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Background: Most studies have evaluated sarcopenia and muscle health solely

based on muscle mass. This study comprehensively examined the associations

between eight inflammatory indicators and muscle mass and strength, with

the aim of identifying an indicator capable of evaluating muscle health across

multiple dimensions.

Methods: This study included 10,440 participants from the National Health

and Nutrition Examination Survey (NHANES, 2011–2018) and 5,384 participants

from NHANES (2011–2014). Multivariate logistic regression, smooth curve

fitting, restricted cubic spline (RCS) analysis, subgroup analysis, and Spearman’s

correlation were used to comprehensively assess the associations between the

eight inflammatory indicators and muscle mass and strength. Receiver operating

characteristic (ROC) curves were used to compare the predictive abilities of

the di�erent indices for low muscle mass and muscle strength. Additionally,

NHANES data were cross-validated with data from 554 patients at our hospital to

evaluate the ability of the systemic immune inflammatory index (SII) to distinguish

between low muscle mass and strength.

Results: After controlling for all potential confounding factors, multiple

logistic regression analysis revealed that apart from the platelet-to-lymphocyte

ratio (PLR), monocyte-to-lymphocyte ratio (MLR), and derived NLR (dNLR),

the neutrophil-to-monocyte-plus-lymphocyte ratio (NMLR), neutrophil-to-

lymphocyte ratio (NLR), SII, systemic inflammation response index (SIRI), and

pan-immune-inflammation value (PIV) were significantly negatively correlated

with muscle mass and strength. However, NMLR and NLR were significantly

associated with changes in muscle mass only in Q4 (P < 0.05). In the stratified

analysis by body mass index (BMI), only the SII, NLR, and NMLR were una�ected

by BMI. In the cross-validation, the predictive performance of the SII for low

muscle mass [area under the curve (AUC) = 0.699, 0.677, and 0.685] and low

muscle strength (AUC= 0.857, 0.849, and 0.840) demonstrated a good reference

value. RCS and smooth curve fitting analyses indicated that most inflammatory

markers were linearly correlated with muscle health (P < 0.05).

Conclusion: Compared with other inflammatory markers (e.g., PIV and dNLR),

the SII demonstrated a more robust predictive ability, was less influence

by covariates, and exhibited high generalization performance in internal and

external validation. SII may be crucial in identifying “hidden sarcopenia” and the

early stages of muscle functional decline.
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GRAPHICAL ABSTRACT

Normal muscle mass but low muscle strength may suggest cryptogenic sarcopenia or muscle dysfunction.

1 Introduction

Short-term inflammation can attract immune cells, such

as white blood cells, to promote tissue healing and recovery;

however, persistent inflammatory stimulation is the root cause

of many chronic diseases. Complete blood count (CBC) is a

routine laboratory test that evaluates various blood components.

Inflammatory markers derived from this test can provide value

beyond a single indicator for predicting disease status and

prognosis by integrating different components of the blood (1–3).

For example, studies have reported that the systemic immune

inflammatory index (SII) and prolactin (PLR) test show superior

accuracy and stability in predicting postmenopausal osteoporosis

(4). The neutrophil-to-lymphocyte ratio (NLR) is also an

effective biomarker to predict the severity of atherosclerosis,

and its prognostic value is no less than that of traditional

inflammatory markers. The pan-immune-inflammation value

(PIV) reflects uncontrolled inflammation during the development

and progression of heart failure and can effectively predict the

prognosis of patients with acute heart failure (5, 6). Furthermore,

Zhang et al. (7) reported that the SII is significantly more accurate

than c-reactive protein (CRP) in predicting coronary heart disease.

Wang et al. (8) found that NLR and PLR can effectively predict

Abbreviations: ASM, Appendicular skeletal muscle mass; AUC, Area under

the curve; BMI, Body mass index; CBC, Complete blood count; CRP,

C-reactive protein; LMS, Low muscle strength; MLR, Monocyte-to-

lymphocyte ratio; NHANES, National Health and Nutrition Examination

Survey; NLR, Neutrophil-to-lymphocyte ratio; NMLR, Neutrophil-to-

monocyte-plus-lymphocyte ratio; PIV, Pan-immune-inflammation value;

PLR, Platelet-to-lymphocyte ratio; RCS, Restricted cubic spline; ROC,

Receiver operating characteristic; SII, Systemic immune inflammatory index;

SIRI, Systemic inflammation response index.

the development of insulin resistance and are important to predict

the deterioration of renal function in patients with diabetic kidney

disease (DKD). Especially in patients with T2DM, the predictive

accuracy of the NLR is significantly higher than that of CRP

and erythrocyte sedimentation rate. The systemic inflammation

response index (SIRI) is widely used to evaluate the prognosis of

various tumors, such as head and neck cancer and gastric cancer

(9, 10). SIRI can also more accurately predict the 5- and 10-year

survival rates of patients with breast cancer than tumor, node, and

metastasis staging alone. The change in SIRI from baseline to 4

weeks after surgery is closely related to the survival rate of patients

with breast cancer (11). In addition, the economy and portability of

routine blood tests indicate that these inflammatory markers have

application values far exceeding those of other markers in clinical

practice and correlation prediction.

Muscle health is closely linked to quality of life and disease

prevention. As the body’s primary calcium reservoir, muscles

store significant amounts of calcium ions, which help prevent

osteoporosis (12). Additionally, muscles of sufficient quality and

strength can protect the bones during external impacts. However,

studies have only evaluated muscle health from the perspective of

muscle mass and used the decrease in muscle mass as the only

criterion for evaluating sarcopenia (13, 14). A decline in muscle

strength not only affects the functional activity ability of the elderly

(climbing stairs, walking, etc.), but is also associated with a variety

of adverse outcomes (such as decreased self-care ability, increased

risk of falls, etc.). In a cohort of Korean patients with non-alcoholic

fatty liver disease, muscle strength outperformed muscle mass in

predicting advanced fibrosis (15, 16). A recent study also identified

slow gait speed as an independent risk factor for increased all-

cause mortality; therefore, muscle strength may have a better

predictive value for disease than muscle mass. According to the

latest epidemiological studies, as the problem of population aging
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becomes more serious, the incidence of muscle diseases among

the elderly increases every year (17, 18). Muscle diseases, such as

sarcopenia, are associated with poor prognosis for multiple chronic

diseases (such as diabetes, heart failure, and COPD), which impose

a huge burden on less-developed countries (19–21); however, the

impact on developed countries such as the United States cannot

be ignored.

To our knowledge, existing studies have mostly focused on

the association between muscle mass and a single inflammatory

marker, and there is a lack of studies that have systematically

evaluated the crosstalk between multiple inflammatory markers

and muscle mass and strength (22). Although the effect of

muscle mass on health has received extensive attention in recent

years, the importance of muscle strength as an independent

predictor is often overlooked. We, therefore, aimed to evaluate

muscle mass and strength as a whole for the first time to

comprehensively reveal the associations between multiple CBC-

derived inflammatory markers and muscle health. In addition,

we determined which inflammatory markers can effectively reflect

muscle mass and muscle strength simultaneously, and further

compare the comprehensive ability of different markers in assessing

muscle health.

2 Methods

2.1 Study population and participants

The National Health and Nutrition Examination Survey

(NHANES) is a large cross-sectional survey that uses a multistage,

multistratum sampling approach to ensure that the sample is

representative of the general United States population. The

survey was conducted every 2 years and is updated regularly.

A total of 39,156 participants were screened between 2011 and

2018. After excluding 7,054 respondents with missing CBC-

related data, 11,485 respondents under the age of 20 years,

5,094 respondents with missing grip strength test results, 10,137

respondents with missing dual-energy X-ray absorptiometry data,

and 40 respondents with missing covariates, 10,440 respondents

from 2011 to 2018 were included in the muscle mass study.

The inclusion criteria for the muscle strength study were as

follows: (1) participants aged 20 years or older; (2) completion

of all three grip strength tests; (3) no missing data for

CBC; and (4) no missing covariates. After excluding 14,547

respondents who did not meet the criteria from 19,931 participants

between 2011 and 2014, 5,384 participants were finally included

(Figure 1).

2.2 Ethical statement

This study strictly adhered to the ethical standards of the

Helsinki Declaration issued in 1964 and its subsequent revisions

and was approved by the National Health Statistics Research

Ethics Review Committee; participant personal information will

be kept confidential, used only for research purposes, and

presented anonymously.

2.3 Study variables and covariates

Based on previous literature, this study used multiple variables

to construct a relative handgrip strength index (HGS/BMI) and

appendicular skeletal muscle mass index (ASM/BMI). Handgrip

strength (HGS) was determined using three grip strength

measurements with the participant’s elbow fully extended. The

relative strength index was calculated by dividing the HGS of

the dominant hand by BMI (23, 24). For participants with equal

grip strength in both hands, the average grip strength of both

hands was used. In this study, both muscle quality and strength

indices were categorized into four levels according to quartiles: Q1

(<25%), Q2 (25–50%), Q3 (50–75%), and Q4 (>75%), enabling a

more detailed analysis of the data. After grouping by gender, the

quartiles of the relative strength index were calculated separately

for each gender, with Q1 defined as low muscle strength (LMS)

(25). ASM was calculated as the sum of the appendicular skeletal

muscle masses (kg), and the muscle mass index was derived by

dividing ASM by body mass index BMI (kg/m2). According to

guidelines published by the Foundation for the National Institutes

of Health, respondents with a muscle mass index <0.789 for men

and<0.512 for womenwere classified as having LMS and defined as

having sarcopenia (26–29). This study combined these two indices

to provide a more comprehensive assessment of muscle health.

Since platelets cannot be expressed as a percentage, all

CBC-derived inflammatory markers were calculated using the

absolute counts of CBC parameters (103 cells/µL). This study

primarily included eight indicators calculated using the following

formulas (30):

MLR =
monocytes

lymphocytes

NMLR =

(

monocytes + neutrophils
)

lymphocytes

NLR =
neutrophils

lymphocytes

dNLR =
neutrophils

(white cell count − lymphocytes)

PLR =
platelets

lymphocytes

PIV =
neutrophils × monocytes × platelets

lymphocytes

SII =
platelets × neutrophils

lymphocytes

SIRI =
neutrophils × monocytes

lymphocytes

Tomeet the performance requirements of themodel, covariates

with minimal missing data and relevance to both independent and

dependent variables were selected to reduce errors and enhance

explanatory power. Covariates were categorized into continuous

and categorical variables. Continuous variables included age and

income-to-poverty ratio, while categorical variables included sex,

race, marital status, smoking habits, educational level, history of

diabetes, and moderate physical activity.
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FIGURE 1

Inclusion and exclusion criteria of the study population. (A) Muscle mass; (B) muscle strength.

2.4 Statistical analysis

Linear relationships between CBC-derived inflammatory

markers andmusclemass and strength were assessed usingmultiple

linear regression analysis, whereas non-linear relationships were

explored using smoothing curve fitting and threshold effect

analysis. Non-linear associations among low muscle mass, LMS,

and inflammatory markers were analyzed using restricted cubic

spline (RCS) curves. A recursive algorithm was employed to

scan the variable range and the cut.tab threshold effect function

in the ggrcs and rcssci packages was used to accurately identify

potential inflection points. Receiver operating characteristic (ROC)

curve analysis was conducted to determine the best indicator to

predict the risk of low muscle mass and strength. Spearman’s

correlation analysis was used to evaluate the association between

the CBC-derived inflammatory markers and these outcomes.

To thoroughly explore the relationships between the study

variables and outcomes, multi-model regression was performed by

gradually adding adjusted variables to construct three regression

models of varying complexity. Model 1 included no adjustments,
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while Model 2 adjusted for demographic variables (age, sex,

and race) to control for basic demographic differences, and

preliminarily assessed the associations between inflammatory

markers and muscle health without the influence of other

confounding factors. Model 3 incorporated additional variables,

including income-to-poverty ratio (IPR), BMI, education level,

marital status, and lifestyle and health behaviors (e.g., smoking,

diabetes, and moderate physical activity), to fully control for

confounders and examine the independent effects of CBC-derived

inflammatory markers on muscle mass (31, 32).

To enhance the generalizability of the model and avoid

overfitting, the inflammatory markers were stratified into quartiles

to minimize the influence of outliers. In addition, external

datasets were used for cross-validation to ensure the robustness

of the validation model. Hierarchical smooth curve fitting was

used to visually demonstrate the confounding effects of BMI on

the results.

3 Result

3.1 Baseline characteristics

The baseline characteristics of the respondents were

stratified by quartiles of muscle mass index and strength

index (Supplementary Tables S1, S2). Participants in the highest

quartile of muscle mass index had a higher proportion of male

and middle-aged individuals, an increasing poverty-to-income

ratio, a greater proportion of non-Hispanic Black participants,

and a higher prevalence of smoking than those in the lowest

quartile. Conversely, participants in the lowest quartile exhibited

a lower prevalence of diabetes mellitus and reduced absolute

counts of white blood cells, platelets, monocytes, lymphocytes, and

neutrophils than those in the highest quartile.

The quartile cutoffs for the strength indices were 0.97, 1.27,

1.61, and 3.51 for Q1–4, respectively. Muscle strength increased

with decreasing BMI, age, and diabetes prevalence, and was

associated with higher proportions of non-Hispanic Black people

and married or partnered individuals. Similar to the muscle mass

index, participants in the highest quartile of the strength index had

lower absolute counts of white blood cells, platelets, monocytes,

lymphocytes, and neutrophils, and higher household income and

education levels.

3.2 CBC-derived inflammatory markers and
muscle mass and strength

3.2.1 Quantitative association with muscle mass
This study analyzed the relationship between CBC-derived

inflammatory markers and muscle mass using weighted linear

regression models. To explore the relationships between the

variables and outcomes comprehensively, the models were

gradually adjusted, resulting in three regression models with

varying levels of complexity. After adjusting for demographic

variables in Model 2, most inflammatory marker effect sizes

(β) decreased, and the effect of PLR as a continuous variable

was no longer significant. Further comprehensive adjustment for

covariates in Model 3 eliminated the independent effects of MLR,

NMLR, NLR, and PLR as continuous variables (β = 0.00, P =

0.999). When muscle mass was grouped into quartiles, a significant

negative correlation among NMLR, NLR, and muscle mass was

observed in the highest quartile (Q4). By contrast, the effects

of MLR and PLR disappeared entirely. Additionally, the dNLR,

SIRI, and PIV demonstrated significant negative correlations as

continuous variables; however, in the quartile group analysis, the

correlations for these markers in the Q2 group did not reach

statistical significance.

Notably, the SII maintained a significant negative correlation

with muscle mass (P < 0.001) when analyzed as both a continuous

and categorical variable, indicating a robust independent predictive

effect (Supplementary Table S3). Specifically, the muscle mass

index decreased by 0.01 and 0.02 units for each unit increase in

NMLR and NLR, respectively, when NMLR and NLR were below

thresholds of 2.88 and 2.63 (β = −0.01, 95% CI: −0.02 to −0.00;

β = −0.02, 95% CI: −0.02 to −0.01). Similarly, the muscle mass

index decreased by 0.006 and 0.026 units for each unit increase in

SII and SIRI, respectively, when SII and SIRI were below thresholds

of 608.20 and 1.77(β = −0.01, 95% CI: −0.01 to −0.00; β =

−0.03, 95%CI:−0.04 to−0.01). Furthermore, when PIVwas below

353.85, each unit increase in PIV was associated with a 0.03 unit

decrease in the muscle mass index (β = −0.17, 95% CI: −0.28

to−0.06).

In summary, NMLR, NLR, dNLR, SII, SIRI, and PIV were

negatively correlated with muscle mass. Among these markers,

NMLR and NLR showed significant correlations only in the

highest quartile group (Q4), whereas dNLR, SIRI, and PIV

were not significant in the Q2 group. In contrast, the SII

consistently demonstrated a robust negative correlation across

all quartiles.

3.2.2 Quantitative associations with muscle
strength

Three models were constructed using the same methodology

to investigate the relationship between the CBC-derived

inflammatory indicators and muscle strength. After full adjustment

for covariates, no subgroups of the PLR or dNLR showed significant

associations, whereas the NLR, MLR, NMLR, SII, SIRI, and PIV

were significantly negatively correlated with muscle strength. In

continuous variable analysis, the independent effects of MLR, NLR,

dNLR, and PLR were not significant after full adjustment; however,

the highest quartile (Q4) of NLR and MLR showed significant

negative correlations.

Further quartile analysis revealed that the effects of MLR,

SIRI, and PIV were not significant in the Q2 and Q3 groups, but

were significantly negatively correlated with muscle strength in the

Q4 group (Supplementary Table S4). Meanwhile, NMLR and NLR

were significantly negatively correlated with muscle strength in the

Q2, Q3, and Q4 groups, with the Q4 group showing the most

substantial effect (NMLR: β = −0.09, 95% CI: −0.13 to −0.04, P

< 0.001; NLR: β = −0.09, 95% CI: −0.13 to −0.04, P < 0.001).

Notably, although SII did not reach statistical significance in the

Q2 group, it demonstrated a significant negative correlation in

both the Q3 and Q4 groups, with the Q4 group showing the most

pronounced effect (β =−0.07, 95% CI:−0.11 to−0.03, P= 0.002).
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As the NLR, MLR, NMLR, SII, SIRI, and PIV increased, the

muscle strength index progressively decreased, with Q4 showing

the strongest effect. Specifically, each 1-unit increase in the NLR

was significantly associated with a 0.09 decrease in the muscle

strength index. Similarly, each 1-unit increase in the MLR was

significantly associated with a 0.01 decrease, and each 1-unit

increase in the NMLR was significantly associated with a 0.09

decrease in the muscle strength index. Furthermore, each 1-unit

increase in SII, SIRI, and PIV was significantly associated with a

0.07 decrease in the muscle strength index.

In summary, NLR, MLR, NMLR, SII, SIRI, and PIV were

negatively correlated with changes in muscle strength. However,

NMLR and NLR showed significant effects only in the Q4 group.

3.2.3 Correlation analysis of CBC-derived
inflammatory markers with sarcopenia and LMS

This study also used RCS curves to analyze the association

between eight inflammatory markers, low muscle mass

(sarcopenia), and LMS (Figure 2). After adjusting for covariates

including sex, age, race, PIR, education level, marital status,

smoking habits, diabetes, and BMI, the models revealed that the

associations between various inflammatory markers and muscle

health differed to some extent.

In the analysis of low muscle mass, only MLR exhibited a

significant non-linear association (P = 0.032 and P-nonlinear =

0.013, respectively). Other inflammatory markers, including the

NLR, dNLR, PIV, SII, and SIRI, showed statistically significant

positive linear correlations with low muscle mass (P < 0.05).

In the analysis of LMS, the results indicated a negative

linear correlation between the NMLR, NLR, and LMS (P <

0.05). Additionally, the SII demonstrated a significant positive

correlation with LMS. The remaining indicators did not show

significant correlations.

3.3 Non-linear and saturation e�ects

Smooth curve fitting and piecewise linear regression models

were used to explore the non-linear relationships and saturation

effects between the eight inflammatory markers, muscle mass,

and strength. The results showed a non-linear relationship

between NMLR, dNLR, PLR, SII, SIRI, PIV, and muscle mass

(Supplementary Figure S1), and their key inflection points were

2.88, 74.43, 608.21, 1.77, and 355.40 (Supplementary Table S5).

Log-likelihood ratio tests confirmed that these non-linear

relationships were statistically significant (P < 0.05). For

inflammatory markers, such as NLR, dNLR, SII, SIRI, and PIV,

values below the inflection point showed a significant negative

correlation with muscle mass. In contrast, the values above the

threshold were not statistically significant.

In the piecewise linear regression analysis of inflammatory

markers and muscle strength, non-linear relationships

were observed between NMLR, NLR, SII, SIRI, and PIV

(log-likelihood ratio < 0.05). No significant non-linear

correlations were identified between the remaining markers

and muscle mass.

3.4 Subgroup analysis

To further minimize bias in the results caused by confounding

factors, we conducted a stratified analysis of the data based

on age, sex, race, education level, IPR, diabetes status, smoking

status, and activity level. After adjusting for all covariates,

smoking status (interaction, P < 0.05) was the only stratification

variable that significantly influenced the relationship between CBC-

derived inflammatory markers, and muscle mass and strength. No

significant interactions were observed for other variables such as

age, sex, or race (Supplementary Figure S2).

Multiple inflammatory markers showed stronger negative

associations with muscle mass and strength among non-smoking

respondents. In the subgroup analysis of muscle mass, the negative

correlations between muscle mass and NMLR, NLR, SII, SIRI, and

PIVweremore pronounced in the non-smoking group (P< 0.001).

Similarly, in the subgroup analysis of muscle strength, the SII, SIRI,

and PIV exhibited significant negative correlations with muscle

strength only in non-smokers, whereas these associations were not

significant in smokers.

Additionally, stratified smoothing curves were fitted based on

respondents’ overweight or obese status (BMI ≥ 25) (Figure 3). In

the muscle strength group, the curves for the SIRI and MLR in

overweight or obese individuals (blue curve) showed significant

fluctuations, indicating that being overweight or obese had a

notable impact on these two markers. In the muscle mass group,

SIRI and PIV exhibited a positive correlation in non-overweight

or non-obese individuals (red curve), in contrast to the negative

correlations observed in overweight or obese individuals.

In summary, the negative correlations of multiple

inflammatory markers with muscle mass and strength were

more pronounced in the non-smoking population. The stratified

smoothing curve fitting results indicated that only SII, NLR, and

NMLR demonstrated linear or non-linear associations with muscle

mass and strength, unaffected by BMI status.

3.5 ROC analysis

The diagnostic performances of the eight inflammatory

markers for low muscle mass and strength were investigated using

ROC curves (Figure 4). The performance of the SII was relatively

balanced for both outcomes, with AUC values of 0.578 for muscle

mass and 0.593 for muscle strength (Supplementary Table S6).

Although the SII did not have the highest AUC value, it

demonstrated a stable discriminative ability for both indicators.

Notably, while the dNLR exhibited the strongest discriminative

ability for muscle strength (AUC = 0.596), its performance

was highly susceptible to the influence of other covariates in a

multivariate context.

3.6 Correlation between markers of
inflammation and muscle mass or strength

This study also explored the correlation between inflammation-

related indicators and blood cell counts from 2011 to 2018 and
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FIGURE 2

Correlations between inflammatory markers and low muscle mass (sarcopenia) and low muscle strength (LMS) were analyzed using RCS curves.

(A–H) Associations between MLR, NMLR, NLR, dNLR, SII, SIRI, PLR, and PIV and the risk of low muscle mass. (I–P) Associations between the markers

and risk of LMS. The red dots in the figures indicate key turning points, while the red shaded areas represent the 95% confidence intervals.

2011 to 2014 (Supplementary Figure S3). The analysis revealed the

strongest negative correlation between PLR and LYM (r = −0.71),

whereas SIRI and PIV exhibited a strong positive correlation (r

= 0.93). Additionally, a strong positive correlation was observed

between the SII and PIV (r= 0.86).

3.7 Cross-validation of SII

This study also used NHANES data and data from 554 patients

at our hospital for cross-validation to assess the ability of the SII

to distinguish between low muscle mass and LMS. To enhance the

model, both univariate and multivariate regression analyses were

conducted, incorporating confounding factors, such as age, sex,

race, education level, smoking status, and diabetes. Participants

included in the internal validation were randomly assigned to a

training set and a validation set in a 7:3 ratio based on the NHANES

data. The external validation set consisted of 554 participants

randomly selected from our hospital between 2021 and 2024,

who adhered to the same inclusion and exclusion criteria. After

the evaluation, the most influential variables (age, sex, diabetes

status, activity level, and SII) were retained in the final model

(Supplementary Table S7).

In the low muscle mass group, the model demonstrated

relatively consistent AUC values across the training, validation, and

external validation sets. The AUC value for the external dataset

(AUC = 0.699, 95% CI: 0.694–0.834) was higher than those for the

training (AUC= 0.677, 95% CI: 0.654–0.799) and validation (AUC

= 0.685, 95% CI: 0.676–0.802) sets. Calibration curve analysis

indicated that the predicted probabilities for the external validation

set in the low-to-moderate risk range were highly consistent with

the observed outcomes (Supplementary Figures S4–S7).

In the LMS group, the results indicated that the training

set achieved an AUC of 0.849 (95% CI: 0.827–0.904), while the

internal validation set demonstrated similar performance with an

AUC of 0.840 (95% CI: 0.824–0.914). The external validation set

also exhibited a robust predictive ability, with an AUC of 0.857

(95% CI: 0.850–0.942). Additionally, the calibration curve for the

external validation set showed a good fit in the moderate risk range

of 0.2–0.8.

4 Discussion

This study included 15,824 patients from the NHANES

database for association analysis and internal validation model

construction, and 554 patients from our hospital for external

validation. The results showed that in addition to PLR and

MLR, NMLR, NLR, DNLR, SII, SIRI, and PIV were significantly

negatively correlated with muscle mass. However, NMLR, NLR,

DNLR, SIRI, and PIV were not significantly different among the
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FIGURE 3

Smoothed curve fitting was conducted stratified by obesity or overweight status. The relationships between various inflammatory markers and

muscle mass (A–D, I–L) and muscle strength (E–H, M–P) were analyzed. In the figures, the red curve represents non-obese/non-overweight

individuals, while the blue curve represents obese/overweight individuals.

four groups, with only SII consistently showing a robust negative

correlation. Among the eight indices, NLR, MLR, NMLR, SII,

SIRI, and PIV were negatively correlated with changes in muscle

strength, although NMLR and NLR showed significant effects

only in the Q4 group. Further analysis revealed a negative linear

correlation between NMLR and NLR and LMS, whereas the SII

was significantly positively correlated with LMS (P < 0.05). The

remaining indices did not exhibit significant correlations. Notably,

the SII demonstrated a stable discriminative ability for both muscle

mass and LMS, with minimal susceptibility to other covariates.

The consistency between the internal and external validations

underscores that the SII has a reliable predictive accuracy and

overall stability across different patient populations.

Skeletal muscle is essential to maintain normal physiological

functions of the human body. Muscle mass and strength are

commonly used to evaluate skeletal muscle function. Numerous

studies have shown a clear relationship between systemic

inflammatory markers and skeletal muscle function (33, 34);

however, current research primarily focuses on the association

between muscle mass and a single inflammatory marker. There is a

lack of studies that systematically evaluate the interaction between

multiple inflammatory markers and both muscle mass and strength

(22). Our study is the first to consider muscle strength and mass

together and simultaneously assess their correlation with eight

inflammatory markers: MLR, NMLR, NLR, dNLR, PLR, PIV, SII,

and SIRI.

Several other disease models have used the NLR and SII

as important indicators for disease prediction. Wang et al. (35)

demonstrated that the NLR is the best predictor of stroke-

associated pneumonia (SPA) and poor prognosis in patients with
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FIGURE 4

ROC analysis, used to evaluate the predictive accuracy of SII and other inflammatory markers for low muscle mass and strength. (A) Low muscle

mass; (B) low muscle strength.

cerebral hemorrhage, and can be used to identify severe SPA

early. Xie et al. (36) found that elevated SII levels are associated

with hepatic fatty degeneration. To further validate the continuity

and independence of the SII and NLR in assessing muscle health

and to exclude the influence of BMI on prediction efficiency,

we performed stratified smooth curve fitting according to BMI

status. Among the eight inflammatory indicators, only the linear

or non-linear correlations between the SII, NLR, and NMLR and

muscle mass and strength were unaffected by BMI. However,

the independent effects of NLR and NMLR were no longer

significant in the weighted linear regression model (Model 3)

after comprehensive adjustment for the variables. Ultimately, the

SII has been proven to be an independent marker to assess

muscle mass and strength. This finding is supported by a study

by Shi et al. (37), who reported that the SII independently

increased the risk of low muscle mass. However, they did not

observe any relationship between SII and muscle strength, which

remains a limitation of most studies. Notably, in our stratified

analysis, smoking status altered the correlation between multiple

inflammatory markers, muscle mass, and strength. Overall, the

negative correlations between muscle mass and strength and SII,

SIRI, and PIV were more significant in non-smokers (P < 0.001).

A potential explanation for this finding is that smoking contributes

to skeletal muscle dysfunction. Degens et al. (38) suggested that the

reduced contractile endurance of skeletal muscle may result from

the interaction of carbon monoxide with hemoglobin, myoglobin,

and components of the respiratory chain, leading to impaired

oxygen delivery to mitochondria and reduced mitochondrial ATP

production. Chan et al. (39) also demonstrated that smoking

exposure not only prevents the activation of muscle stem cells, but

also induces muscle inflammation. In particular, the recruitment

of F4/80+ monocytes to the injury site was amplified and the

expression of pro-inflammatory cytokines was enhanced. These

findings align with our, in which the biological activities of

inflammatory cells caused by the inflammatory response led to

changes in the inflammatory indicators included in this study.

Muscle health involves a series of biochemical reactions

in the body, which are inevitably accompanied by changes in

inflammatory factors. SII was calculated based on the levels

of platelets, neutrophils, and lymphocytes in the blood. Studies

on the pathogenic mechanisms of sarcopenia and low muscle

density have shown that interleukin-6 (IL-6) and TNF-α play key

roles (40). Elevated levels of both cytokines lead to neutrophil

expansion, which is reflected by the upregulation of SII. The

proposed mechanism is that neutrophil-related inflammatory

factors are upregulated, resulting in an increase in the SII,

which indirectly indicates that the patient’s muscle health is

compromised. Lymphocytes are primarily involved in maintaining

cellular homeostasis. In an immunohistochemistry and CT scan

study, the numbers of CD8+ T cells and total T lymphocytes were

positively correlated with muscle mass (41). This explains why

an increase in lymphocyte count is associated with a decrease in

the SII and an increase in muscle mass. However, the relationship

between platelets, muscle strength, and muscle mass has not been

extensively studied. Neutrophils rapidly accumulate within 24 h

of muscle injury, releasing reactive oxygen species and elastase to

clear necrotic tissue (42). Neutrophils peak at 48 h, releasing IL-6

and TNF-α to recruit monocytes and macrophages (43). Platelets

play a crucial role in the recruitment of neutrophils to injured

skeletal muscles.

Finally, although traditional views often regard low muscle

mass as the core problem of sarcopenia, the consideration of

both muscle mass and strength is essential to avoid diagnostic

and intervention biases (44, 45). Muscle strength is a crucial
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predictor of functional decline and often deteriorates earlier

than muscle mass. Therefore, focusing solely on low muscle

mass is insufficient to fully prevent sarcopenia, and early signs

of functional decline may be overlooked. For instance, patients

with normal muscle mass, but LMS, may experience “muscle

dysfunction” or “hidden sarcopenia” (46). This condition is more

common in the elderly or in patients with certain chronic

diseases and is primarily associated with a reduction in fast-

twitch muscle fibers, degeneration of neuromuscular junctions,

and muscle metabolic disorders (47). Although the overall

muscle volume or mass in these patients remains within normal

limits, the muscle function and neuromuscular coordination

are significantly impaired. This group faces a higher risk of

functional decline and falls during daily activities, highlighting

the need for early interventions aimed at improving muscle

function, rather than simply maintaining muscle mass. Conversely,

patients with low muscle mass, but normal or high muscle

strength, may benefit from exercise or genetic factors that

help to maintain functional performance. Overall, these findings

emphasize that screening based solely on muscle mass or

strength fails to capture the complete picture of a patient’s

muscle health.

Therefore, we conducted a predictive performance analysis.

The study revealed that, in the ROC curve, the AUC values of

the SII for predicting muscle mass and strength were relatively

balanced (0.578 and 0.593, respectively). Although the SII is not the

most powerful predictive indicator, its stability surpasses that of the

dNLR and PIV. Moreover, among all eight inflammatory markers,

only the SII demonstrated a relatively efficient and stable predictive

ability for both muscle strength and muscle mass simultaneously,

without being influenced by other covariates. To strengthen this

conclusion, we included data from 554 patients treated at our

hospital for external validation. In the external, training, and

internal validation sets, the between-group effect sizes of the SII

for predicting muscle mass (AUC = 0.699, 0.677, and 0.685,

respectively) and muscle strength (AUC = 0.857, 0.849, and 0.840,

respectively) were consistent. These findings indicate that SII has

strong practical value as a reference marker to predict low muscle

mass and strength.

Our study has some limitations. First, although this study

attempted to control for confounding factors by adjusting for

covariates such as age, sex, BMI, and smoking status, there may

still be residual or unmeasured confounding factors, such as dietary

habits, undiagnosed chronic diseases, or medication use. Future

studies should refine the collection of participant characteristics to

assess the impact of these potential confounders comprehensively.

Additionally, this study used cross-sectional data, which limits

its ability to infer causal relationships. Future research should

incorporate time-series analyses to clarify the causal relationships

between the dynamic changes in inflammatory markers andmuscle

health. Second, CBC blood indicators exhibit a certain degree

of variability and may be influenced by short-term factors, such

as acute stress, infections, diet, or physical activity, which could

affect the stability of the results. Although this study mitigated

such variability to some extent by using a large sample size

and multicenter data, future research should employ dynamic

monitoring of blood indices across multiple time points to evaluate

the long-term stability of these markers. Finally, an external

validation dataset was derived from the patients at a single medical

institution. Although the predictive performance of the SII has

been validated, the limited heterogeneity of sample sources may

restrict the generalizability of the model. Future studies should

include population samples from multiple centers and diverse

ethnic backgrounds to ensure the applicability of the model across

different populations.

5 Conclusion

Although some inflammatory markers (e.g., NMLR, NLR, SIRI,

and PIV) were significantly associated with muscle mass and

strength in specific quartiles, their independent effects disappeared

in the multiple regression models and were highly influenced by

BMI. In contrast, the SII proved to be a more balanced marker,

demonstrating robust predictive ability and strong independence

for muscle mass and strength. More importantly, the SII exhibited

a consistent predictive performance in both internal and external

validations, underscoring its strong generalizability across different

populations. This is particularly important to identify cases of

“hidden sarcopenia”.
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