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Background: The connection between total cholesterol (TC) and lumbar 
spine bone mineral density (BMD) is well-documented, yet the role of dietary 
phosphorus intake in this relationship is not fully understood. This cross-
sectional study aims to explore how dietary phosphorus affects the link between 
TC and lumbar spine BMD.

Methods: Data from the National Health and Nutrition Examination Survey 
(NHANES) spanning 2011 to 2016 were analyzed, involving 7,155 participants. 
Based on the median daily phosphorus intake, participants were divided into 
a low phosphorus intake group (phosphorus intake <1,445 mg/d) and a high 
phosphorus intake group (phosphorus intake ≥ 1,445 mg/d). A multiple linear 
regression analysis was performed to investigate the association between TC 
and lumbar spine BMD, with a focus on determining if dietary phosphorus intake 
may serve as a potential influencing factor.

Results: The study revealed a negative association between TC and lumbar 
spine BMD. The strength of this relationship varied between the low and 
high phosphorus intake groups, with β values of −0.219 (95% CI: −0.334 to 
−0.105) for the low group and − 0.420 (95% CI: −0.548 to −0.291) for the 
high group. Additionally, there was an interaction between total cholesterol 
and dietary phosphorus intake in reducing lumbar spine bone density (P for 
interaction = 0.0168).

Conclusion: Our study results indicate that dietary phosphorus intake influences 
the relationship between TC and lumbar spine BMD, which may have important 
implications for clinical management.
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1 Introduction

Osteoporosis is a metabolic disease characterized by decreased bone density (1). With the 
increasing aging population worldwide, the prevalence of osteoporosis is rising annually, 
making it a global public health concern (2). Understanding the pathogenesis of osteoporosis 
is essential for its prevention.
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Elevated total cholesterol (TC) is becoming an increasingly 
common health issue. It is well known that total cholesterol is related 
to lipid metabolism, and furthermore, it can promote atherosclerosis, 
leading to cardiovascular and cerebrovascular diseases (3). However, 
the relationship between TC and lumbar spine bone mineral density 
(BMD) remains controversial. Zhang et  al. found a non-linear 
relationship between total cholesterol and lumbar spine BMD: when 
TC is below 5.86 mmol/L, there is a negative correlation, but when TC 
exceeds 5.86 mmol/L, the relationship is reversed (4). Jeong et  al. 
reported that as TC increases, lumbar spine BMD also increases (5). 
Additionally, other studies have shown no correlation between TC and 
lumbar spine BMD (6). The discrepancies in these findings may 
be due to the failure to account for potential confounding factors, such 
as dietary phosphorus intake.

Phosphorus plays a crucial role in the processes of bone resorption 
and dissolution (7). Previous research has indicated that a high intake 
of phosphorus contributes positively to the maintenance of lumbar 
spine bone mineral density (BMD) (8). Based on previous experience 
(9), “high phosphorus intake” in our study was defined as ≥1,445 mg/ 
day (median for NHANES participants), consistent with previous 
reports of dietary phosphorus exceeding the recommended daily 
intake (700 mg/day for Institute of Medicine adults). High phosphorus 
intake may impair BMD through multiple pathways: (1) Osteoblast 
Suppression: Elevated serum phosphate inhibits osteoblast 
differentiation via downregulation of Runx2 and Osterix (7); (2) 
Osteoclast Activation: Phosphate stimulates RANKL expression, 
promoting osteoclast-mediated bone resorption (10); (3) Calcium-
Phosphorus Imbalance: Excess phosphorus activates the FGF23-
Klotho axis, reducing bioactive vitamin D and impairing calcium 
absorption, exacerbating demineralization (11); (4) Inflammatory 
Synergy: Chronic inflammation (e.g., from hypercholesterolemia) 
amplifies phosphate-induced IL-6 and TNF-α, which further 
destabilizes bone remodeling (12). Another study demonstrated that 
a diet rich in phosphorus could lower cholesterol levels in both the 
serum and tissues of weaned hybrid pigs (13). Elevated TC has been 
associated with reduced bone turnover markers and altered osteoblast 
function, suggesting a potential mechanistic link between lipid 
metabolism and bone health (14). However, few experiments have 
explored the impact of phosphorus intake on the relationship between 
TC and lumbar spine BMD. In this cross-sectional study, we propose 
the hypothesis that phosphorus and TC may have an interactive effect 
on lumbar spine BMD. Our aim is to investigate the influence of 
phosphorus intake on the relationship between TC and lumbar 
spine BMD.

2 Methods

2.1 Data source

This study utilized data from the National Health and Nutrition 
Examination Survey (NHANES) for the years 2011–2016. NHANES is 
a cross-sectional survey focused on diet and health among 
non-institutionalized residents of the United States. The data collected 
include demographic information, dietary intake, questionnaires, 
laboratory data, and physical measurements, using a multistage stratified 
probability design. Health interviews took place in the participants’ 
homes, whereas extensive physical examinations, which included blood 

sample collection, were conducted at mobile testing centers. Serum 
samples were subsequently analyzed in laboratories. All study protocols 
were approved by the NCHS Research Ethics Review Board, and all 
participants provided written informed consent1 (15).

2.2 Measurement of TC

Analyze serum TC levels in venous samples according to the 
standardized protocol and measure them using an enzyme-coupled 
reaction. Specific information can be  obtained from the NHANES 
official website.

2.3 Phosphorus intake

The data on dietary phosphorus in this study was determined 
through a 24-h dietary recall. This approach is the most widely utilized 
in large-scale surveys to evaluate dietary intake. This protocol is based 
on a consensus reached during an expert assessment workshop 
conducted as part of the NHANES. Phosphorus intake was classified as 
high or low based on the median daily intake of 1,445 mg.

2.4 Measurement of lumbar spine BMD

Lumbar spine BMD, the primary outcome variable, was obtained 
through Dual-energy x-ray absorptiometry (DXA) scans performed by 
trained and certified radiologic technologists. All scans were conducted 
on a Hologic Discovery A densitometer (Hologic, Inc., Bedford, 
Massachusetts) using Apex 3.2 software version, and lumbar spine bone 
density was reported in gm/cm2. Detailed information regarding the 
lumbar spine bone density examination is documented in the “Body 
Composition Procedures Manual” on the NHANES website.

2.5 Covariates

In this study, age, gender, race, education level, smoking, family 
income, BMI, diabetes, hypertension, moderate physical activity and 
biochemical indicators (blood urea nitrogen, total calcium, total protein, 
phosphorus, uric acid and direct HDL-cholesterol) were taken as 
potential regulatory covariates in the research model. The race categories 
consist of Mexican Americans, other Hispanic, Non-Hispanic White, 
Non-Hispanic Black, and other races. Education level was divided into 
below high school, high school graduate, and college or higher. Smoking 
status was determined by whether participants had smoked over 100 
cigarettes in their lifetime, classifying them as smokers or non-smokers. 
Diabetes, hypertension, and physical activity were determined based on 
self-reported information from participants. Household income was 
assessed through the poverty-income ratio (PIR), which takes family size 
into account. BMI was calculated based on the participant’s height and 
weight. Additionally, specific information regarding various biochemical 
indicators (blood urea nitrogen, total calcium, total protein, phosphorus, 

1 https://wwwn.cdc.gov/nchs/nhanes/default.aspx
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uric acid and direct HDL-cholesterol) were sourced from NHANES 
laboratory results.

2.6 Statistical analysis

All statistical analyses were performed using EmpowerStats software2 
and R software. To investigate the relationship between total cholesterol 
and lumbar spine bone density, we  conducted a multiple linear 
regression. Lumbar spine bone density was evaluated across different 
levels of phosphorus intake, and intergroup interactions were assessed 
using likelihood ratio tests. Additionally, 95% confidence intervals (CIs) 
were calculated, with differences considered clinically significant if 
P < 0.05. In descriptive analysis, continuous variables were presented as 
mean and standard deviation (SD) or median and interquartile range 
(IQR). Categorical variables were expressed as weighted percentages (%). 
Chi-square tests (for categorical variables) and t-tests (for normally 
distributed variables) or Kruskal-Wallis tests (for skewed variables) were 
used to compare continuous and categorical variables, respectively.

3 Results

3.1 Selection of participants and basic 
characteristics

This study utilized data from three NHANES cycles: 2011–2012, 
2013–2014, and 2015–2016. The flowchart for the participant selection 
process is shown in Figure 1. Out of 29,902 participants, we excluded 
those without lumbar spine BMD measurements (n = 15,402), TC data 
(n = 1,109), and dietary phosphorus intake data (n = 710), as well as 
individuals under 20 years of age (n = 4,727) and those with missing 
covariate information (n = 1,159). Ultimately, a total of 7,155 individuals 
were included in the final analysis. Based on their dietary phosphorus 
intake, participants were divided into two groups, with their basic 
characteristics presented in Table  1. The high-phosphorus group 
included 11.6% Mexican American, 10.0% Other Hispanic, 36.5% 
Non-Hispanic White, 24.2% Non-Hispanic Black, and 17.7% Other 
Races. The low-phosphorus group included 16.3% Mexican American, 
9.2% Other Hispanic, 42.5% Non-Hispanic White, 17.9% Non-Hispanic 
Black, and 14.1% Other Races. The results revealed significant differences 
(P-value <0.05) between the low-phosphorus and high-phosphorus 
intake groups in terms of age, gender, race, PIR, alcohol consumption, 
moderate physical activity, blood urea nitrogen, total calcium, 
phosphorus, uric acid, direct high-density lipoprotein, and lumbar 
spine BMD.

3.2 Association between TC and lumbar 
spine BMD

Table 2 presents the association between TC and lumbar spine 
BMD. In the unadjusted analysis (Model 1), a negative correlation 
was observed between TC and lumbar spine BMD. Similar results 

2 www.EmpowerStats.com

were observed in the minimally adjusted model (Model 2) and the 
fully adjusted model (Model 3) [−0.310 (−0.399, −0.220)]. 
Furthermore, when TC was converted into a categorical variable, the 
trend test remained significant (P < 0.001). The negative correlation 
between TC and lumbar spine bone density was validated in the 
minimally adjusted model of KNHANES database 
(Supplementary Table S1).

3.3 The impact of dietary phosphorus 
intake on the relationship between total 
cholesterol and lumbar spine bone mineral 
density

The univariate analysis indicated that age, PIR, BMI, Diabetes, 
HDL-Cholesterol, and TC were associated with lumbar spine BMD 
(Supplementary Table S2). Table 3 details the influence of dietary 
phosphorus intake on the correlation between TC and lumbar spine 
BMD. The results across Model 1, 2, and 3 were consistent, showing a 
significant negative correlation between TC and lumbar spine BMD 
in both the high-phosphorus and low-phosphorus dietary groups. In 
Model 3, the β value for the high phosphorus intake group was −0.420, 
which was lower compared to the low phosphorus intake group with 
a β value of −0.219. The interaction effect between phosphorus intake 
and TC on lumbar spine BMD was statistically significant (P for 
interaction = 0.0168). The source of dietary phosphorus may play a 
significant role in its effect on lumbar spine BMD. To address this, 
we have conducted additional analyses to stratify the high phosphorus 
intake group based on calcium intake levels. The 
Supplementary Table S3 showed that the negative association between 
TC and lumbar spine BMD was more pronounced in the high 
phosphorus/low calcium subgroup compared to the high phosphorus/
high calcium subgroup (−0.124 vs. −0.149). This suggests that the 
interaction between phosphorus and calcium intake may modulate 
the relationship between TC and lumbar spine BMD. The β values and 
95% CI of confounders in the linear regression model are shown in 
Supplementary Table S4. The variance inflation factors (VIF) of all 
variables are shown in Supplementary Table S5, and VIF is less than 
2.0, indicating that there is no significant multicollinearity in 
the model.

4 Discussion

This study analyzed a nationally representative sample and found 
that total cholesterol was negatively associated with lumbar spine bone 
density. In addition, dietary phosphorus intake and total cholesterol 
interacted to reduce lumbar spine bone density in most models. 
Specifically, the negative association between TC and BMD was 
stronger in the high-phosphorus intake group (β = −0.420) compared 
to the low-phosphorus group (β = −0.219). This suggests that elevated 
phosphorus intake exacerbates the adverse effects of TC on bone 
density, potentially through mechanisms such as calcium-phosphorus 
imbalance and increased bone resorption (Table 3).

Lipid metabolism is involved in the pathogenesis of osteoporosis 
(16, 17). TC plays a pivotal role in this process, as both cholesterol and 
its metabolites can inhibit osteoblast differentiation (18). Furthermore, 
TC serves as a precursor for vitamin D synthesis. Given that vitamin 
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D is essential for calcium absorption and bone health, fluctuations in 
cholesterol levels may impact vitamin D levels, thereby influencing 
lumbar spine BMD (19, 20). Consequently, lumbar spine BMD may 
be  affected by TC either directly or indirectly through these 
mechanisms. Consistent with our findings, Fang et  al. reported a 
negative correlation between serum TC and lumbar spine BMD in 
American women over 45 years of age, with a more pronounced 
association observed in those with a BMI below 24.9 kg/m2 (21). 
Similarly, Hu et al. arrived at the same conclusion in their study (22). 
Additionally, a meta-analysis of 33 studies indicated that statin use can 
increase BMD in both the lumbar spine and hip, while also reducing 
the overall risk of fractures and hip fractures (23). Nevertheless, the 
relationship between serum total cholesterol and lumbar spine BMD 
remains contentious. A cohort study involving 289 male patients 
identified a positive correlation between serum TC and BMD in both 
the lumbar spine and hip (24). Thus, further research is warranted to 
elucidate the role of serum TC in lumbar spine BMD.

In addition, it is important to differentiate between serum lipids 
and bone marrow fat, two biologically distinct compartments with 
unique roles in bone metabolism. While bone marrow adiposity is 
well-established as a negative correlate of BMD (25, 26), the 
relationship between serum cholesterol and BMD remains less 
definitive. Serum lipids, such as LDL-C and HDL-C, may influence 
bone health through divergent pathways. For instance, LDL-C has 
been associated with reduced lumbar BMD in women, whereas 
HDL-C—often considered cardioprotective—may exert positive 
effects on skeletal integrity (27, 28). These findings underscore the 
complexity of lipid-BMD interactions and highlight the need to 
evaluate lipoprotein subfractions independently. Emerging evidence 
suggests that lipoprotein subfractions may modulate BMD through 
distinct mechanisms. LDL-C, a key driver of atherosclerosis, may 
promote oxidative stress and inflammation, indirectly accelerating 
bone resorption. Conversely, HDL-C—via its anti-inflammatory and 
antioxidant properties—could mitigate these effects, potentially 

FIGURE 1

Flowchart of participants enrollment.
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preserving bone density (27). Our study focused on TC as a composite 
measure, but future investigations should explore subtype-specific 
associations to refine clinical interpretations.

Phosphorus, as a key dietary mineral, interacts with lipid 
metabolism and may modify how cholesterol affects bone density. 
One possible pathway involves the role of phosphorus in lipid 

TABLE 1 Baseline characteristics of participants.

Covariates Dietary phosphorus intake (mg/d) P-value

<1,445 mg/d (n = 4,138) ≥ 1,445 mg/d (n = 3,017)

Age (years, mean ± SD) 39.4 ± 11.7 38.6 ± 11.4 0.008

Gender, n (%) <0.001

  Male 1700 (41.1%) 2004 (66.4%)

  Female 2,438 (58.9%) 1,013 (33.6%)

Race, n (%) <0.001

  Mexican America 481 (11.6%) 492 (16.3%)

  Other Hispanic 415 (10.0%) 277 (9.2%)

  Non-Hispanic White 1,511 (36.5%) 1,283 (42.5%)

  Non-Hispanic Black 1,000 (24.2%) 540 (17.9%)

  Other races 731 (17.7%) 425 (14.1%)

Education, n (%) 0.518

  Under high school 683 (16.5%) 469 (15.5%)

  High school or equivalent 902 (21.8%) 655 (21.7%)

  Above high school 2,553 (61.7%) 1893 (62.7%)

PIR (mean ± SD) 2.5 ± 1.6 2.6 ± 1.7 <0.001

BMI (kg/m2, Mean ± SD) 28.6 ± 6.7 28.6 ± 6.6 0.904

Smoked at least 100 cigarettes in life, n (%) 0.171

  Yes 1,652 (39.9%) 1,253 (41.5%)

  No 2,486 (60.1%) 1764 (58.5%)

Had at least 12 alcohol drinks past 1 year? n (%) <0.001

  Yes 3,031 (73.2%) 2,448 (81.1%)

  No 1,107 (26.8%) 569 (18.9%)

Diabetes, n (%) 0.557

  Yes 326 (7.9%) 219 (7.3%)

  No 3,735 (90.3%) 2,746 (91.0%)

  Borderline 77 (1.9%) 52 (1.7%)

Hypertension, n (%) 0.960

  Yes 1,002 (24.2%) 729 (24.2%)

  No 3,136 (75.8%) 2,288 (75.8%)

Moderate work activity, n (%) <0.001

  Yes 1,586 (38.3%) 1,305 (43.3%)

  No 2,552 (61.7%) 1712 (56.7%)

Blood urea nitrogen (mg/dL, mean ± SD) 11.8 ± 4.3 13.0 ± 4.5 <0.001

Total calcium (mg/dL, mean ± SD) 9.4 ± 0.3 9.4 ± 0.3 0.002

Phosphorus (mg/dL, mean ± SD) 3.7 ± 0.6 3.8 ± 0.6 <0.001

Total protein (g/dL, mean ± SD) 7.2 ± 0.5 7.2 ± 0.4 0.780

Uric acid (mg/dL, mean ± SD) 5.3 ± 1.4 5. 5 ± 1.4 <0.001

Direct HDL-Cholesterol (mg/dL, mean ± SD) 52.7 ± 15.4 50.8 ± 15.3 <0.001

Total cholesterol (g/dL, mean ± SD) 0.2 ± 0.0 0.2 ± 0.0 0.162

Lumbar spine BMD (g/cm2, mean ± SD) 1.0 ± 0.2 1.0 ± 0.2 0.002
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absorption and metabolism (29). Phosphorus, particularly in the form 
of phospholipids, is essential for the structural integrity of cell 
membranes and is involved in lipid transport mechanisms (30). High 
phosphorus intake, especially from inorganic sources such as 
phosphate additives, may alter lipid metabolism, potentially 
influencing the way total cholesterol levels impact bone health (31).

Accumulating evidence highlights the dual role of dietary 
phosphorus in bone health. While phosphorus is essential for 
hydroxyapatite formation, excessive intake--particularly from 
processed foods rich in inorganic phosphate additives--has been 
implicated in osteoporosis pathogenesis. Large-scale cohort studies 
report that individuals in the highest quintile of phosphorus intake 
(≥1,400 mg/day) exhibit a 1.33-fold increased risk of hip fracture 
compared to those with balanced intake (700–1,000 mg/day) (32). 
Mechanistically, our findings align with experimental models showing 
chronic high phosphorus: firstly, promotes pyperparathyroidism: 
elevated serum phosphate indirectly stimulates parathyroid hormone 
secretion via calcium-phosphate complex formation, accelerating 
bone resorption (33). Secondly, represses bone formation: excess 
phosphorus downregulates Wnt/β-catenin signaling in osteoblasts by 
upregulating sclerostin expression, a key inhibitor of bone 
formation (34).

Moreover, phosphorus is closely tied to calcium metabolism, and 
an imbalance in dietary phosphorus and calcium can affect bone 

mineralization (11). High cholesterol levels, which are often seen in 
conjunction with metabolic syndrome, may exacerbate this imbalance 
by influencing how the body metabolizes and stores calcium and 
phosphorus (35). For instance, some studies suggest that elevated 
cholesterol may impair calcium absorption in the gut, leading to 
increased reliance on bone stores to maintain calcium homeostasis 
(36). In such cases, dietary phosphorus, if consumed in excess, might 
accelerate bone resorption by promoting parathyroid hormone (PTH) 
secretion, further weakening bone density (37).

Additionally, the inflammatory processes triggered by high 
cholesterol levels may also interact with phosphorus to affect bone 
health (12, 38). Chronic inflammation has been linked to increased 
bone turnover and reduced bone formation (39). In such conditions, 
phosphorus intake may act as a modulator of these processes, 
influencing the inflammatory response and the subsequent impact on 
bone density. While adequate phosphorus is necessary for bone 
development, excessive intake in the presence of elevated cholesterol 
and inflammation may worsen bone loss (40, 41). The interaction 
between dietary phosphorus and total cholesterol underscores the 
complexity of nutrient interactions in bone metabolism. Our results 
indicate that the combined effect of high cholesterol and high 
phosphorus intake on lumbar spine bone density is greater than the 
sum of their individual effects. This finding emphasizes the necessity 
of considering dietary factors collectively when evaluating their 
impact on bone health, rather than in isolation.

However, this study also has certain limitations. First, given the 
nature of cross-sectional studies, this research cannot establish a 
causal relationship between dietary phosphorus intake and total 
cholesterol and lumbar spine bone density, which would require 
further cohort studies. Second, the 24-h dietary review may not reflect 
habitual intake and relies on memory, which is subject to some error. 
Third, while DEXA is the gold standard for BMD assessment, it is 
important to note that X-ray attenuation is influenced not only by 
bone mineral content but also by marrow fat. Higher marrow fat 
content may artifactually elevate BMD values (42). Although 
NHANES protocols standardize DEXA procedures, residual 
confounding from marrow fat cannot be entirely ruled out. Finally, 
although some covariates were adjusted for, residual confounding 
from unmeasured factors cannot be completely ruled out.

5 Conclusion

In conclusion, our study suggests that dietary phosphorus intake 
plays a mediating role in the relationship between TC and lumbar 
spine BMD. This finding has important clinical implications, as it 
highlights the need for dietary considerations in the management of 
osteoporosis and related conditions. Future research should aim to 
explore the underlying mechanisms by which phosphorus influences 
the effects of cholesterol on bone health, which could lead to more 
effective dietary recommendations and interventions for individuals 
at risk of osteoporosis.

Data availability statement
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be made available by the authors, without undue reservation.

TABLE 2 Association between TC and lumbar spine BMD.

Model 1
β (95% CI) P 

value

Model 2
β (95% CI) P 

value

Model 3
β (95% CI) P 

value

Total cholesterol 

(g/dL)

−0.401 (−0.485, 

−0.317) <0.00001

−0.292 (−0.378, 

−0.206) <0.00001

−0.310 (−0.399, 

−0.220) <0.00001

Total cholesterol 

categories

  Q1 (0.059–

0.162 g/dL)
Reference Reference Reference

  Q2 (0.163–

0.186 g/dL)

−0.016 (−0.026, 

−0.006) 0.00130

−0.010 (−0.020, 

−0.000) 0.04162

−0.011 (−0.021, 

−0.001) 0.02641

  Q3 (0.187–

0.213 g/dL)

−0.017 (−0.027, 

−0.007) 0.00081

−0.009 (−0.018, 

0.001) 0.08569

−0.010 (−0.020, 

−0.000) 0.04063

  Q4 (0.214–

0.545 g/dL)

−0.044 (−0.054, 

−0.035) <0.00001

−0.032 (−0.042, 

−0.022) <0.00001

−0.034 (−0.044, 

−0.023) <0.00001

P for trend <0.001 <0.001 <0.001

TABLE 3 Interactive effect of TC and dietary phosphorus intake on 
lumbar spine BMD.

Model 1
β (95% CI) 
P value

Model 2
β (95% CI) 
P value

Model 3
β (95% CI) 
P value

Low-phosphorus 

intake (<1,445 mg/d, 

n = 4,138)

−0.318 (−0.429, 

−0.207) <0.0001

−0.195 (−0.308, 

−0.082) 0.0007

−0.219 (−0.334, 

−0.105) 0.0002

High-phosphorus 

intake (≥ 1,445 mg/d, 

n = 3,017)

−0.504 (−0.631, 

−0.377) <0.0001

−0.407 (−0.534, 

−0.280) <0.0001

−0.420 (−0.548, 

−0.291) <0.0001

P for interaction 0.0305 0.0119 0.0168
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