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Higher estimated dietary intake of 
live microbes is associated with 
lower mortality in US adults
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Affiliated to Northwest University, Xi’an, China

Background: Few studies have discussed the health benefits of total dietary 
intake of live microbes (TDIIM). We investigated the relationship between daily 
estimated TDIIM and mortality in US adults.

Materials and methods: This cohort study included subjects ≥18 years from the 
1999–2018 NHANES and their mortality data through December 31, 2019. The 
TDIIM counts were estimated based on a prior classification system, with foods 
categorized into low (<10^7 CFU/g), medium (10^7–10^10 CFU/g), and high 
(>10^10 CFU/g) levels of live microbes. Individual intakes were calculated by 
multiplying the microbial levels by the corresponding grams of food consumed. 
Weighted Cox regression models, Kaplan–Meier survival curves, and restricted 
cubic splines (RCS) were used to estimate the association between all-cause 
and cardiovascular (CVD) mortality and TDIIM.

Results: Among 52,383 participants, during a median follow-up period of 118.75 
months, a total of 7,711 deaths were recorded, of which 1,985 were CVD deaths. 
In the weighted Cox regression model, compared to participants with low TDIIM, 
those with high intake have lower risks of all-cause mortality (HR 0.91; 95% CI, 
0.82–1.00; P for trend, 0.01), and CVD mortality (HR 0.77; 95% CI, 0.63–0.95; P 
for trend, 0.005). In the RCS analysis, the relationship between TDIIM and all-
cause mortality exhibited a non-linear pattern with a gradual decline followed 
by a plateau at higher intakes, while a linear decreasing trend was observed with 
CVD mortality. Kaplan–Meier survival curves showed that participants with low 
TDIIM had a higher risk of all-cause mortality and CVD mortality.

Conclusion: In this cohort study of US adults, a higher estimated TDIIM reduced 
the risk of all-cause and CVD mortality. These findings suggest that the ingestion 
of live microbes in the diet may be advantageous for human health.
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1 Introduction

Probiotics are living microorganisms that, when administered in sufficient amounts, 
provide health benefits to the host (1). Dietary intake of microorganisms has the potential to 
make a positive contribution to human health and can influence intestinal microbiota and a 
wide range of diseases (2). The “old friend hypothesis” suggests that symbiotic or harmless 
microorganisms exposed to food are an essential and helpful source of microbial stimulation 
of the immune system (3). Daily intake of live microorganisms from the diet may arrive in the 
gut and integrate with the resident microbiota, thereby enhancing gut function, modulating 
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the immune system, and reducing susceptibility to chronic 
conditions (4).

The relationship between whole ingested live microorganisms and 
human health has not been directly investigated. A previous study of 
different cross-national cohorts found that dairy consumption reduced 
the risk of death and major cardiovascular disease (CVD) events (5). 
A Japanese study showed that fermented soy intake was significantly 
negatively associated with CVD mortality and not with all-cause 
mortality (6). However, the surveys did not isolate the health outcomes 
caused by the contribution of live microbes in foods from the overall 
effects of these foods. Further, these studies under-assessed the sources 
of live microorganisms, which were derived not only from fermented 
foods but also from other foods, such as unpeeled, raw vegetables and 
fruits with microbial cell counts ranging from approximately 10^6 to 
10^8 CFU/g (7–9). Basis on this, Marco et al. comprehensively estimated 
the amounts of live microbes consumed in the diet and classified all 
foods as having high (>10^7 CFU/g), medium (10^4–10^7 CFU/g) or low 
(<10^4 CFU/g) levels of live microbes (10).

Therefore, this study is the first to comprehensively investigate the 
relationship between estimated total dietary intake of live microbes 
and mortality, providing novel insights into the potential health 
benefits of dietary live microbes.

2 Materials and methods

2.1 Study design and setting

This study included participants from the nationally representative 
consecutive National Health and Nutrition Examination Survey 
(NHANES) 1998–2018 linked to the National Death Index through 
December 31, 2019. NHANES was approved by the National Center 
for Health Statistics (NCHS) ethics review committee, and all 
participants submitted written informed consent. All procedures for 
this study were conducted following relevant guidelines and 
regulations.1 Of the 101,316 subjects in the NHANES 1998–2018, 
individuals were excluded if (1) they were under 18 years of age 
(n = 42,112) (2), they had missing values for dietary live microbial 
intake (n = 6,717) (3), they had any missing values for the NHANES 
weight (n = 19) (4), they had missing follow-up data. (n = 85). 
Ultimately, a total of 52,383 subjects were included in this research 
(Supplementary Figure S1). This study adhered to the Strengthening 
the Reporting of Observational Studies in Epidemiology (STROBE) 
reporting guidelines (11).

2.2 Exposure ascertainment

The 24-h dietary data was linked to the USDA Food Survey 
Nutrition Database by the National Center for Health Statistics 
(NHANES) to evaluate nutrient and energy intakes (12–14). In Marco’ 
study, four experts assessed the number of live microbes in 48 food 
codes contained in 9388 subgroups of the NHANES database by 
drawing on references, authoritative reviews and the reported 

1 https://www.cdc.gov/nchs/data_access/restrictions.htm

influence of food processing (e.g., pasteurization) on microbial 
viability, as well as consulting externally with USDA Agricultural 
Research Service microbiologist Fred Breidt. Foods with different 
viable microorganisms were classified as low (<10^4CFU/g), medium 
(10^4–10^7CFU/g), or high (>10^7 CFU/g). To quantitatively measure 
an individual’s approximate total dietary intake of live microorganisms 
(CFU), the microbial intakes of the low, medium, and high groups 
were assumed to be  10^3 CFU/g, 10^6 CFU/g, and 10^9 CFU/g, 
respectively, and then multiplied by the corresponding grams of food 
in each group and summed. In addition, as the order of magnitude of 
individual dietary intake of live microorganisms was too large, a 
logarithm with a base of 10 live microbial intakes was taken for 
subsequent analysis. Finally, the total population was divided into 3 
groups of low, medium, and high according to individual total dietary 
live microorganisms <10^7 CFU,10^7–10^10 CFU, and > 10^10 CFU.

2.3 Mortality ascertainment

Information on mortality status (from baseline to 31 December 
2019) was acquired from NCHS using a unique identification number 
for each participant. All-cause mortality is defined as death from any 
cause. Cardiovascular mortality was identified by codes I00-I09, I11, 
I13 and I20-I51 according to the International Classification of 
Diseases, Tenth Revision (ICD-10).

2.4 Covariates ascertainment

Demographic characteristics included age (18–39, 40–59, ≥60), sex 
(women, men), race (Mexican American, Non-Hispanic Black, 
Non-Hispanic White, Other Hispanic, other race-including multiracial), 
marital status (divorced/separated/widowed, married/living with a 
partner, never married, no record), education (<high school, high 
school, >high school, no record), and poverty-to-income ratio (PIR) 
(<1.3, 1.3–3.5, >3.5, no record), smoking status (never, former, now, no 
record), alcohol status (never, former, now, no record), and physical 
activity(no, yes, no record). BMI is calculated from measured height and 
weight and is classified as normal (<25kg/m2), overweight (25-30kg/
m2), obese (≥30kg/m2), and no record. The estimated glomerular 
filtration rate (eGFR, mL/min/1.73m2) was categorized into <60 
and ≥ 60 groups, which was calculated from serum creatinine 
measurements using the 2009 Chronic Kidney Disease Epidemiology 
Collaboration formula (15). Total diet quality was estimated using the 
2015 version of the Healthy Eating Index (HEI) and total energy intake 
(16). Comorbidities included hypertension, diabetes, CVD, and cancer, 
of which the first two are diagnosed through index measurements, 
medication use, and self-reporting, while CVD and cancer are identified 
through self-reporting.

2.5 Statistical analysis

Individual sample weights were created using WTDR4YR weights 
in 1999–2002 and WTDRD1 weights in 2003–2018, given the complex 
sampling design of NHANES. During the baseline characteristics 
analysis, continuous variables were presented using weighted means 
(standard errors), and categorical variables were presented using 
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sample numbers (weighted percentages). One-way ANOVA and 
chi-square tests were performed to compare differences according to 
baseline dietary intake of live microorganisms (<10^7 CFU,10^7–10^10 
CFU, and > 10^10 CFU).

Weighted multivariable Cox regression analysis was used to 
estimate corrected risk ratios (HR) for mortality and their 95%CI based 
on dietary live microbial intake in the low, medium, and high groups at 
baseline. The crude model did not adjust for any potential confounders. 
Model 1 adjusted for age, sex, race, education, marital status, and 
PIR. Model 2 was further adjusted for HEI, total energy intake, smoking 
status, alcohol status, physical activity, and BMI. Model 3 additionally 
adjusted for hypertension, diabetes, CVD, cancer, and eGFR. We carried 
out survival analyses with the use of standardized Kaplan–Meier curves 
and Log ranking tests. The non-linear relationship between mortality 
and log(dietary live microbial intake) was explored by multivariable-
adjusted Cox restricted cubic spline (RCS) regression models. RCS 
regression models were used to explore the potential non-linear 
relationship between TDIIM and mortality outcomes, allowing for a 
more flexible assessment of the association by fitting a smooth curve to 
the data. Subgroup analyses were undertaken by sex (female, male), age 
(18–39, 40–59, ≥60), BMI (normal, overweight, obese, no record), 
smoking status (never, former, now, no record), alcohol status (never, 
former, now, no record), physical activity(no, yes, no record), 
hypertension (no, yes), diabetes (no, boundary, yes), CVD (no, yes), 
and eGFR (<60,≥60, no record). Multiplicative interactions were used 
to estimate potential interactions between multiple subgroup elements 
and log(dietary live microbial intake).

Sensitivity analyses were conducted to verify the robustness of the 
study results. Firstly, participants who died within 2 years of follow-up 
were excluded to eliminate potential reverse causality. Secondly, 
participants with chronic diseases (including hypertension, 
cardiovascular disease, diabetes mellitus, cancer, and eGFR<60) were 
excluded, as these individuals were more likely to die during the 
follow-up period. Thirdly, to test the sensitivity of dietary live microbial 
intake to the findings, we re-quantified the total intake of live microbes 
(CFU) in individuals’ diets. Microbial intakes were assumed to be 10^3.5 
CFU/g, 10^7 CFU/g, and 10^10 CFU/g for the low, medium, and high 
groups, respectively, then multiplied by the number of grams of food in 
each group and summed, and later re-classified into low, medium, and 
high groups by <10^8 CFU, 10^8–10^11 CFU, and > 10^11 CFU for analysis. 
In addition, the newly calculated logarithms of dietary live microbial 
intake were analyzed with different mortality rates. Finally, the 
association with the dietary intake of live microorganisms was assessed 
using mortality due to accidents and injuries as the dependent variable.

All statistical analyses were performed using R version 4.2.1 (R 
Foundation for Statistical Computing, Vienna, Austria; http://www.r-
project.org), and statistical significance was ascertained by a two-sided 
p value <0.05.

3 Results

3.1 Baseline characteristics

A total of 52,383 subjects, 51.62% of whom were female, with a 
mean age of 46.10 ± 0.20 years, were ultimately enrolled in our study. 
Over a median follow-up period of 118.75 months, there were 7,711 
deaths and an all-cause mortality rate of 14.72%, including 1985 CVD 

deaths and a CVD mortality rate of 3.79%. The mean individual 
estimated dietary live microbial intake was 20,623.09 ± 536.25 (*10^6 
CFU) and the mean of its logarithm was 8.14 ± 0.02. Of these, the low, 
medium, and high dietary live microbial intake groups had 19,917, 
22,981, and 9,485 participants, respectively. According to Table 1, 
participants with higher levels of dietary intake of live microorganisms 
were more likely to be female, Non-Hispanic White, married/living 
with a partner, never smokers, current drinkers, physical exercises, 
had higher levels of education, wealth, BMI, eGFR, HEI, and energy 
intake, and had no comorbid hypertension, diabetes, cardiovascular 
disease, or cancer (all p < 0.0001). Finally, the higher the dietary intake 
of live microorganisms, the fewer deaths there were in the group 
(p < 0.0001).

3.2 Estimated dietary live microbial intake 
and all-cause and cardiovascular mortality

The results of the COX regression analysis were displayed in 
Table 2. A dose–response relationship was found between dietary live 
microbial intake and all-cause mortality and CVD mortality. In the 
all-cause mortality analysis, compared to the low dietary live microbial 
intake group, the multivariate-adjusted HRs were smaller in the high 
group for model 1 (HR = 0.81, 95% CI = 0.73–0.90, P for 
trend<0.0001), model 2 (HR = 0.89, 95% CI = 0.80–0.99, P for 
trend = 0.01) and model 3 (HR = 0.91. 95% CI = 0.82–1.00, P for 
trend = 0.01). In addition, after multivariate adjustment, log (dietary 
intake of live microbes) was significantly associated with a reduced 
risk of all-cause mortality (HR = 0.97, 95% CI = 0.95–0.99). For the 
CVD mortality analysis, after adjustment for all confounding 
variables, the HR for microbial intake was smaller in the high group 
(HR = 0.77, 95% CI 0.63–0.95, P for trend = 0.005) and the log 
(dietary intake of live microbes) was negatively associated with CVD 
mortality (HR = 0.93, 95% CI = 0.89–0.97).

In restricted cubic spline regression models fully adjusted for 
covariates, the relationship between log dietary live microbial intake 
and mortality was non-linear (Figure 1A, p for nonlinear = 0.0029) 
and the relationship with CVD mortality (Figure 1B) was linear (p for 
nonlinear = 0.1113), with an overall decreasing trend.

As revealed by the Kaplan–Meier survival curves (Figure  2), 
higher dietary live microbial intake was accompanied by significantly 
lower all-cause mortality (Figure 2A) and CVD mortality (Figure 2B) 
in the following life (log-ranked p < 0.0001).

3.3 Subgroup and interaction analyses

As illustrated in Figure  3, subgroup analyses showed the link 
between log(dietary live microbial intake) and reduced overall 
mortality was significant in females, those aged 40–59, overweight 
individuals, never drinkers, people with hypertension, those with 
borderline diabetes, and those without CVD (all p < 0.05). This link 
was also tied to lower CVD mortality in females, individuals aged ≥60, 
overweight people, never drinkers, and those without hypertension 
(all p < 0.05). Factors like age, alcohol status, and physical activity 
modified the association with all-cause mortality decline (P for 
interaction <0.05). Age, BMI, drinking status, physical activity, and 
hypertension altered the link with reduced CVD mortality (P for 
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TABLE 1 Demographic characteristics according to the dietary intake of live microbes.

Total Low Medium High P value

<10^7 CFU 10^7–10^10 CFU >10^10 CFU

No. of participants 52,383 19,917(38.02) 22,981(43.87) 9,485(18.11)

Age, y, mean (SE) 46.10(0.20) 44.29(0.21) 47.65(0.24) 45.93(0.31) < 0.0001

Age, n (%) < 0.0001

  18–39 20,456(39.05) 8,301(43.84) 8,263(36.65) 3,892(39.50)

  40–59 15,421(29.44) 5,670(34.61) 6,888(35.91) 2,863(36.74)

  ≥60 16,506(31.51) 5,946(21.55) 7,830(27.44) 2,730(23.77)

Sex, n (%) < 0.0001

  Female 27,040(51.62) 9,639(48.29) 12,154(53.22) 5,247(54.21)

  Male 25,343(48.38) 10,278(51.71) 10,827(46.78) 4,238(45.79)

Race, n (%) < 0.0001

  Mexican American 9,644(18.41) 3,193(7.95) 5,049(10.07) 1,402(5.97)

  Non-Hispanic Black 11,226(21.43) 5,820(16.83) 4,142(9.72) 1,264(6.10)

  Non-Hispanic White 22,854(43.63) 7,631(62.02) 10,049(67.89) 5,174(77.35)

  Other Hispanic 4,202(8.02) 1,590(5.99) 1830(5.37) 782(4.58)

  Other Race 4,457(8.51) 1,683(7.21) 1911(6.95) 863(6.00)

Marital status, n (%) < 0.0001

  Divorced/separated/widowed 10,735(20.49) 4,393(19.77) 4,649(17.93) 1,693(15.71)

  Married/living with a partner 29,228(55.8) 10,060(53.92) 13,506(62.03) 5,662(63.87)

  Never married 10,284(19.63) 4,451(22.14) 4,019(17.11) 1814(17.75)

  No record 2,136(4.08) 1,013(4.17) 807(2.93) 316(2.67)

Education level, n (%) < 0.0001

  <High school 6,013(11.48) 2,519(7.15) 2,829(5.92) 665(2.98)

  High school 21,174(40.42) 9,257(44.92) 8,858(34.52) 3,059(28.20)

  >High school 25,134(47.98) 8,110(47.84) 11,270(59.49) 5,754(68.77)

  No record 62(0.12) 31(0.08) 24(0.07) 7(0.05)

Poverty-to-income ratio, n (%) < 0.0001

  <1.3 15,290(29.19) 6,920(27.49) 6,208(18.89) 2,162(15.06)

  1.3–3.5 18,213(34.77) 7,048(35.35) 8,068(32.92) 3,097(29.87)

  >3.5 14,420(27.53) 4,233(30.00) 6,692(41.00) 3,495(48.55)

  No record 4,460(8.51) 1716(7.16) 2013(7.20) 731(6.52)

BMI, n (%) < 0.0001

  Under/normal weight 16,165(30.86) 6,089(30.48) 7,007(31.89) 3,069(33.17)

  Overweight 17,048(32.54) 6,147(30.52) 7,736(33.46) 3,165(33.62)

  Obese 18,345(35.02) 7,306(37.35) 7,903(33.59) 3,136(32.27)

  No record 825(1.57) 375(1.65) 335(1.07) 115(0.94)

Smoking status, n (%) < 0.0001

  Never 27,046(51.63) 9,520(47.76) 12,265(54.15) 5,261(56.37)

  Former 12,158(23.21) 4,151(21.28) 5,727(25.82) 2,280(24.93)

  Now 10,210(19.49) 4,902(27.56) 3,812(17.73) 1,496(16.72)

  No record 2,969(5.67) 1,344(3.40) 1,177(2.29) 448(1.98)

Alcohol status, n (%) < 0.0001

  Never 6,969(13.3) 2,749(11.65) 3,138(11.34) 1,082(9.07)

  Former 8,086(15.44) 3,393(14.95) 3,522(13.06) 1,171(10.65)

  Now 30,923(59.03) 11,100(63.61) 13,627(67.26) 6,196(73.03)

  No record 6,405(12.23) 2,675(9.79) 2,694(8.34) 1,036(7.25)

(Continued)
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interaction <0.05). No significant interactions were found for other 
subgroups. These findings suggest that higher dietary intake of live 
microbes may have significant public health implications for reducing 
mortality risk, particularly in special populations.

3.4 Sensitivity analyses

In sensitivity analyses, dietary live microbial intake remained 
negatively associated with all-cause mortality and CVD mortality after 

TABLE 1 (Continued)

Total Low Medium High P value

<10^7 CFU 10^7–10^10 CFU >10^10 CFU

Physical activity, n (%) < 0.0001

  No 16,820(32.11) 7,289(33.70) 6,796(26.13) 2,735(25.14)

  Yes 15,531(29.65) 5,207(28.33) 6,752(33.64) 3,572(43.46)

  No record 20,032(38.24) 7,421(37.97) 9,433(40.23) 3,178(31.40)

eGFR, mL/min/1.73m2, n (%) < 0.0001

  <60 4,202(8.02) 1,651(6.42) 1925(6.93) 626(5.25)

  ≥60 45,250(86.38) 16,950(87.66) 19,906(88.65) 8,394(90.86)

  No record 2,931(5.6) 1,316(5.93) 1,150(4.42) 465(3.89)

DILM,(*10^6CFU),mean (SE) 20623.09(536.25) 3.16(0.02) 573.03(16.49) 91313.73(1453.90) < 0.0001

Log-DILM, mean (SE) 8.14(0.02) 6.44(0.00) 8.16(0.01) 10.76(0.01) < 0.0001

HEI, mean (SE) 50.42(0.18) 45.35(0.17) 53.10(0.19) 53.13(0.25) < 0.0001

Total energy intake, kcal, mean 

(SE)

2166.62(6.85) 2063.51(9.18) 2169.97(9.81) 2320.55(14.15) < 0.0001

Hypertension, n (%) < 0.0001

  No 31,638(60.4) 11,849(63.10) 13,720(62.75) 6,069(66.38)

  Yes 20,745(39.6) 8,068(36.90) 9,261(37.25) 3,416(33.62)

DM, n (%) < 0.0001

  Boundary 3,400(6.49) 1,305(6.22) 1,500(6.23) 595(5.97)

  No 40,594(77.49) 15,368(81.29) 17,615(80.59) 7,611(83.40)

  Yes 8,389(16.01) 3,244(12.50) 3,866(13.19) 1,279(10.63)

CVD, n (%) < 0.0001

  No 46,886(89.51) 17,640(90.28) 20,562(91.31) 8,684(93.00)

  Yes 5,497(10.49) 2,277(9.72) 2,419(8.69) 801(7.00)

Cancer, n (%) < 0.0001

  No 47,833(91.31) 18,433(92.31) 20,837(89.92) 8,563(89.51)

  Yes 4,550(8.69) 1,484(7.69) 2,144(10.08) 922(10.49)

Status, n (%) < 0.0001

  Alive 44,672(85.28) 16,785(87.46) 19,444(88.10) 8,443(91.86)

  Death 7,711(14.72) 3,132(12.54) 3,537(11.90) 1,042(8.14)

eGFR, Estimated glomerular filtration rate; DILM, Dietary Intake of Live Microbes; HEI, healthy eating index; DM, diabetes mellitus; CVD, cardiovascular disease.

TABLE 2 Weighted multivariable cox regression on dietary intake of live microbes and mortality.

All-cause mortality CVD mortality

Crude 
model

Model 1 Model 2 Model 3 Crude 
model

Model 1 Model 2 Model 3

Low Ref Ref Ref Ref Ref Ref Ref Ref

Medium 0.91(0.85,0.97) 0.84(0.79,0.90) 0.90(0.85,0.96) 0.91(0.85,0.97) 0.87(0.77,0.98) 0.81(0.71,0.92) 0.85(0.76,0.96) 0.85(0.73,0.98)

High 0.70(0.63,0.77) 0.81(0.73,0.90) 0.89(0.80,0.99) 0.91(0.82,1.00) 0.58(0.47,0.71) 0.69(0.56,0.84) 0.78(0.64,0.95) 0.77(0.63,0.95)

P for trend <0.0001 <0.0001 0.01 0.01 <0.0001 <0.0001 0.004 0.005

Log-DILM 0.91(0.89,0.93) 0.94(0.92,0.96) 0.96(0.94,0.99) 0.97(0.95,0.99) 0.87(0.83,0.90) 0.89(0.86,0.93) 0.93(0.89,0.97) 0.93(0.89,0.97)

Log-DILM: Log-(dietary intake of live microbes). Data are presented as HR (95%CI). Crude Model: unadjusted model. Model 1: adjust for age, sex, race, education, marital status, and poverty-to-
income ratio. Model 2: adjust additionally for Healthy Eating Index, total energy intake, smoking status, alcohol status, physical activity, and BMI. Model 3: adjust additionally for hypertension, 
diabetes, CVD, cancer, and eGFR. Dietary microbial counts were divided into three groups: low, medium, and high, with values of < 10^7 CFU, 10^7–10^10 CFU, and > 10^10 CFU, respectively.
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excluding subjects dying within the first 2 years of follow-up 
(Supplementary Table S1). After excluding the baseline chronic disease 
population, dietary live microbial intake was negatively related to 
all-cause mortality and CVD mortality, but the relationship with 
all-cause mortality was not statistically significant (Supplementary  
Table S2), so we performed an RCS analysis to reveal that the negative 
association continued to exist (Supplementary Figure S2). Furthermore, 
these results remained statistically significant (all p < 0.05) after 
recalculation of dietary live microbial intake (Supplementary Table S3). 
No statistically significant associations were obtained in sensitivity 
analyses examining the association between dietary live microbial intake 
and mortality from accidents and injuries (Supplementary Table S4S1).

4 Discussion

To our knowledge, this is the first study to examine estimated total 
dietary intake of live microbes and mortality. In this nationally 
representative cohort study of US adults, we found that higher dietary 
intake of live microorganisms was associated with lower risk of 

all-cause and CVD mortality. Our findings were consistent across 
subgroup analyses and different sensitivity analyses. Notably, higher 
dietary live microbial intake was more protective against the risk of 
all-cause and CVD mortality among women, middle-aged and older 
adults, and those who were overweight. While our study reveals an 
inverse association between TDIIM and mortality, it is important to 
note that further intervention studies, such as randomized controlled 
trials, are necessary to establish causality.

The type, level of processing and origin of the food determines the 
type and number of microorganisms in the food, including bacteria, 
molds and yeasts. Fresh vegetables and fruits are found to contain a 
wide range of microorganisms, but usually <10^6 CFU/g (8), whereas 
fermented foods have higher levels, around 10^8–10^11 CFU/g, such 
as yoghurt (17). There is a wide variety of probiotics that can provide 
health benefits to the host, including bacterial genera such as 
Bifidobacterium, Lactobacillus, Lactococcus, Bacillus, Pediococcus, 
Enterococcus, Escherichia coli, Streptococcus, Propionibacterium, and 
Leuconostoc, and yeast or Saccharomyces (18).

Marco’ study showed that fruits, vegetables and fermented dairy 
products are the top 3 food groups that provide Americans with dietary 

FIGURE 1

Analysis of restricted cubic spline regression for all-cause (A) and cardiovascular disease (B) death by dietary intake of live microbes.* Adjusted 
restricted cubic spline models adjusted for age, sex, race, education, marital status, poverty-to-income ratio, Healthy Eating Index, total energy intake, 
smoking status, alcohol status, physical activity, BMI, hypertension, diabetes, CVD, cancer, eGFR.

FIGURE 2

Kaplan-Meier survival curve for all-cause (A) and cardiovascular disease (B) mortality by dietary intake of live microbes. *Dietary microbial counts were 
divided into three groups: low, medium, and high, with values of <107 CFU, 107-1010 CFU, and >1010 CFU respectively.
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live microorganisms (10). In a large international prospective cohort 
study, greater fruit, vegetable and legume intake was found to be associated 
with a reduced risk of major cardiovascular disease, myocardial infarction, 
cardiovascular mortality, non-cardiovascular mortality and total mortality 
in an analysis adjusted for age and sex (19). A study from China also 
showed that higher fruit, vegetable and legume consumption was 
associated with lower risk of cardiovascular disease mortality, cancer 
incidence, cancer mortality and all-cause mortality, and these associations 
remained significant for all-cause mortality after adjusting for additional 
socioeconomic and lifestyle factors (20). A meta-analysis from cohort 
studies has identified a reduced risk of cardiovascular disease associated 
with the intake of fermented dairy products (21). Dairy consumption was 
previously found to be associated with a lower risk of death and major 
cardiovascular disease events in a different cross-national cohort study 
(5). As a partial source of intake of live dietary microorganisms, these 
studies may provide indirect evidence to our study that partial dietary 
microbial intake is beneficial and may reduce mortality.

Subgroup analysis showed that the negative association between 
dietary live microbial intake and mortality was modified by age, drinking 
status, and basal hypertension. Overall, the subgroup analyses indicated 
that the protective effect of TDIIM on mortality was more evident in 
specific subpopulations, highlighting the potential targeted benefits of 
dietary live microbes. Currently, no studies have investigated the 
relationship between dietary live microbial intake and mortality risk and 
further studies are needed to validate these results.

The reduction of all-cause mortality and CVD mortality by high 
dietary live microorganisms may be due to the following reasons. Firstly, 

probiotics can cause an increase in short-chain fatty acids (e.g., 
butyrate), protect the integrity of the gut, regulate metabolism and 
reduce the inflammatory state of the organism (22, 23). Secondly, some 
probiotics, including Lactobacillus acidophilus and Bifidobacterium 
bifidum, can reduce elevated cholesterol levels, thereby facilitating the 
prevention and treatment of cardiovascular disease (24, 25). Thirdly, 
probiotics such as L. reuteri and L. fermentum can reduce 
pro-inflammatory cytokines and attenuate oxidative stress, thereby 
preventing the development and progression of atherosclerosis (26–28).

This study has several strengths. Firstly, it is the first study to assess 
the relationship between total dietary intake of live microorganisms 
and mortality. Secondly, the NHANES data were selected using a 
complex multi-stage probability sampling design to select a 
representative sample and ensure high-quality data. Third, this study 
controlled for many confounding factors. Fourth, this study conducted 
a stratified analysis and found that live microbial intake was more 
meaningful in reducing mortality in women, middle-aged and elderly, 
and overweight populations, making the findings more targeted. 
Therefore, the results of this study have important public health 
implications for the management of dietary live microbial intake.

However, the study also has some limitations. Firstly, the 
observational study design does not allow for a true causal relationship 
to be established. Second, this study is particular to the United States; 
elsewhere, the intake of live microorganisms may vary considerably 
due to differences in food types and dietary habits (e.g., fermented 
foods). Third, the intake of live dietary microbes in this study was based 
on the 3-level classification system of Marco et al. and there was only a 

FIGURE 3

Subgroup analysis on log (dietary intake of live microbes) and mortality. *The analysis adjusted for age, sex, race, education, marital status, poverty-to-
income ratio, Healthy Eating Index, total energy intake, smoking status, alcohol status, physical activity, BMI, hypertension, diabetes, CVD, cancer, and eGFR.
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single baseline measurement, so the precision of the measurement of 
live dietary microbes in this study was not very high. However, the 
dietary habits of most adults are fixed and difficult to change, and it is 
impractical to precisely define dietary viable microbial intake. At the 
same time, this study found the negative association between dietary 
live microbial intake and mortality to be  sufficiently stable using 
different estimates, which is largely representative of the actual situation.

5 Conclusion

In conclusion, we found that higher dietary live microbial intake 
reduced the risk of all-cause and CVD mortality, and was particularly 
protective for women, middle-aged and older, and overweight 
individuals. Our study directly suggests that dietary intake of live 
microorganisms may have health benefits for humans. Future 
research could benefit from incorporating biomarkers of microbial 
exposure or leveraging advancements in food microbiome 
quantification to improve the accuracy and precision of dietary live 
microbe intake assessments. Conducting randomized controlled 
trials to confirm the causal link between TDIIM and health outcomes 
is vital. Validating the beneficial effects could facilitate the 
development of dietary guidelines emphasizing live microbial intake 
for disease prevention and health promotion.
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