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Introduction: Transcription factor-7-like 2 (TCF7L2) is the most critical type 2 
diabetes (T2D) gene identified to date. The single-nucleotide polymorphism 
(SNP) rs7903146  in TCF7L2 in T2D interacts with dietary factors; however, 
research on nutrigenetics among Saudi Arabians is limited. This study investigated 
the interaction between the SNP rs7903146 and dietary intake on factors that 
may contribute to MetS among Saudi Arabian adults.

Methods: This cross-sectional study included 271 adult participants (aged 
20–55 years) of both genders with or without overweight or obesity (body 
mass index between 18–35 kg/m2). Anthropometric measurements and dietary 
assessments using a food frequency questionnaire were performed. Fasting 
blood samples were collected to analyze serum lipid, glucose, and insulin levels. 
Genetic analysis was performed using real-time polymerase chain reaction. 
Univariate regression was used to examine the association between the TCF7L2 
SNP rs7903146 and laboratory parameters, and to test SNP-diet interactions. 
The additive model was used in the analysis and the T allele was the effect allele.

Results: A marginal significant association was observed between SNP 
rs7903146 and waist circumference (WC) (p = 0.05). Carriers of TT genotype 
had the highest WC (83.5 ± 20.1 cm), when compared with the CC genotype 
(80 ± 14.2 cm) and the TC genotype (77.9 ± 13.9 cm). The SNP rs7903146 
was significantly associated with total energy intake (p = 0.04) and saturated 
fatty acids (SFA, p = 0.005), and TT carriers had the highest total energy and 
SFA consumption (3606.9 ± 1554.7 kcal, 66.8 ± 52.0 g, respectively). Only one 
near significant interaction was observed between SNP rs7903146 and total 
energy intake on insulin levels (p = 0.04), with carriers of the TT genotype 
showed a greater reduction in insulin values (−5.3 ± 3.5) at lower energy intake 
when compared with the CC (−2.4 ± 3.1), and TC (−4.7 ± 2.8). No significant 
interaction was found.

Conclusion: The present study observed significant associations between SNP 
rs7903146 and total energy and SFA consumptions. The TT carriers had increased 
consumption of total energy and SFA. Future studies using larger sample sizes 
are required to confirm significant interaction between SNP rs7903146 and diet 
on factors that may contribute to MetS in the Saudi population.
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1 Introduction

Metabolic syndrome (MetS) comprises a cluster of metabolic 
abnormalities occurring together, including insulin resistance, 
dyslipidemia, abdominal obesity, and hypertension, which increase 
the risk of type 2 diabetes mellitus (T2D), cardiovascular disease 
(CVD), and atherosclerosis (1). The prevalence of MetS among the 
Saudi Arabian population is 31.6% according to the International 
Diabetes Federation criteria and 39.9% according to the ATP III 
criteria (2). The significant increase in the prevalence of MetS is an 
important illustration of the complex interplay of genetic and 
environmental factors on disease progression (3, 4). Genome-wide 
association studies have identified genetic variants in the Wnt 
signaling pathway related to T2D, of which transcription factor-7-like 
2 (TCF7L2) has been reported as one of the genes most significantly 
associated with T2D risk (5, 6). Additionally, TCF7L2 is associated 
with MetS (7), dyslipidemia (7–9), and obesity markers (10, 11).

As part of the Wnt signaling pathway, TCF7L2 is activated by Wnt 
ligands or certain growth factors, including insulin. It plays a vital role 
in regulating different biological processes, including gluconeogenesis, 
and improves lipid accumulation in various organs, such as the liver 
and adipose tissues (12). Notably, the single-nucleotide polymorphism 
(SNP) rs7903146 (C/T) in TCF7L2 has been demonstrated to be one 
of the strongest genetic risk factors for T2D in different ethnic groups 
(13–17) as well as different features of MetS (7, 8, 10). Only two studies 
were performed in Saudi Arabia to study the relationship between 
rs7903146 (C/T) and T2D. The first was an earlier case–control study 
of 1,166 patients with T2D and 1,235 healthy volunteers, which found 
a significant association between TCF7L2 SNP rs7903146 and T2D, 
where carriers of the T allele had a 1.55-fold increased risk of T2D 
compared to C allele carriers (18). The second was a case–control 
study that included 359 patients with T2D and 351 healthy controls. 
It did not report any association between T2D risk and the TCF7L2 
SNP rs7903146 but with other SNPs, rs12255372 and rs4506565 (19).

Findings from the Diabetes Prevention Program and Diabetes 
Prevention Study reported that interactions with dietary factors 
can modulate the association between TCF7L2 variants and 
diabetes risk (20, 21). Several studies have been conducted in the 
field of nutrigenetics, albeit with inconsistent findings (22–27). 
Furthermore, a high intake of saturated fatty acids (SFA) increases 
the risk of MetS (22). An interventional study showed that low-fat 
and high-carbohydrate diets have favorable effects on weight loss 
in individuals carrying the TT genotype in TCF7L2 (23). Whole 
grains and dietary fiber interact with TCF7L2 variants in T2D risk 
(24–26). However, meta-analyses could not replicate these 
significant interactions (27). Saudi Arabia has distinct eating habits 
that are shaped by traditional meals, consumption of foods high in 
energy, and increasing dependence on processed foods and 
consumption of sugar-sweetened beverages (28). Overall, the 
eating habits of the Saudi population have changed significantly. 
Meat, sugar, animal fat, and dairy product consumption has 
increased (29); conversely, fruit and vegetable consumption varies 
by location and demographic group. Such changes are linked to 

economic growth, urbanization, and shifting lifestyles in the wake 
of globalization (30). The eating patterns could significantly affect 
health outcomes, especially with regard to metabolic disorders. 
Saudi Arabia is among the top 20 countries with the highest rates 
of diabetes per capita, with an average frequency of 15% (31). Diet 
is one of the main modulatory factors associated with the effect of 
the TCF7L2 SNP rs7903146, but studies analyzing gene-diet 
interaction that may contribute to the development of the 
metabolic diseases such as T2D are lacking in Saudi  Arabia. 
Therefore, the present study aimed to investigate the relationship 
between the TCF7L2 SNP rs7903146, dietary characteristics and 
factors that may contributing to MetS among adult population of 
Jeddah Saudi Arabia. The specific objectives of this study were to: 
(1) assess the association between the SNP rs7903146 and factors 
that may contribute to MetS, among Saudi adults, and (2) to 
investigate the interaction between the SNP rs7903146 and dietary 
characteristics, on factors that may contribute to MetS, among 
Saudi adults.

2 Methods

2.1 Study participants

A cross-sectional study was conducted with participants from 
Jeddah, Saudi Arabia, recruited between January 2023 and November 
2023. The study sample included 274 adults (aged 20–55 years) of both 
genders with or without overweight or obesity according to body mass 
index (BMI ranged 18–35 kg/m2). Exclusion criteria included the 
presence of any diagnosed disease (such as both type 1 and 2 diabetes, 
CVD, hypertension, human immunodeficiency virus infection, liver 
disease, renal failure, cancer, or gastrointestinal disorder), use of 
medication that affected serum lipids or diabetic parameters, chemo 
or radiation therapy, surgery within the last 6 months, and women 
who were pregnant or lactating.

Study participants were recruited at the King Fahd Medical 
Research Center after having received the invitation extended to all 
students and personnel of King Abdulaziz University via the 
university’s email and social media platforms. The invitation included 
a brief description of the study, the purpose and the inclusion criteria 
for voluntary participation. Participants visited the Nutrition 
Assessment Lab, Faculty of Human Sciences and Development, and 
Roya Labs, Specialized Medical Laboratories, at King Abdulaziz 
University. Factors contributing to MetS assessed included BMI, waist 
circumference (WC), hip circumference (HC), systolic (SBP) and 
diastolic blood pressure (DBP), total cholesterol (TC), low-density 
lipoprotein cholesterol (LDL), high-density lipoprotein cholesterol 
(HDL) and triglycerides (TG), glucose, and insulin while dietary 
factors included total energy and macronutrient intake.

Ethical approval was obtained from the Biomedical Ethics 
Research Committee of King Abdulaziz University (reference no. 
269-22). All subjects signed the informed consent for participation 
and consent for genetic analysis.
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2.2 Study protocol

2.2.1 Sociodemographic and lifestyle 
questionnaire

A questionnaire was prepared to collect sociodemographic, 
anthropometric, lifestyle and dietary data through face-to-face 
interviews with the participants. Sociodemographic and lifestyle data 
included age, gender, education level, employment, marital status, 
household income, smoking status, and self-reported physical activity 
level (i.e., sedentary; light activity, less than half an hour 2 days or less 
per week; moderate activity, at least one hour 3–4 days per week; or 
vigorous activity, more than one hour 5 days or more per week).

2.2.2 Anthropometric measurements
Anthropometric assessments were performed by one of the 

research teams at the beginning of the visit, before collecting blood 
samples from the participants. Height was measured using an 
automatic stadiometer (Detector Weigh Beam Eye-Level Scale, 
United States). Weight was measured using an electronic weighing 
scale (Yunmai Mini, China) with participants barefoot, wearing light 
clothing and with an empty bladder. BMI was calculated as the body 
weight in kilograms divided by the height in meters squared (kg/m2). 
WC was measured at the midpoint between the lower border of the 
rib cage and the iliac crest using a non-elastic tape measure. 
Additionally, the HC was measured in the distance around the largest 
part of the hips and the widest part of the buttocks. Blood pressure was 
measured while the participants were sitting (N83, TMB-1583-S, 
Nahdi Company).

2.2.3 Dietary intake assessment
Dietary habits were assessed using a validated food frequency 

questionnaire (FFQ) (32) to estimate participants’ energy and nutrient 
intake. The FFQ consisted of 135 items divided into eight groups. 
Participants were asked to recall and estimate their food consumption 
patterns over the past year using a range of frequency options (never, 
1–3 per month, once per week, 2–4 per week, 5–6 per week, once per 
day, 2–3 per day, 5–6 per day, 6+ per day). The Photographic Atlas of 
Food Portions developed by the Ministry of Health in Abu Dhabi, 
UAE (33), was used to help participants estimate the quantity of food 
consumed. Daily food intake was calculated from the FFQ according 
to the following formula: frequency of intake (conversion 
factor) × weight of food consumed (34), according to data from the 
Atlas. The FFQs were analyzed using Nutritionist Pro software to 
obtain the calories and macronutrients. Moreover, the nutritional 
composition of specific Arabian dishes, such as meat and chicken 
kabssah, shawarma, and Arabic coffee, was obtained as previously 
reported (35), and the composition of camel meat food was obtained 
as reported elsewhere (36).

2.3 Biochemical analysis

The participants visited Roya Labs at King Fahd Medical Research 
Center after 12 h of fasting. Fasting blood samples were collected via 
venipuncture and placed into gel tubes (gold for lipid analysis) and 
sodium fluoride tubes (gray for glucose analysis). Plasma was 
separated via centrifugation (5,000 × g for 3 min at 4°C), and the 
resulting samples were transferred to Eppendorf tubes and stored at 

−40°C for subsequent analyses. Serum lipids, including TC, LDL, 
HDL, TG, and glucose, were analyzed at Tibyana Medical Lab, Jeddah, 
Saudi Arabia, using a Beckman Coulter analyzer (Model DXC700 
AU). This instrument uses an enzymatic method to measure glucose 
and lipid levels. Insulin levels were analyzed using an enzyme-linked 
immunosorbent assay (Thermo Fisher Scientific) in the Biochemistry 
unit at the King Fahd Medical Research Center.

2.4 DNA isolation and TCF7L2 SNP 
rs7903146 genotyping

Blood samples for genetic analysis were collected from EDTA-
containing samples. Genetic analyses were performed by Haven 
Scientific Company. Briefly, genomic DNA was extracted from the 
buffy coat of white blood cells using spin-column-based technology 
(Haven Science Kit) at the Biochemistry Unit of King Fahd Medical 
Research Center. The spin column-based DNA extraction method 
comprises four stages: cell lysis, binding of the nucleic acid to the silica 
gel membrane, washing of the nucleic acid bound to the silica gel 
membrane, and elution of the nucleic acid (37). The DNA samples 
were then stored at −20°C. The samples were then transferred to 
Haven Science for genotyping. The SNP rs7903146  in TCF7L2 
(Haven Scientific, Saudi  Arabia; Catalog Number 
PCR-SNP-RS7903146-11-150) was genotyped using real-time 
polymerase chain reaction (PCR). The qPCR SNPs were purchased 
from Haven Scientific. For gene amplification, a Probe Multiplex Real-
Time PCR Master Mix (Haven Scientific, PCR6905) was used 
according to the manufacturer’s protocol. Briefly, 5 μL of the Probe 
Master Mix was mixed with 1 μL of the SNP assay, 1 μL of DNA, and 
3 μL of RNase-free water and placed in 0.2-mL qPCR 96-well plate, 
semi-skirted (Haven Scientific, PCR-SSP-02). The plates were sealed 
with a Real-Time PCR Optical Adhesive Seal (Haven Scientific, 
PCR-OS-0011). The plates were run on a QuantStudio™ 5 Real-Time 
PCR System, 96-well, 0.2 mL (A28139, Applied Biosystems) using the 
following protocol: 3 min at 95°C, followed by 40 cycles of 95°C for 
15 s and then 60°C for 60 s (data collection). Fluorescence from the 
FAM channel corresponded to the wild-type allele, whereas 
fluorescence from the VIC channel corresponded to the SNP allele. 
Fluorescence data were analyzed, plotted, and viewed using TaqMan 
Genotyper Software V1.7.1 (Applied Biosystems).

2.5 Statistical analysis

Statistical analyses were performed using SPSS software version 
29. Descriptive statistics for continuous variables were presented as 
means and standard deviations. Differences in variables between 
genders were analyzed using the chi-square test. Normal distribution 
was checked for continuous variables, and log10 transformation was 
applied to skewed data based on the Shapiro–Wilk test. Continuous 
variables, including dietary intake, were analyzed using independent 
t-tests. The agreement with Hardy–Weinberg equilibrium expectations 
was tested using a χ2 goodness-of-fit test (p > 0.05). Additive models 
were used, given the sufficient frequency of rare homozygotes. 
Univariate regression was used to examine the association between 
the TCF7L2 SNP rs7903146 and factors that may contribute to MetS, 
and dietary intake. The SNP-diet interactions on factors that may 
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contribute to MetS were tested by including the interaction term in 
the univariate regression models. The calories from total energy, 
carbohydrate, fat, SFA, monounsaturated fatty acid (MUFA) and 
polyunsaturated fatty acids (PUFA) were used in the interaction 
analysis. The models were adjusted for age, sex, smoking status, 
physical activity, and BMI (continuous). p-values <0.05 indicated 
association. Multiple testing correction using the Bonferroni method 
was applied to test interaction effects (0.05/11 factors that may 
contribute to MetS x 6 nutrients, including total calories = adjusted 
p-value of 0.0007 ≈ 0.001).

Power analysis was performed based on Cohen’s F2 for gene-diet 
interactions in a regression model (38). The formula used was 
as follows:

The study was powered at 80% to identify SNPs with a Minor 
Allele Frequency = 0.39, and our sample size was 264, and the 
significance level was set at 0.0007.

N = sample size (264). 
( )21 1

2
Z Z

n
F

α β− −±
=

Z1-α/2 = the significant level (α = 0.007, Z1-α/2 = 3.42).
Z1-β = the desire power 80% (Z1-β = 0.84).
F2 = effect size.

Therefore, our study was able to detect an effect size = 0.0646 
corresponding to an R2 value of approximately 6.5% of the variance 
explained by the interaction term. The current study was powered to 
detect low (0.02, 2% variance explained) to moderate (0.15, 15% 
variance explained) interaction effects.

3 Results

The demographic, anthropometric and laboratory characteristics 
of the study participants, stratified by sex are presented in Table 1. Three 
participants did not have genetic data; therefore, 271 were included in 
the association analysis. Another three participants had an incomplete 
FFQ, so only 268 were included in the interaction analysis. There were 
statistically significant differences between sexes in most characteristics, 
including age, marital status, education level, employment, smoking 
status, and physical activity. In particular, women were older than men 
(28.1 ± 7.6 years vs. 24.1 ± 7.1 years, p < 0.001). Most participants were 
single (67.3% female and 88% male), undergraduates (64% females and 
94.4% males), and students (57.6% females and 78.8% males). 
Additionally, the number of non-smokers and past smokers was higher 
in females than in males (p < 0.001). Furthermore, most participants 
practiced light physical activity (40.1% of females and 38.8% of males. 
However, male participants tended to engage in moderate and vigorous 
physical activity than female participants (33.7 and 16.3% vs. 19.8 and 
7.2%, respectively) (p < 0.001). Moreover, statistically significant 
differences were found in anthropometric (BMI, WC, HC) and blood 
pressure (SBP, DBP) measurements between the sexes (p < 0.001). All 
these parameters were higher in males than in females. Most laboratory 
parameters (TC, HDL, TG, glucose, and insulin) indicated statistically 
significant differences between sexes. In particular, females showed 
higher levels of TC and HDL than males, while males showed higher 
levels of TG, glucose, and insulin than females.

Table  2 shows the dietary intake of study participants by sex. 
Males showed significantly higher intake of total energy, protein, 

carbohydrate, total fat, cholesterol, SFA, MUFA, PUFA, omega-3, 
omega-6 (p < 0.001), and dietary fiber (p = 0.005) than females.

The frequencies of SNP rs7903146 genotypes among study 
participants were 35.6, 48.1, and 16.2% for CC, CT, and TT, 
respectively (Figure  1). The association between TCF7L2 SNP 
rs7903146 genotypes, and factors that may contribute to MetS are 
shown in Table 3. Only a marginal association was observed between 
the SNP and WC (p = 0.05). Carriers of TT genotype had the highest 
WC (83.5 ± 20.1 cm) compared to CC (80.0 ± 14.2 cm) and TC 
(77.9 ± 13.9 cm) genotypes. Table 4 instead shows the association 
between rs7903146 SNP genotypes and participants’ dietary intake. 
A significant association was observed between SNP and intake of 
both total energy (p = 0.04) and SFA (p = 0.005). Carriers of the TT 
genotype had the highest total energy intake (TEI) 
(3606.9 ± 1554.7Kcal) compared to those of the CC (3598.3 ± 1459.9 
Kcal) and TC (3202.6 ± 1363.9) genotypes. In addition, carriers of the 
TT genotype had the highest intake of SFA (66.8 ± 52.0 g) compared 
to carriers of the CC (52.2 ± 36.6 g) and TC (52.9 ± 39.4 g) genotypes.

The interaction between the TCF7L2 rs7903146 SNP and TEI 
on factors that may contribute to MetS was analyzed (Table 5). Only 
a nearly significant interaction between SNP and TEI on insulin 
levels was evident (p = 0.04). Low TEI was associated with greater 
reduction in insulin levels among the TT genotype (−5.3 ± 3.5; 
confidence interval [CI] -12.4 − 1.7) compared to CC (−2.4 ± 3.1; 
95% CI -8.4-3.5), and TC (−4.7 ± 2.8; 95% CI -10.3-0.8). The 
interaction between SNP and intake of carbohydrate, total fat, SFA, 
MUFA, and PUFA on factors that may contribute to MetS was also 
analyzed, with no significant found in the interaction models 
(Supplementary Tables 1–5).

4 Discussion

To the best of our knowledge, this is the first study to investigate 
the interactions among TCF7L2 genotypes, dietary intake, and factors 
that may contribute to MetS in Saudi Arabian adults. A marginally 
significant association was observed between SNP rs7903146 and WC, 
and carriers of the TT genotype had the highest WC. Significant 
associations were observed between TCF7L2 gene SNP rs7903146 and 
TEI and SFA intake. TT appears to be risk genotype, with carriers 
having the highest TEI and SFA intakes. An interaction was reported 
between SNP rs7903146 and TEI on insulin levels; however, it was not 
significant following Bonferroni correction. The low TEI intake was 
associated with decreased insulin levels in all genotypes.

Several meta-analysis studies demonstrated strong association 
between TCF7L2 rs7903146 and increased risk of T2D different 
ethnic groups (39, 40). Also, a meta-analysis conducted among 
Arab patients with T2D found that TCF7L2 polymorphism 
rs7903146 was associated increased odds of T2D by 1.34 (95% CI 
1.27–1.41) (41). In line with our association results, a previous 
study conducted on 359 patients with T2D and 351 healthy controls 
in Saudi  Arabia did not reveal an association between SNP 
rs7903146 and T2D risk. Also, genotype frequency was comparable 
to that in a previous study (19). However, a larger case–control 
study conducted on 1,166 patients with T2D, and 1,235 healthy 
Saudi Arabian participants demonstrated a significant association 
between the SNP rs7903146 and T2D, with T allele carriers showing 
an increased risk of the disease (18). The lack of association in the 
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current study may be due to its cross-sectional design, including a 
relatively small sample size with participants of younger ages; the 
two previous studies were case–control studies (18, 19). Previous 

studies have only examined the risk of T2D; in our study, several 
factors that may contribute to MetS were analyzed aside from T2D 
risk. In addition, SNP rs7903146 was associated with WC in the 
Algerian population (n = 751), where T allele carriers had low WC 
(42), however in our study T allele carriers had increased WC. The 
SNP rs7903146 affects insulin secretion and β-cell function and the 
TT allele is associated with progression from impaired glucose 
tolerance to T2D. Such impairment increases fat accumulation 
which in turn increases WC (43). A previous report indicated that 
a reduction in anthropometric measurements by >5%, including 
WC, was clinically meaningful in weight management and reduced 
cardiovascular risk factors (44). Based on a literature search, no 
previous study has reported on the association between SNP 
rs7903146 and TEI or SFA, whose findings could be compared to 
the findings of the present study.

In contrast to our interaction finding, following a lifestyle 
intervention for 2 years that included energy intake reduction (fat 
<30%) and an increase in fiber intake, no association with changes in 
glucose or insulin sensitivity were observed for SNP rs7903146 risk 
allele carriers among 309 German participants with T2D; however, 
association with changes in BMI was observed (45). The differences 
could be attributed to study design, health status of participants, 
different populations, and different methods of assessing dietary 
intake. Evidence from randomized clinical trials that involved 
macronutrient modification (restricted energy intake and energy 
from fat) for weight loss demonstrated better glycemic control in the 
TCF7L2 genotype, especially among T allele carriers (46, 47). 
Therefore, improvement in glucose controls can lead to lower insulin 
levels. A reduction in insulin levels by 10% has clinical significance 
for improvement in insulin sensitivity (48). Another intervention 
study used the genetic risk scores of six SNPs, including rs7903146, 
in Mexican adults with MetS. The intervention protocol involved 
consuming low amounts of SFAs (< 7%) for 2.5 months (< 200 mg of 
cholesterol/day) and reducing the TEI by 25%. The results showed 
increased HDL-C levels in individuals with low genetic risk scores 
(49). However, in the present study, no interaction with HDL levels 
was observed. The relatively small sample size may hinder 
observation of significant interaction findings. Notably, gene-diet 

TABLE 1 Characteristics of the study participants stratified by sex.

Characteristics Male 
(n = 101)

Female 
(n = 173)

p 
value

Age (years) 24.1 ± 7.1 28.1 ± 7.6 <0.001

Marital status (n, %)

  Single 89 (88.1) 117 (67.6) <0.001

  Married 12 (11.9) 47 (27.2)

  Divorced 0 9 (5.2)

Education level (n, %)

  High school or low 3 (3.0) 1 (0.6) <0.001

  Undergraduate 96 (95.0) 111 (64.2)

  Postgraduate 2 (2.0) 61 (35.3)

Employment (n, %)

  Student 79 (78.2) 100 (57.8) 0.001

  Employee 18 (17.8) 50 (28.9)

  Unemployed 4 (4.0) 23 (13.3)

Smoking status (n, %)

  Non-smoker 57 (56.4) 151 (87.3) <0.001

  Current smoker 40 (39.6) 15 (8.7)

  Former smoker 4 (4.0) 7 (4.0)

Household income (n, %)

  Less than 5,000 SAR 4 (4.0) 9 (5.2) 0.11

  5,000–10,000 SAR 23 (22.8) 60 (34.7)

  10,000–20,000 SAR 40 (39.6) 47 (27.2)

  More than 20,000 SAR 34 (33.7) 57 (32.9)

Physical activity (n, %)

  Sedentary 14 (13.9) 61 (35.3) <0.001

  Light activity 38 (37.6) 67 (38.7)

  Moderate activity 33 (32.7) 33 (19.1)

  Vigorous 16 (15.8) 12 (6.9)

BMI (kg\m2) 27.5 ± 7.4 24.0 ± 6.0 <0.001

Waist circumference (cm) 88.8 ± 16.6 74.4 ± 11.8 <0.001

Hip circumference (cm) 108.2 ± 14.6 100.4 ± 14.4 <0.001

Systolic blood pressure (mmHg) 138.4 ± 13.5 119.9 ± 13.1 <0.001

Diastolic blood pressure (mmHg) 81.3 ± 9.8 71.4 ± 8.8 <0.001

Total cholesterol (mg\dl) 167.4 ± 31.6 176.9 ± 36.1 0.02

High-density lipoprotein cholesterol 

(mg\dl)

44.0 ± 9.0 53.9 ± 10.7 <0.001

Low-density lipoprotein cholesterol 

(mg\dl)

108.3 ± 26.1 110.4 ± 28.9 0.62

Triglycerides (mg\dl) 72.1 ± 31.1 62.6 ± 24.8 0.01

Glucose (mg\dl) 88.6 ± 20.6 83.8 ± 9.8 0.01

Insulin (μIU/mL) 18.8 ± 15.4 11.39 ± 8.5 <0.001

Data are presented as mean ± SD for continuous variable and number and frequency (%) for 
categorical variables. P value was tested using Chi square for categorical variables and 
independent t-test for continuous variables.

TABLE 2 Dietary intake of participants by sex.

Nutrients Male 
(n = 101)

Female 
(n = 173)

P 
value

Energy (calorie) 4235.1 ± 1425.2 2947.7 ± 1172.1 <0.001

Energy (kilojoules) 17668.6 ± 5949.2 12313.6 ± 4901.2 <0.001

Protein (g) 431.2 ± 557.3 192.1 ± 232.1 <0.001

Carbohydrates (g) 468.2 ± 157.3 340.1 ± 134.1 <0.001

Total fat (g) 197.4 ± 117.2 119.6 ± 65.1 <0.001

Cholesterol (g) 918.6 ± 557.8 522.4 ± 307.9 <0.001

Saturated fatty acid (g) 73.1 ± 50.8 43.4 ± 26.2 <0.001

Monounsaturated fatty acid (g) 56.3 ± 22.9 36.6 ± 18.2 <0.001

Polyunsaturated fatty acid (g) 37.0 ± 17.2 22.3 ± 11.6 <0.001

Omega-3 (g) 1.2 ± 0.8 0.7 ± 0.7 <0.001

Omega-6 (g) 7.1 ± 4.7 4.1 ± 3.7 <0.001

Total dietary fiber (g) 31.3 ± 13.9 26.5 ± 13.1 0.003

Data are presented as mean ± SD. P value was tested using independent t-test.
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interactions are probabilistic rather than deterministic, which implies 
that it increases or decreases the likelihood of the traits/diseases, and 
it is influenced by other environmental factors, including smoking, 
sedentary lifestyle, and physical activity. Therefore, in our analysis, 
we  adjusted for physical activity and smoking to minimize 
their effects.

Previous studies have reported interactions between SNP 
rs7903146 and macronutrients on T2D risk. Two studies reported the 
interaction between SNP rs7903146 and carbohydrates on HbA1c (50, 
51). However, consistent with our findings, two larger cohorts did not 
observe interaction between SNP and carbohydrates intake on T2D 
risk (2, 52). Moreover, a study on healthy Lebanese adults has shown 
that SFA and rs7903146 of TCF7L2 have interaction effects on BMI 
(53). In addition, SFA SNP had interaction effects on metabolic risk 
in a case–control study (n = 1754) (22). MUFA is another 
macronutrient that modulates the association between TCF7L2 
polymorphism and HbA1c concentration (48). Moreover, PUFA 
intake interacted with SNP rs7903146 on modulating postprandial TG 
levels (54).

The dietary pattern of the Saudi population is distinct as it is high 
in refined carbohydrates (such as rice and bread) and red meat, and 
low in fruit and vegetables, in comparison to the Mediterranean diet 
or other unhealthy dietary patterns such as the Western diet. The 
present study was conducted solely in the Saudi population. The 
findings might not be  applicable to other ethnicities because of 
differences in genetic ancestry and dietary patterns between Saudi and 
other populations. Numerous factors could explain the lack of 
significant interactions in the present study when compared with 
other studies: the sample size in our study is relatively small for 
interaction investigations, and other studies have been case–control 
or intervention studies, whereas our study was a cross-sectional study. 
In addition, the participants in the present study were younger adults 
and healthy, either normal, overweight or obese, whereas the 
participants of other studies were older, and some recruited healthy 
and non-healthy participants. Moreover, the dietary intake assessment 
method differs as some studies used 24 h while our assessment was 
based on an FFQ, and differences in statistical analysis tests were used. 
Finally, the inconsistencies may reflect differences in the criteria 
employed to define studies, such as population size, study design, 
methods of assessing dietary intake, age, genetic heterogeneity, or the 
dietary environment of the populations studied.

However, the results of this study should be considered in light of 
the following limitations. The study was cross-sectional, which limited 
the ability to establish causality among TCF7L2 SNP rs7903146, 
dietary intake, and factors that may contribute to MetS, in addition to 
the relatively small sample size and the inclusion of predominantly 
younger adults. Thus, future studies based on longitudinal design and 
larger sample sizes are recommended. Although in-person interviews 
using food photographs were conducted to collect dietary intake data, 
the FFQ method may be subject to recall response bias and social 
desirability bias, and it was limited by measurement errors, reliance 
on memory, and the number of food items included in the food list. It 
may also overestimate the energy intake. Consequently, future studies 
should use dietary biomarkers to address such shortcomings and 
better capture intra-individual variability in intake. In addition, 
considering the present study was conducted solely in the Saudi 
population, the findings might not be applicable to other ethnicities 

FIGURE 1

The frequencies of SNP rs7903146 genotypes among study 
participants.

TABLE 3 Association between TCF7L2 gene SNP rs7903146 and common MetS risk factors (additive model).

CC (n = 94) TC (n = 127) TT (n = 43) P value

BMI (kg\m2) 25.6 ± 5.9 24.5 ± 5.9 26.2 ± 8.9 0.11

Waist circumference (cm) 80.0 ± 14.2 77.9 ± 13.9 83.5 ± 20.1 0.05

Hip circumference (cm) 103.3 ± 15.3 101.9 ± 12.2 105.8 ± 18.8 0.27

Systolic blood pressure (mmHg) 125.7 ± 14.9 126.2 ± 15.4 130.2 ± 19.4 0.71

Diastolic blood pressure (mmHg) 75.4 ± 10.5 74.4 ± 9.4 77.0 ± 11.7 0.59

Total cholesterol (mg\dl) 174.4 ± 32.9 170.8 ± 36.8 173.3 ± 33.6 0.85

High-density lipoprotein cholesterol (mg\dl) 49.7 ± 10.0 50.4 ± 11.9 49.1 ± 11.7 0.86

Low-density lipoprotein cholesterol (mg\dl) 111.1 ± 27.1 106.7 ± 28.9 110.9 ± 27.0 0.54

Triglycerides (mg\dl) 67.7 ± 27.7 66.1 ± 27.2 66.3 ± 28.6 0.86

Glucose (mg\dl) 84.4 ± 10.0 84.8 ± 13.1 90.3 ± 26.2 0.39

Insulin (μIU/mL) 13.6 ± 8.1 14.4 ± 12.4 14.8 ± 18.7 0.41

Data are presented as mean ± SD. p values were tested using univariate linear regression; age, sex, smoking, and physical activity were adjusted for in analysis and body mass index was added 
when testing for blood pressure, lipid profile, glucose, and insulin.
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because of differences in genetic ancestry and dietary patterns between 
Saudi and other populations.

5 Conclusion

In conclusion, in this nutrigenetic study, the interactions between 
the TCF7L2 gene and dietary intake on factors that may contribute 
to MetS among Saudi Arabian adults were investigated for the first 
time. TT carriers had risk associated with increasing WC, TEI, and 
SFA intake. TCF7L2 SNP rs7903146 carriers would benefit from low 
TEI, as it has favorable effects on insulin levels. Future studies using 
longitudinal study design, intervention-based research, including 
larger and more diverse sample sizes, and addressing the cumulative 
effect of several genes using gene-risk score are warranted.
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TABLE 4 Association between TCF7L2 gene SNP rs7903146 and subjects dietary intake (additive model).

CC (n = 96) TC (n = 128) TT (n = 44) P value

Energy (calorie) 3598.3 ± 1459.9 3202.6 ± 1363.9 3606.9 ± 1554.7 0.04

Energy (kilojoules) 15032.1 ± 6096.7 13366.1 ± 5696.0 15036.7 ± 6482.0 0.04

Protein (g) 241.1 ± 351.0 293.4 ± 407.8 378.7 ± 547.0 0.10

Carbohydrates (g) 403.6 ± 157.6 365.2 ± 155.9 403.2 ± 163.9 0.96

Total fat (g) 147.2 ± 88.1 142.3 ± 94.0 174.0 ± 126.8 0.11

Cholesterol (g) 673.6 ± 434.3 665.6 ± 505.8 669.3 ± 414.1 0.56

Saturated fatty acid (g) 52.2 ± 36.6 52.9 ± 39.4 66.8 ± 52.0 0.005

Monounsaturated fatty acid (g) 46.6 ± 23.3 40.1 ± 20.3 47.7 ± 25.9 0.48

Polyunsaturated fatty acid (g) 28.5 ± 15.4 25.9 ± 14.8 31.3 ± 20.2 0.79

Omega-3 (g) 1.0 ± 0.8 0.8 ± 0.7 1.1 ± 0.9 0.68

Omega-6 (g) 5.7 ± 4.8 4.7 ± 4.1 6.0 ± 4.8 0.83

Total dietary fiber (g) 30.8 ± 14.4 26.4 ± 13.2 26.8 ± 12.1 0.05

Data are presented as mean ± SD. P values was tested using univariate linear regression; age, sex, smoking, and physical activity, body mass index, and total calories were adjusted for in 
analysis.

TABLE 5 Interaction between TCF7L2 gene SNP rs7903146 and total energy intake on common MetS risk factors (additive model).

CC (n = 96) TC (n = 128) TT (n = 44)

P interactionLow 
calories

High 
calories

Low 
calories

High 
calories

Low 
calories

High 
calories

BMI (kg\m2) −1.7 ± 1.6 −2.4 ± 1.5 −2.7 ± 1.5 −3.6 ± 1.5 −2.5 ± 1.9 Reference 0.27

Waist circumference (cm) −3.5 ± 3.5 −2.0 ± 3.2 −4.9 ± 3.3 −5.7 ± 3.3 1.1 ± 4.1 Reference 0.27

Hip circumference (cm) −2.5 ± 3.8 −1.8 ± 3.5 −3.9 ± 3.5 −3.3 ± 3.5 1.1 ± 4.5 Reference 0.80

Systolic blood pressure (mmHg) −2.2 ± 3.4 −1.8 ± 3.2 −2.2 ± 3.2 −1.4 ± 3.2 0.3 ± 4.1 Reference 0.98

Diastolic blood pressure (mmHg) 1.1 ± 2.4 1.5 ± 2.2 0.3 ± 2.2 0.9 ± 2.3 4.4 ± 2.9 Reference 0.64

Total cholesterol (mg\dl) −9.1 ± 9.1 3.3 ± 8.5 −10.7 ± 8.4 5.6 ± 8.6 −4.3 ± 10.7 Reference 0.12

High-density lipoprotein cholesterol (mg\dl) −1.6 ± 2.7 −1.1 ± 2.5 −1.3 ± 2.5 0.9 ± 2.5 −1.5 ± 3.2 Reference 0.87

Low-density lipoprotein cholesterol (mg\dl) −6.6 ± 7.3 3.1 ± 6.8 −8.8 ± 6.7 2.5 ± 6.9 −2.5 ± 8.6 Reference 0.25

Triglycerides (mg\dl) −5.7 ± 6.9 6.8 ± 6.4 −3.9 ± 6.3 6.1 ± 6.5 −3.4 ± 8.1 Reference 0.07

Glucose (mg\dl) −4.5 ± 4.1 −1.6 ± 3.8 −2.5 ± 3.7 −1.4 ± 3.8 4.2 ± 4.8 Reference 0.58

Insulin (μIU/mL) −2.4 ± 3.1 −1.9 ± 2.8 −4.7 ± 2.8 2.5 ± 2.8 −5.3 ± 3.5 Reference 0.04

Data are presented as Beta coefficient ± stander error. p values were tested using univariate linear regression; age, sex, smoking, and physical activity were adjusted for in analysis and body 
mass index was added when testing for blood pressure, lipid profile, glucose, and insulin.
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