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Aim: This study aims to provide evidence for an association between the 
consumption of prebiotics and probiotics and hyperuricemia in U.S. adults.

Methods: A total of 7,176 adults who participated in the National Health and 
Nutrition Examination Survey (NHANES) during 2011–2018 were included 
in the study. First, the baseline characteristics of the data were described 
for the weighted data, using the presence or absence of hyperuricemia as 
the classification criterion. Second, binary logistic regression analyses were 
performed to establish crude models and regression models adjusted for 
relevant covariates, and odds ratios (OR) and 95% confidence intervals (95% CI) 
were calculated to explore the relationship between prebiotics, probiotic intake, 
and hyperuricemia. Subsequently, receiver operating characteristic (ROC) 
curves were plotted to assess probiotic consumption’s role in the hyperuricemia 
prediction model. Finally, subgroup analyses were performed.

Results: Participants who consumed probiotics had a lower prevalence of 
hyperuricemia than those who did not (3.48% vs. 6.25%, p = 0.082). In logistic 
regression analyses, prebiotics’ effect on hyperuricemia was insignificant 
(p > 0.05), regardless of whether covariates were considered. In contrast, the 
crude model for probiotics and the adjusted model 1, which was constructed 
by adjusting for age, sex, and ethnicity, showed ORs less than 1 (crude model: 
OR = 0.54, 95% CI [0.34, 0.83], p = 0.008; adjusted model 1: OR = 0.54, 95% 
CI [0.34, 0.83], p = 0.008). The predictive model, including age, sex, race, body 
mass index (BMI), hypertension, chronic kidney disease, and probiotics, had 
76.7% sensitivity and 68.0% specificity with an area under the ROC curve of 
0.7886 for detecting hyperuricemia in US adults.

Conclusion: These results suggest that probiotic consumption may reduce the 
incidence of hyperuricemia in the US adult population, but prebiotics have not 
shown the same effect.
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1 Introduction

Uric acid (UA) is synthesized primarily in the liver, intestine, and 
vascular endothelium. Hyperuricemia (HUA) occurs when UA 
production exceeds its excretion, a condition regarded as a metabolic 
disorder. It is generally defined as a serum urate level exceeding 
7.0 mg/dL in men or 6.0 mg/dL in women (1). The well-documented 
consequence of hyperuricemia is an increased risk of gout and the 
formation of kidney stones. Approximately 20% of the United States 
population is affected by hyperuricemia (2). Statistically, the 
prevalence of hyperuricemia is significantly higher in men than in 
women (3, 4). The etiology of hyperuricemia is multifactorial, 
encompassing a range of acquired factors. These primarily include 
increased purine consumption due to dietary intake of meat, alcohol, 
high-fructose corn syrup, and certain medications such as 
cyclosporine, low-dose aspirin, and diuretics. Additionally, rare 
genetic factors can contribute to the condition, including 
hypoxanthine-guanine phosphoribosyl transferase (HPRT) deficiency 
and phosphoribosyl pyrophosphate (PRPP) synthase overactivity. 
Furthermore, myeloproliferative disorders and environmental 
exposures, such as lead poisoning, temperature fluctuations, and 
physiological stress, may also lead to elevated uric acid levels (5).

In healthy individuals, approximately 25% of uric acid is excreted 
through the gastrointestinal tract, in contrast to its renal excretion. 
Exposure of the gut microbiota to uric acid (UA) may alter the 
composition of the microbiota (6). Gut microbiota and their 
metabolites can reduce serum uric acid (SUA) levels by promoting 
purine and UA catabolism, modulating intestinal UA transporter 
proteins, enhancing UA excretion, and regulating intestinal barrier 
permeability to mitigate chronic inflammation (7). Probiotics is a 
topic of much debate in contemporary scientific discourse. Probiotics 
are health-promoting products, typically lactic acid-producing 
bacteria introduced through fermented foods, such as Lactobacillus 
and Bifidobacterium (8). These bacteria have been shown to benefit 
human health by preventing or treating diseases and restoring the 
balance of intestinal flora through mechanisms such as antimicrobial 
action, enhancement of the integrity of mucosal barriers, and 
immunomodulation (9, 10). Clinical findings confirm the positive 
effects of probiotics on gastrointestinal disorders (e.g., inflammatory 
bowel disease, diarrhea) and immune disorders (e.g., HIV), and 
studies have also demonstrated the efficacy of probiotics for the 
treatment of conditions such as obesity, insulin resistance syndrome, 
type 2 diabetes mellitus, and non-alcoholic fatty liver disease (8, 11). 
Prebiotics are defined as non-viable food components that confer a 
health benefit to the host associated with the microbiota modulation. 
This definition is regarded as the most authoritative to date by the 
Food and Agriculture Organisation of the United Nations (FAO) 
(12). It is hypothesized that prebiotics have the capacity to modify 
the gut microbiota, with distinct prebiotics promoting the 
proliferation of various gut-colonizing bacteria. However, these 
alterations are frequently constrained at the level of individual strains 
and species, rendering them challenging to predict a priori (13). The 
World Health Organization (WHO), the Food and Agriculture 
Organization (FAO), the European Food Safety Authority (EFSA), 
the International Scientific Association for Probiotics and Prebiotics 
(ISAPP), and other organizations have provided comprehensive 
classifications of edible prebiotics and probiotics for reference 
(13, 14).

Despite numerous studies investigating how probiotics and 
prebiotics modulate the gut microbiota in patients with HUA, 
extensive cross-sectional studies still fail to assess the risk of HUA 
prevalence in populations consuming these supplements. Therefore, 
this study aims to analyze the relationship between probiotic and 
prebiotic supplements and the prevalence of HUA in U.S. adults. This 
analysis utilizes data from the National Health and Nutrition 
Examination Survey (NHANES) from 2011 to 2018 and evaluates 
whether potential confounders affect this association.

2 Materials and methods

2.1 Study design and population

The National Health and Nutrition Examination Survey 
(NHANES) is a nationally representative cross-sectional study 
conducted by the National Center for Health Statistics (NCHS) to 
assess adults’ and children’s health and nutritional status in the 
United  States. Data collection and study approaches utilize a 
sophisticated multistage probability sampling design. The information 
gathered is used to evaluate nutritional status and its relationship to 
health promotion and disease prevention, providing valuable insights 
into the prevalence of major diseases and associated risk factors. The 
NCHS Ethical Review Committee authorized all investigations, and 
all participants provided informed consent.

The purpose of this study was to conduct a cross-sectional analysis 
of hyperuricemia (HUA) patients using data from the National Health 
and Nutrition Examination Survey (NHANES) from 2011 to 2018. 
The NHANES database is regularly updated, and a nationally 
representative sample of approximately 5,000 individuals is examined 
annually. The following exclusion criteria were applied: age under 
18 years, absence of data on uric acid levels, absence of data on 
non-dietary prebiotics/probiotics intake, absence of demographic data 
(including age, gender, race/ethnicity, education level, poverty income 
ratio), absence of data on alcohol status, creatinine, body mass index 
(BMI), hypertension (HBP), and diabetes mellitus (DM). A total of 
7,176 participants were ultimately included in the analysis. Figure 1 
presents a flowchart outlining the participant selection and inclusion 
process. These data were then used to assess the relationship between 
probiotics or prebiotics and the risk of hyperuricemia.

2.2 The diagnosis of hyperuricemia

There is no consensus on the definition of hyperuricemia, and 
different authorities have chosen different thresholds. In this paper, 
concerning previous studies, a threshold of 420 μmol/L has been 
chosen to define hyperuricemia. This value is considered the possible 
limit for clinical gout and corresponds to the serum uric acid (SUA) 
target for uric acid-lowering therapy in patients with gout (15, 16).

2.3 Assessment of probiotic and prebiotic

We collected data on probiotics and prebiotics supplements from 
all NHANES annual cycles from 2011 to 2018. Scholar O′Connor’s 
literature summarizes a list of names for prebiotics and probiotics, 

https://doi.org/10.3389/fnut.2025.1492708
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Wang et al. 10.3389/fnut.2025.1492708

Frontiers in Nutrition 03 frontiersin.org

aiding in identifying specific species (details in Supplementary Table S1) 
(17). Based on the results of a 30-day questionnaire on dietary 
supplements, we  collected information on the use of dietary 
supplements during the 30 days prior to the interview to assess the 
intake of dietary supplements containing prebiotics and probiotics.

2.4 Definition of co-variables

Demographic characteristics for inclusion in this study included 
age, gender, race (Non-Hispanic White, Non-Hispanic Black, 
Hispanic, other Hispanic, other Race – Including Multi-Racial), body 
mass index (BMI), poverty-to-income ratio (PIR), and education 
level. Participants were categorized into underweight/normal weight 
(BMI < 25 kg/m2), overweight (BMI = 25–30 kg/m2), and obese 
(BMI > 30.0 kg/m2) according to WHO standards. The PIR was 
categorized into three tiers: low-income households (PIR < 1.3), 
moderate household income (PIR of 1.3–3.5), and high household 
income (PIR > 3.5). Education level was divided into three categories: 
below high school level, high school level, and above high school level 
(18). Additionally, alcohol consumption status, hypertension (HBP), 

and diabetes mellitus (DM) were included as covariates in the form of 
yes or no. Chronic kidney disease (CKD) was defined as an estimated 
glomerular filtration rate (eGFR) of less than 60 mL/min/1.73 m2, 
with eGFR values directly retrievable from the database. The modified 
MDRD equation was used to calculate eGFR with the 
following formula:

 ( ) 1.154 0.203  186 0.742if femaleeGFR Scr age− −= × × ×

(Details can be  found in the NHANES database definitions 
for each).

2.5 Statistical analysis

To ensure the reliability and validity of the study results, NHANES 
conducted a stratified sample with each cycle lasting 2 years, resulting 
in 4 cycles over an 8-year period. For the dietary recall interview, 
dietary data were weighted using the corresponding dietary weight for 
each cycle (WTDR2D). Given the proportional representation of each 

FIGURE 1

Flow chart of procedures for selection and inclusion of participants. NHANES, National Health and Nutrition Examination Survey.
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cycle in the survey design, the weight for each cycle was calculated as 
2/8*WTDR2D. We  analyzed the data using appropriate sampling 
weights (1/4*WTDR2D) to account for the complex survey design 
used in the NHANES survey. In this survey, variables were categorized 
and expressed as frequencies and percentages. We also compared 
baseline characteristics between participants with positive and 
negative outcomes using χ2 test analyses.

We divided participants into those who used prebiotics and 
probiotics and those who did not use either. We fitted binary logistic 
regression models, adjusting for covariates, to assess the relationship 
between prebiotic and probiotic consumption and the risk of HUA, 
presented as an odds ratio (OR) with a 95% confidence interval (95% 
CI). We then fitted several models to explore the possible association 
between prebiotic and probiotic consumption and HUA: an 
unadjusted model, adjusted model 1 (adjusted for age, gender, and 
ethnicity), and adjusted model 2 (adjusted model 1 plus BMI, 
education, CKD, HBP, and DM). We  considered prebiotics and 
probiotics as interacting factors in further modeled analyses of 
the results.

Receiver operating characteristic (ROC) curves are commonly 
used to assess the performance of binary classification models. In this 
study, we used ROC to assess the performance of different prediction 
models in predicting hyperuricemia. The maximal model included the 
following variables: age, gender, race, education level, PIR, alcohol 
status, BMI, CKD, HBP, DM, and probiotics. The candidate model 
included age, gender, race, BMI, CKD, HBP, and probiotics. To 
determine if there was a significant difference between the two 
predictive models, we used a z-test to compare the area under the 
ROC curve (AUC) for each model. In addition, we added a model 
without probiotics to further clarify the predictive performance of 
probiotics for comparison with the candidate models.

Subgroup analyses were performed to examine the potential 
impact on the association between probiotic consumption and 
hyperuricemia of gender, age, ethnicity, education level, BMI, CKD, 
HBP, and DM.

Statistical analysis was performed using R version 4.4.0 and the 
nhanesR package, and p < 0.05 was considered statistically significant.

3 Results

3.1 Descriptive characteristics

The sample for this study was selected from data collected by 
NHANES during 2011–2018, and 7,176 participant records were 
ultimately included in the analysis. Table  1 shows the population 
stratified by the presence or absence of hyperuricemia and 
demographic characteristics, of which 859 (16.0%) were prevalent. All 
participants over 18 were selected for the study, and the mean age of 
the recipients was approximately 50.95 years. As shown in Table 1, 
patients with hyperuricemia were generally older (53.80 ± 17.33 vs. 
50.60 ± 17.00), had a higher BMI (32.28 ± 7.09 vs. 28.61 ± 6.63), were 
more common in the male population (74.96% in the male population 
vs. 25. 04% in the female population), a slightly higher proportion of 
Non-Hispanic White participants (76.17%), and a slightly lower level 
of education, as evidenced by a lower percentage of the population 
with more than high school education (66.99% vs. 70.92%) and a 
higher percentage of high school education (23.20% vs. 18.69%). 

Regarding disease status, eGFR was lower in patients with 
hyperuricemia (73.76 ± 23.09 vs. 86.92 ± 22.13). There was a more 
frequent prevalence of hyperuricemia in patients with chronic kidney 
disease, hypertension, and diabetes mellitus (26.61% vs. 9.35% for 
chronic kidney disease, 63.29% vs. 40.01% for hypertension, and 
23.82% vs. 15.34% for diabetes mellitus). All these results were 
statistically significant (p < 0.05). In addition, people with 
hyperuricemia were more likely to smoke (90.66% vs. 89.05%) and 
had relatively less family poverty (3.19 ± 1.59 vs. 3.24 ± 1.61), but 
unfortunately, these results were not statistically significant.

3.2 Binary logistic regression analysis

A crude model and two other logistic regression models adjusted 
for covariates were developed to investigate whether prebiotic and 
probiotic consumption had a preventive effect on hyperuricemia, as 
shown in Table 2. The ORs of the prebiotic-related models were all less 
than 1 but were not significant after statistical testing (p > 0.05). The 
ORs calculated for both the crude model and adjusted model 1 for 
probiotics and hyperuricemia were also less than 1 and tested to 
be statistically significant (crude model: OR = 0.54, 95% CI [0.34, 
0.83], p = 0.008; adjusted model 1: OR = 0.58, 95% CI [0.36, 0.89], 
p = 0.019). However, when we increased the number of covariates to 
create adjusted model 2, it had an OR of 0.65, 95% CI (0.41, 1.00) with 
a tested p-value above 0.05 (0.062).

To further investigate whether the consumption of probiotics and 
prebiotics interacted with each other on hyperuricemia, we defined 
prebiotics/prebiotics as the consumption of prebiotics, probiotics, or 
both, and constructed three logistic regression models, as shown in 
Table 3. Compared to participants who consumed neither prebiotics 
nor probiotics, participants who consumed prebiotics and probiotics 
alone or both had ORs less than 1 after model fitting, demonstrating 
a protective effect, but this was tested to be statistically significant only 
in the models with probiotics alone (crude model for probiotics: 
OR = 0.45, 95%CI [0.23, 0.79], p = 0.011; Adjust model 1: OR = 0.52, 
95%CI [0.27, 0.92], p = 0.037; Adjust model 2: OR = 0.58, 95%CI 
[0.30, 1.03], p = 0.079). In conclusion, these results suggest that the 
intake of prebiotics and probiotics has a protective effect against 
hyperuricemia, but the impact of probiotics is more valuable.

3.3 Receiver operating characteristic curve

Based on the non-significant difference in the prevalence of 
hyperuricemia between participants who consumed prebiotics and 
those who did not, the results provided tentative support for a notable 
association with hyperuricemia, and we  decided not to include 
prebiotics in the prediction model. The prediction model with the 
highest AUC value (AUC = 0.7889, 95%CI [0.775, 0.803], 
sensitivity = 0.774, specificity = 0.106) included the following 
variables: age, sex, race, BMI, educational level, PIR, alcohol status, 
HBP, DM, CKD, and probiotics. However, this maximum model 
includes too many variables, compromising its clinical applicability 
and not considering the AIC criteria (19). We sought to identify a 
more parsimonious prediction model to address this issue while 
maintaining similar predictive performance. When considering 
models with six or fewer variables, we observed a significant reduction 
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in predictive performance compared to the maximum model of all 
models. Finally, when we adjusted the predictive model to include 
seven variables (including age, sex, race, BMI, HBP, CKD, and 
probiotics), the model showed similar predictive performance to the 
maximum model (AUC = 0.7886, 95% CI [0.774, 0. 803], 
sensitivity = 0.767, specificity = 0.680), and the ROC curves of the 
candidate and maximal models were similar, the z-test of AUC showed 
no significant difference in the predictive performance of the two 

models for HUA (z = 0.402, p = 0.680), as shown in Figure 2a. In 
Figure 2b, we removed probiotics from the candidate model, and the 
resulting predictive model showed a significant reduction in AUC 
compared to the candidate model, but this difference was not tested 
to be  statistically significant (0.7877 versus 0.7886, Z = 1.626, 
p = 0.104). This suggests that probiotics might positively improve the 
diagnostic performance of the predictive model for hyperuricemia, 
but this effect was not noticeable.

TABLE 1 Descriptive characteristics of the study population stratified by hyperuricemia.

Characteristic Overall, N = 7,176 
(100%)1

Hyperuricemia P-value2

No, N = 6,317 (84%)1 Yes, N = 859 (16%)1

Age (years) 50.95 ± 17.07 50.60 ± 17.00 53.80 ± 17.33 <0.001

BMI (kg/m2) 29.02 ± 6.78 28.61 ± 6.63 32.28 ± 7.09 <0.001

eGFR (ml/min/1.73 m2) 85.46 ± 22.61 86.92 ± 22.13 73.76 ± 23.09 <0.001

PIR 3.23 ± 1.61 3.24 ± 1.61 3.19 ± 1.59 0.4

Gender, n (%) <0.001

  Female 3,955.00 (55.00%) 3,717.00 (58.73%) 238.00 (25.04%)

  Male 3,221.00 (45.00%) 2,600.00 (41.27%) 621.00 (74.96%)

Race/ethnicity, n (%) 0.001

  Mexican American 781.00 (5.59%) 721.00 (5.86%) 60.00 (3.41%)

  Non-Hispanic Black 1,312.00 (7.87%) 1,105.00 (7.64%) 207.00 (9.70%)

  Non-Hispanic White 3,335.00 (74.45%) 2,927.00 (74.24%) 408.00 (76.17%)

  Other Hispanic 665.00 (4.34%) 600.00 (4.44%) 65.00 (3.55%)

  Other Race – Including Multi-Racial 1,083.00 (7.74%) 964.00 (7.82%) 119.00 (7.17%)

Education levels, n (%) 0.013

  More than high school 4,503.00 (70.49%) 3,991.00 (70.92%) 512.00 (66.99%)

  High school graduate/GED or equivalent 1,476.00 (19.18%) 1,274.00 (18.69%) 202.00 (23.20%)

  <High school 1,197.00 (10.33%) 1,052.00 (10.39%) 145.00 (9.80%)

Alcohol consumption, n (%) 0.3

  No 1,056.00 (10.77%) 958.00 (10.95%) 98.00 (9.34%)

  Yes 6,120.00 (89.23%) 5,359.00 (89.05%) 761.00 (90.66%)

HBP, n (%) <0.001

  No 3,805.00 (57.42%) 3,526.00 (59.99%) 279.00 (36.71%)

  Yes 3,371.00 (42.58%) 2,791.00 (40.01%) 580.00 (63.29%)

DM, n (%) <0.001

  No 5,697.00 (83.72%) 5,104.00 (84.66%) 593.00 (76.18%)

  Yes 1,479.00 (16.28%) 1,213.00 (15.34%) 266.00 (23.82%)

CKD, n (%) <0.001

  No 6,307.00 (88.74%) 5,709.00 (90.65%) 598.00 (73.39%)

  Yes 869.00 (11.26%) 608.00 (9.35%) 261.00 (26.61%)

Prebiotics, n (%) 0.4

  No 6,805.00 (93.80%) 5,985.00 (93.68%) 820.00 (94.76%)

  Yes 371.00 (6.20%) 332.00 (6.32%) 39.00 (5.24%)

Probiotics, n (%) 0.082

  No 6,876.00 (94.06%) 6,038.00 (93.75%) 838.00 (96.52%)

  Yes 300.00 (5.94%) 279.00 (6.25%) 21.00 (3.48%)

1Median (IQR) for continuous; n (%) for categorical.
2Wilcoxon rank-sum test for complex survey samples; chi-squared test with Rao and Scott’s second-order correction.
P-value by chi-square test for classified variables.
BMI, body mass index; CKD, chronic kidney disease; DM, diabetes mellitus; HBP, high blood pressure; PIR, poverty income ratio; eGFR, estimated glomerular filtration rate.
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3.4 Subgroup analysis

Subgroup analysis was performed on the ORs for developing 
hyperuricemia in those receiving probiotics compared to those not 
(Figure 3). All analyses were adjusted for age, sex, race, body mass 
index, education level, hypertension, diabetes mellitus, and chronic 
kidney disease but not for the specific stratification variables of 
interest. Except for diabetes, all subgroups had interaction p-values 
greater than 0.05, indicating no statistically significant effect 
modification. Thus, the association between probiotics and 
hyperuricemia remained consistent across the different subgroups 
defined by these variables.

4 Discussion

This study is a comprehensive, large-scale, cross-sectional 
investigation of the association between prebiotic and probiotic 
consumption and the development of hyperuricemia in US adults. To 
ensure independence of the association between exposure and 
outcome, several covariates were included in the analyses, including 
age, sex, race, BMI, PIR, education level, alcohol consumption status, 
hypertension, diabetes, and chronic kidney disease. The results of the 

logistic regression models showed that both the prebiotic- and 
probiotic-related models calculated ORs of less than 1 regardless of 
the inclusion of covariates, but only the probiotic-related models were 
statistically different after testing (crude model: OR = 0.54, 95% CI 
[0.34, 0.83], p = 0.008; adjusted model 1: OR = 0.58, 95% CI [0.36, 
0.89], p = 0.019). This finding shows that probiotic intake may reduce 
the incidence of hyperuricemia. After we  classified the intake of 
prebiotics and probiotics in detail, further logistic regression analysis 
suggested that the prebiotic-related model still showed no significant 
difference but that the protective effect of probiotics alone on 
hyperuricemia still existed after excluding the impact of prebiotic 
intake. In addition, the results of the ROC curves we constructed 
demonstrated the importance of probiotics in the model for predicting 
hyperuricemia, but unfortunately, the predictive power of the model 
was shown to be the same, with no significant decrease after removal.

Many experts believe that beneficial gut bacteria provide the host 
with various nutrients, prevent infections, and regulate immunity, 
which improves host health (9, 13). Studies have shown that specific 
gut microbiota can regulate the synthesis and catabolism of purines 
and uric acid (UA) (6), and conversely, changes in bacterial 
composition may contribute to the progression of hyperuricemia (20, 
21). The prevailing view is that prebiotics and probiotics may alter the 
gut flora to some extent, thereby reducing the development of 
hyperuricemia; however, there are fewer extensive cross-sectional 
studies in this area. In this study, which included 7,176 subjects, 
logistic regression modeling and calculation of odds ratios confirmed 
that probiotics play a beneficial role in preventing the development of 
hyperuricemia and that this effect is not confounded by 
prebiotic intake.

The preventive effect of probiotics on hyperuricemia may be due to 
their modulation of the gut flora in favor of the internal environment, 
which plays a regulatory role in uric acid and purine metabolism (21–
24) as a recent study published in CELL has clearly demonstrated the 
important role of the gut flora in anaerobic uric acid metabolism (25). 
Several studies have also suggested possible mechanisms in the 
pathways or influencing metabolism factors. Lactobacillus, 
Bifidobacterium, and Saccharomyces cerevisiae have been used safely and 
effectively as probiotics for a long time and are the most studied 
probiotics (26). Using these probiotics alters the abundance of the gut 
flora, disrupting the existing balance and shifting the internal 
environment in a more favorable direction (23, 24, 27). Furthermore, 
certain probiotics modulate uric acid levels by altering the metabolic 
balance of amino acids, unsaturated fatty acids, etc. (20, 28, 29) and 

TABLE 2 Binary logistic regression models for the association of 
consuming probiotics and prebiotics with hyperuricemia (HUA).

Characteristic Unadjusted 
model

Adjusted 
model 1

Adjusted 
model 2

OR1 (95% CI1) associated with HUA

Prebiotics

  No 1 (Ref) 1 (Ref) 1 (Ref)

  Yes 0.86 (0.60, 1.19); 

0.374

0.79 (0.55, 

1.09); 0.167

0.85 (0.59, 

1.18); 0.384

Probiotics

  No 1 (Ref) 1 (Ref) 1 (Ref)

  Yes 0.54 (0.34, 0.83); 

0.008

0.58 (0.36, 

0.89); 0.019

0.65 (0.41, 

1.00); 0.062

1OR, Odds Ratio; CI, Confidence Interval.
Unadjusted model: non-adjusted model. Adjust model 1: adjust for age, gender and race. 
Adjust model 2: adjust for age, gender, race, body mass index, education levels, chronic 
kidney disease, diabetes mellitus, hypertension, prebiotics, and probiotics.

TABLE 3 Binary logistic regression models for the association of consuming prebiotics/probiotics with hyperuricemia (HUA).

Characteristic Unadjusted model Adjusted model 1 Adjusted model 2

OR1 (95% CI1) associated with HUA

Prebiotics/probiotics

  Neither of them 1 (Ref) 1 (Ref) 1 (Ref)

  Just prebiotics 0.91 (0.60, 1.32); 0.636 0.83 (0.55, 1.21); 0.340 0.87 (0.58, 1.28); 0.500

  Just probiotics 0.45 (0.23, 0.79); 0.011 0.52 (0.27, 0.92); 0.037 0.58 (0.30, 1.03); 0.079

  Both of them 0.70 (0.34, 1.27); 0.279 0.66 (0.33, 1.22); 0.218 0.75 (0.37, 1.39); 0.388

1OR, Odds Ratio; CI, Confidence Interval.
Unadjusted model: non-adjusted model. Adjust model 1: adjust for age, gender and race. Adjust model 2: adjust for age, gender, race, body mass index, education levels, chronic kidney disease, 
diabetes mellitus, hypertension, prebiotics, and probiotics.
Probiotics/prebiotics refer to either probiotics, prebiotics, or both.
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FIGURE 2

(a) The receiver operating characteristic (ROC) curves for the maximum (black dashed line) and the candidate (red solid line) prediction model are 
presented. The Z-test of the area under the ROC curve did not show a significant difference in the predictive performance of the two models for 
periodontitis (Z = 0.402, p = 0.688). (b) The ROC curves for the candidate prediction model (red solid line) and the prediction model without prebiotic 
(black dashed line) are presented. The Z-test of the area under the ROC curve did not show a significant difference in the predictive performance of 
the two models for periodontitis (Z = 1.626, p = 0.104).

FIGURE 3

Subgroup analysis and forest plot on hyperuricemia.
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affect extrarenal excretion by inhibiting the transport process of urate 
transport proteins (e.g., SLC22A11, SLC17A3, and SLC2A9) in the gut 
(6, 22, 30). Regulation of uric acid oxidase (uricase), xanthine oxidase 
(XO), and xanthine dehydrogenase (XDH) activities by different 
bacterial strains also impair purine absorption and alter the balance of 
the intestinal flora, which can attenuate or exacerbate hyperuricemia. 
This has been demonstrated by experimental results with strains of 
Lactobacillus fermentum JL-3 (31), Lactobacillus rhamnosus Fmb14 (32), 
L. plantarum (33), and others.

Besides the metabolic factors mentioned above, scientists such as 
Kim and Hou have suggested that uric acid has a dual role as an 
antioxidant and an inflammatory promoter, suggesting that immune 
function is also crucial in the pathogenesis of hyperuricemia and gout 
(27, 29). A study using a uric acid oxidase knockout (Uox-KO) mouse 
model with experimentally observed intestinal immune dysregulation 
and impaired intestinal barrier demonstrated that impaired intestinal 
integrity contributes to the pathogenesis of HUA. Also, it proposed 
that the gut microbiota profoundly influences purine nucleotide 
catabolism and CD4+ Th17 cell infiltration by disrupting amino acid 
(AA) metabolism, in which CD4+ Th17 cells play an essential role in 
HUA and gout inflammation (6).

Most studies consider prebiotics to be alternatives to probiotics or 
additional supplements that stimulate the growth and activity of 
beneficial bacteria in the gastrointestinal tract, with natural products 
such as inulin and lactose being essential sources of prebiotics (10). 
The mechanism of action of prebiotics is not fully understood, with 
articles suggesting that the health-promoting effects of prebiotics are 
related to bifidobacteria (26, 34). Meta-analyses have also been 
conducted to investigate the effects of prebiotics on metabolites such 
as short-chain fatty acids (SCFAs), but with mixed results (35–37). In 
our study, the regression models constructed with or without 
adjustment for covariates yielded OR values less than 1, but the tests 
were not statistically different, which may indicate that the effect is 
relatively weak, requires prolonged administration, accumulates in the 
body at higher concentrations, or is affected by other confounding 
factors that were not included, such as different intestinal conditions.

Among the subjects enrolled in our study, hyperuricemia tends to 
have demographic characteristics such as older age, male predominance, 
a higher proportion of Non-Hispanic White participants, higher BMI, 
lower PIR, also slightly lower educational level, and more smoking 
preference, and in terms of disease state, it may be  more likely to 
be  comorbid with underlying conditions such as HBP, DM, and 
CKD. These characteristics are consistent with previous studies of 
hyperuricemia in the NHANES database (38, 39) and highlight the 
importance of controlling for covariates when assessing the relationship 
between probiotic intake and HUA. Several studies further discussed 
the association between diseases; for example, Krishnan (40) found a 
non-linear association between hyperuricemia and glomerular 
function, with prevalence increasing with decreasing glomerular 
function and that an eGFR of 60 mL/min/1.73 m2 appears to be the 
threshold for a dramatic increase in the prevalence of gout; and several 
reviews have further examined hypertension, diabetes mellitus, chronic 
kidney disease and hyperuricemia, and it is generally accepted that 
hyperuricemia is strongly associated with these diseases and may even 
be  an independent risk factor (41–43). However, a report from a 
scientific workshop organized by the National Kidney Foundation also 
points out that these associations need to be supported by additional 
clinical studies and that routine treatment of hyperuricemia in patients 

with hypertension, nephropathy, or metabolic syndrome/type 2 diabetes 
mellitus is not recommended at present (44).

Discussing these factors above, combined with epidemiological 
studies related to hyperuricemia and gout, can confirm the 
significant influence of age, gender, race, education level, BMI, etc., 
on hyperuricemia (45). Meanwhile, there are also some machine 
learning studies confirming the significant influence of poor 
lifestyle, abnormally high biochemical indices such as creatinine, 
lipids, and glucose, as well as hypertension, heart failure, diabetes 
mellitus, and end-stage renal disease, and other underlying 
diseases have a notable influence on adverse clinical outcomes in 
hyperuricemia (46). Therefore, our study also constructed a disease 
prediction model, calculated AUC values, and plotted ROC curves. 
The results showed that the value of factors such as age, sex, 
ethnicity, BMI, HBP, and CKD in predicting hyperuricemia was 
remarkable. Unfortunately, although the AUC values obtained 
before and after the addition of probiotics differed and showed 
better predictive performance, this effect was not statistically 
significant (AUC: 0.7877 versus 0.7886, Z = 1.626, p = 0.104). This 
result suggests that probiotics are not suitable for inclusion in a 
prediction model for hyperuricemia. Fortunately, there was no 
significant interference between probiotic consumption and these 
disease predictors after subgroup analyses.

As with most studies, our study has several limitations. First, 
we  selected data from 2011 to 2018 for cross-sectional analyses to 
examine associations between prebiotics, probiotics, and hyperuricemia 
outcomes in the US adult population. This design limited our ability to 
determine temporality and causality. Second, the data collected were self-
reported, which may introduce recall bias and affect the accuracy of the 
information. Third, the pathogenesis of hyperuricemia is complex, and 
our study did not adjust for all possible confounders, such as unspecified 
medication use, dietary habits, or genetic predisposition. These 
limitations suggest that further longitudinal studies with more controlled 
variables are needed to understand the relationship between probiotics 
and hyperuricemia better.

5 Conclusion

Our study suggests that probiotic consumption is associated with 
a reduced risk of hyperuricemia in the US adult population but is not 
suitable for inclusion in disease prediction models, in contrast to the 
notable effect of prebiotics on hyperuricemia. However, this finding 
needs to be confirmed in future longitudinal prospective studies.
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