https://doi.org/10.1038/s41577-019-0198-4
https://doi.org/10.1038/s41577-019-0198-4
https://doi.org/10.1111/head.14616
https://www.ars.usda.gov/northeast-area/beltsville-md-bhnrc/beltsville-human-nutrition-research-center/food-surveys-research-group/
https://www.ars.usda.gov/northeast-area/beltsville-md-bhnrc/beltsville-human-nutrition-research-center/food-surveys-research-group/
https://www.ars.usda.gov/northeast-area/beltsville-md-bhnrc/beltsville-human-nutrition-research-center/food-surveys-research-group/


Huang et al. 10.3389/fnut.2025.1519346

Frontiers in Nutrition 11 frontiersin.org

 15. Chen T-C, Clark J, Riddles MK, Mohadjer LK, THI F. National Health and 
nutrition. Examination survey, 2015-2018: sample design and estimation procedures. 
Vital Health Stat. (2020) 184:1–35.

 16. Zhang X, Yang Q, Huang J, Lin H, Luo N, Tang H. Association of the newly 
proposed dietary index. For gut microbiota and depression: the mediation effect of 
phenotypic age and body mass index. Eur Arch Psychiatry Clin Neurosci. (2024). doi: 
10.1007/s00406-024-01912-x

 17. Chen H, Tang H, Zhang X, Huang J, Luo N, Guo Q, et al. Adherence to Life’s 
essential 8 is. Associated with delayed biological aging: a population-based cross-
sectional study. Revista Española de Cardiología (English Edition). (2025) 78:37–46. doi: 
10.1016/j.rec.2024.04.004

 18. Zhou L, Xu X, Li Y, Zhang S, Xie H. Association between dietary antioxidant levels and 
diabetes: a. cross-sectional study. Front Nutr. (2024) 11:1–8. doi: 10.3389/fnut.2024.1478815

 19. King DE, Xiang J. The dietary inflammatory index is associated with diabetes 
severity. J Am Board Fam Med. (2019) 32:801–6. doi: 10.3122/jabfm.2019.06.190092

 20. Pan T, Zhang Z, He T, Zhang C, Liang J, Wang X, et al. The association between 
urinary incontinence and suicidal ideation: Findings from the National Health and 
Nutrition Examination Survey. PLoS One. (2024) 19:e0301553. doi: 10.1371/journal.
pone.0301553

 21. Tang H, Zhang X, Luo N, Huang J, Zhu Y. Association of Dietary Live Microbes 
and Nondietary. Prebiotic/probiotic intake with cognitive function in older adults: 
evidence from NHANES. J Gerontol A Biol Sci Med Sci. (2024) 79:glad175. doi: 10.1093/
gerona/glad175

 22. Rattan P, Penrice DD, Ahn JC, Ferrer A, Patnaik M, Shah VH, et al. Inverse 
Association of Telomere Length with Liver Disease and Mortality in the US population. 
Hepatol Commun. (2022) 6:399–410. doi: 10.1002/hep4.1803

 23. Wei X, Min Y, Xiang Z, Zeng Y, Wang J, Liu L. Joint association of physical activity 
and dietary. Quality with survival among US cancer survivors: a population-based 
cohort study. Int J Surg. (2024) 110:5585–94. doi: 10.1097/JS9.0000000000001636

 24. Johnson CL, Paulose-Ram R, Ogden CL, Carroll MD, Kruszon-Moran D, 
Dohrmann SM, et al. National health and nutrition examination survey: analytic 
guidelines, 1999-2010. Vital Health Stat. (2013) 2:1–24.

 25. Amabebe E, Robert FO, Agbalalah T, Orubu ESF. Microbial dysbiosis-induced 
obesity: role of gut. Microbiota in homoeostasis of energy metabolism. Br J Nutr. (2020) 
123:1127–37. doi: 10.1017/S0007114520000380

 26. Yu D, Nguyen SM, Yang Y, Xu W, Cai H, Wu J, et al. Long-term diet. Quality is 
associated with gut microbiome diversity and composition among urban Chinese adults. 
Am J Clin Nutr. (2021) 113:684–94. doi: 10.1093/ajcn/nqaa350

 27. Würtz AML, Jakobsen MU, Bertoia ML, Hou T, Schmidt EB, Willett WC, et al. 
Replacing the consumption of red meat with other major dietary protein sources and 
risk of type 2 diabetes mellitus: a prospective cohort study. Am J Clin Nutr. (2021) 
113:612–21. doi: 10.1093/ajcn/nqaa284

 28. Baek GH, Yoo KM, Kim S-Y, Lee DH, Chung H, Jung S-C, et al. Collagen peptide 
exerts an anti-obesity effect by influencing the Firmicutes/Bacteroidetes ratio in the gut. 
Nutrients. (2023) 15:2610. doi: 10.3390/nu15112610

 29. Li YJ, Chen X, Kwan TK, Loh YW, Singer J, Liu Y, et al. Dietary Fiber protects 
against diabetic nephropathy through short-chain fatty acid-mediated activation of G 
protein-coupled receptors GPR43 and GPR109A. JASN. (2020) 31:1267–81. doi: 
10.1681/ASN.2019101029

 30. Bianchetti G, De Maio F, Abeltino A, Serantoni C, Riente A, Santarelli G, et al. 
Unraveling the gut microbiome-diet connection: exploring the impact of digital 
precision and personalized nutrition on microbiota composition and host physiology. 
Nutrients. (2023) 15:3931. doi: 10.3390/nu15183931

 31. Tomova A, Bukovsky I, Rembert E, Yonas W, Alwarith J, Barnard ND, et al. The 
effects of vegetarian and vegan diets on gut microbiota. Front Nutr. (2019) 6:47. doi: 
10.3389/fnut.2019.00047

 32. Cortez BN, Pan H, Aguayo-Mazzucato C. 356-OR: DNA methylation suggests. 
Accelerated biological age and specific biomarkers correlate with the speed of aging in 
diabetes mellitus. Diabetes. (2022) 71:356-OR. doi: 10.2337/db22-356-OR

 33. Maffei VJ, Kim S, Blanchard E, Luo M, Jazwinski SM, Taylor CM, et al. Biological 
aging and. The human gut microbiota. J Gerontol: Series A. (2017) 72:1474–82. doi: 
10.1093/gerona/glx042

 34. Musso G, Gambino R, Cassader M. Obesity, diabetes, and gut microbiota. Diabetes 
Care. (2010) 33:2277–84. doi: 10.2337/dc10-0556

 35. Robinson O, Chadeau Hyam M, Karaman I, Climaco Pinto R, Ala-Korpela M, 
Handakas E, et al. Determinants of accelerated metabolomic and epigenetic aging in a 
UK cohort. Aging Cell. (2020) 19:e13149. doi: 10.1111/acel.13149

 36. Assis V, de Sousa Neto IV, Ribeiro FM, de Cassia MR, Franco OL, da Silva AS, et al. 
The emerging role of the aging process and exercise training on the crosstalk between 
gut microbiota and telomere length. IJERPH. (2022) 19:7810. doi: 10.3390/
ijerph19137810

 37. Golonka RM, Xiao X, Abokor AA, Joe B, Vijay-Kumar M. Altered nutrient status 
reprograms host. Inflammation and metabolic health via gut microbiota. J Nutr Biochem. 
(2020) 80:108360. doi: 10.1016/j.jnutbio.2020.108360

 38. Parolini C. Effects of fibers and gut microbiota on low-grade inflammatory 
human disease. Hepatobiliary Surg Nutr. (2019) 8:664–5. doi: 10.21037/
hbsn.2019.07.15

 39. Wang B, Kong Q, Li X, Zhao J, Zhang H, Chen W, et al. A high-fat diet increases 
gut. Microbiota biodiversity and energy expenditure due to nutrient difference. 
Nutrients. (2020) 12:3197. doi: 10.3390/nu12103197

 40. Miyamoto J, Igarashi M, Watanabe K, Karaki S, Mukouyama H, Kishino S, et al. 
Gut microbiota confers host resistance to obesity by metabolizing dietary 
polyunsaturated fatty acids. Nat Commun. (2019) 10:4007. doi: 10.1038/
s41467-019-11978-0

https://doi.org/10.3389/fnut.2025.1519346
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://doi.org/10.1007/s00406-024-01912-x
https://doi.org/10.1016/j.rec.2024.04.004
https://doi.org/10.3389/fnut.2024.1478815
https://doi.org/10.3122/jabfm.2019.06.190092
https://doi.org/10.1371/journal.pone.0301553
https://doi.org/10.1371/journal.pone.0301553
https://doi.org/10.1093/gerona/glad175
https://doi.org/10.1093/gerona/glad175
https://doi.org/10.1002/hep4.1803
https://doi.org/10.1097/JS9.0000000000001636
https://doi.org/10.1017/S0007114520000380
https://doi.org/10.1093/ajcn/nqaa350
https://doi.org/10.1093/ajcn/nqaa284
https://doi.org/10.3390/nu15112610
https://doi.org/10.1681/ASN.2019101029
https://doi.org/10.3390/nu15183931
https://doi.org/10.3389/fnut.2019.00047
https://doi.org/10.2337/db22-356-OR
https://doi.org/10.1093/gerona/glx042
https://doi.org/10.2337/dc10-0556
https://doi.org/10.1111/acel.13149
https://doi.org/10.3390/ijerph19137810
https://doi.org/10.3390/ijerph19137810
https://doi.org/10.1016/j.jnutbio.2020.108360
https://doi.org/10.21037/hbsn.2019.07.15
https://doi.org/10.21037/hbsn.2019.07.15
https://doi.org/10.3390/nu12103197
https://doi.org/10.1038/s41467-019-11978-0
https://doi.org/10.1038/s41467-019-11978-0

	Association between the dietary index for gut microbiota and diabetes: the mediating role of phenotypic age and body mass index
	1 Introduction
	2 Methods
	2.1 Data source
	2.2 Study design and population
	2.3 Definition of diabetes
	2.4 Assessment of the dietary index for gut microbiota
	2.5 Definition of phenotypic age and BMI
	2.6 Covariates
	2.7 Statistical analysis

	3 Results
	3.1 Participant characteristics
	3.2 Association between DI-GM and diabetes
	3.3 Sensitivity analysis
	3.4 Mediation analysis

	4 Discussion
	5 Conclusion

	References

