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Chronic liver disease is defined by persistent harm to the liver that might result 
in decreased liver function. The two prevalent chronic liver diseases are alcohol-
associated liver disease (ALD) and metabolic dysfunction-associated steatotic liver 
disease (MASLD). There is ample evidence that the pathogenesis of these two 
chronic liver diseases is closely linked to gastrointestinal dysfunctions that alters 
the gut-liver crosstalk. These alterations are mediated through the imbalances 
in the gut microbiota composition/function that combined with disruption in 
the gut barrier integrity allows for harmful gut microbes and their toxins to enter 
the portal circulation and reach the liver to elicit an inflammatory response. This 
leads to further recruitment of systemic inflammatory cells, such as neutrophils, 
T-cells, and monocytes into the liver, which perpetuate additional inflammation 
and the development of progressive liver damage. Many therapeutic modalities, 
currently used to prevent, attenuate, or treat chronic liver diseases are aimed at 
modulating gut dysbiosis and improving intestinal barrier function. Betaine is a 
choline-derived metabolite and a methyl group donor with antioxidant, anti-
inflammatory and osmoprotectant properties. Studies have shown that low betaine 
levels are associated with higher levels of organ damage. There have been several 
publications demonstrating the role of betaine supplementation in preventing 
the development of ALD and MASLD. This review explores the protective effects 
of betaine through its role as a methyl donor and its capacity to regulate the 
protective gut microbiota and maintain intestinal barrier integrity to prevent the 
development of these chronic liver diseases. Further studies are needed to enhance 
our understanding of its therapeutic potential that could pave the way for targeted 
interventions in the management of not only chronic liver diseases, but other 
inflammatory bowel diseases or systemic inflammatory conditions.
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Introduction

A variety of illnesses are grouped together under the umbrella 
term “chronic liver disease,” which is defined by persistent harm to the 
liver that might result in decreased liver function (1–3). Common 
causes for liver diseases are hepatitis B and C infections, autoimmune 
illnesses, hereditary factors and Western lifestyle, which includes 
dietary changes, inactivity, and alcohol intake (4–8). Hippocrates, the 
father of modern medicine claimed ~2,500 years ago that “all diseases 
begin in the gut.” There is now ample evidence that indeed gut 
dysfunction is involved in the pathogenesis of many diseases especially 
those of the liver (9–13). This is because the gut and liver are 
anatomically linked via the portal system (14). Normally, the gut 
epithelial cells maintain barrier integrity through microvilli, tight 
junctions, and production of antimicrobial peptides (15, 16). These 
gastrointestinal epithelial cell boundary frameworks prevent the 
translocation of most of gut luminal content and in healthy conditions 
only small number of microbial products can reach the liver (17). In 
this mutual relationship, the liver acts as a second firewall toward the 
low number of potentially harmful substances translocated from the 
gut that are eliminated by the liver resident macrophages, Kupffer cells 
(14). However, alterations in gut homeostasis characterized by changes 
in the composition of the gut microbiota, microbial products, 
antimicrobial peptide levels and mucosal barrier disruption play a 
major role in the onset and progression of liver diseases including two 
prevalent diseases, alcohol-associated liver disease (ALD) and 
metabolic dysfunction-associated steatotic liver disease (MASLD) 
(9–11, 13, 18, 19).

Betaine, a naturally occurring derivative of choline, plays an 
important role in various cellular processes due to its function as a 
methyl donor in the methionine-homocysteine cycle (20). Studies 
show that the role of betaine in remethylating homocysteine to 
methionine through the betaine-homocysteine methyltransferase 
(BHMT)-catalyzed reaction helps reduce homocysteine and 
S-adenosylhomocysteine (SAH) levels (21–23), factors linked to 
adipose, gut and liver dysfunction (24–28). In the context of liver 
diseases, betaine has been shown to mitigate lipid accumulation, 
oxidative stress, proteasomal/lysosomal dysfunction, hepatocyte 
death, and inflammation, making it a promising therapeutic agent for 
ALD (24, 29, 30) and MASLD (31, 32). Additionally, betaine is 
significant for gut health as it stabilizes intestinal barrier integrity, 
regulates osmolality, and modulates the gut microbiota (33, 34). In 
addition, betaine increases the villus height and crypt depth and by 
maintaining the tight junctional protein complexes prevents luminal 
antigens/microbial translocation from the gut to the liver (35). These 
effects on the gut-liver axis highlight its therapeutic potential in 
preventing liver inflammation and progressive injury. Hence, in this 
review, we highlight the protective role of betaine on the gut-liver axis 
and its relevance in managing liver diseases.

Alcohol-associated liver disease (ALD)

Alcohol-associated liver disease is liver damage that arises from 
excessive consumption of beverages that contain ethyl alcohol 
(ethanol) (36–38). As the principal site of alcohol absorption, the 
gastrointestinal tract plays an important role in regulating the systemic 
availability of ethanol (39, 40). While ethanol metabolism in the 

gastrointestinal tract locally generates low levels of acetaldehyde and 
other toxic metabolites, the liver is the primary organ that carries out 
ethanol metabolism and consequently sustains the greatest organ 
damage from heavy drinking (41, 42). The hepatic metabolism of 
ethanol occurs through both oxidative and non-oxidative pathways. 
Oxidative ethanol metabolism is catalyzed by alcohol dehydrogenase 
(ADH) which converts ethanol to acetaldehyde, which is subsequently 
oxidized to acetate (43, 44). In addition, another major ethanol-
metabolizing enzyme is cytochrome P450 2E1 (CYP2E1), a 
microsomal enzyme that is significantly induced by ethanol 
consumption (45).

Alcohol-associated liver disease encompasses a broad spectrum of 
pathologies, including steatosis (fatty liver), which can progress to 
steatohepatitis [steatosis with inflammation and necrosis and fibrosis 
(Figure 1)]. If harmful drinking continues, liver cirrhosis can develop, 
during which hepatocytes dedifferentiate, lose their phenotype, and can 
become neoplastic, resulting in hepatocellular carcinoma (46–48). ALD 
progression from steatosis to more severe liver damage is associated 
with the amount, type, pattern, and duration of alcohol consumption 
(45). Other factors involved in the pathogenesis and progression of ALD 
include detrimental changes in gut microbiota and intestinal barrier 
disruption (45, 49–51). This translocation of gut luminal pathobionts 
and products triggers inflammatory responses in the liver, involving 
resident hepatic macrophages, Kupffer cells, and other infiltrating 
immune cells that activates hepatic stellate cells (HSC), causing aberrant 
production of extracellular matrix (ECM) proteins and fibrosis 
development. Furthermore, due to aberrant ECM production by 
activated HSCs, liver sinusoidal endothelial cells undergo capillarization, 
including the loss of fenestrations and a shift toward a vascular 
phenotype. These changes collectively contribute to the development of 
advanced alcohol-induced liver injury (52, 53).

Metabolic dysfunction-associated 
steatotic liver disease (MASLD)

Metabolic dysfunction-associated steatotic liver disease is an 
important hepatic manifestation of metabolic syndrome (54) 
characterized by fat accumulation in more than 5% of hepatocytes 
(55). MASLD is the most widespread chronic liver disease, impacting 
around one-quarter of the global population due to the growing rates 
of metabolic syndrome, obesity, and diabetes (56, 57). Patients with 
MASLD typically follow an unhealthy dietary pattern marked by 
elevated intake of saturated fats, cholesterol, and fructose and low 
physical activity (54). Conversely, there is a lower consumption of 
antioxidant vitamins and polyunsaturated fats (58). MASLD displays 
a similar spectrum of progression as ALD ranging from steatosis 
through steatohepatitis, hepatitis, cirrhosis, and to hepatocellular 
carcinoma (54, 59–61). The early stages of MASLD, as ALD, are 
marked by steatosis that progresses to metabolic dysfunction-
associated steatohepatitis (MASH) distinguished by hepatocellular 
damage that includes hepatocyte ballooning degeneration, diffuse 
lobular inflammation, and fibrosis (62). MASH is increasingly being 
recognized as the leading indication for liver transplant listing for 
women and is expected to overtake ALD as the leading liver transplant 
indication for all patients within the next few years (60, 63).

The underlying mechanism for the initiation and progression of 
MASLD is complex and multifactorial. Different theories have been 
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postulated leading initially to the ‘two-hit’ hypothesis (64). According 
to this, the ‘first hit’ is induced by the accumulation of lipids in 
hepatocytes from high-caloric intake, obesity, insulin resistance, 
which makes the liver vulnerable to other damaging factors that are 
referred to as the ‘second hits’, such as oxidative stress, genetic 
polymorphisms (65). These second hits increase the vulnerability to 
the disease, activation of inflammatory pathways triggered by the 
release of pro-inflammatory cytokines by Kupffer cells or from 
adipocytes, dysregulated hepatocyte apoptosis, and activation of HSC, 
among others (66). When acting individually, these factors drive the 
progression from macrovesicular steatosis to MASH, which involves 
a gradual increase in liver injury parameters in association with 
hepatocyte apoptosis, inflammation, and fibrogenesis. Fibrosis 
advances from periportal to bridging fibrosis, eventually leading to 
cirrhotic remodeling, liver failure, and can ultimately result in 
hepatocellular carcinoma (67). The simplistic and outdated ‘two-hit’ 
hypothesis has been replaced by a “multi-hit’ model that integrates 
various interconnected processes, as shown in Figure  2, where 
multiple factors act synergistically, encompassing lipotoxicity, gut 
dysfunction, altered gut-liver axis and innate immune activation, 
within the context of genetic and environmental factors (68).

Liver-gut axis

A continuous “dialogue” exists between the gut and liver, heavily 
influenced by the trillions of microbes residing within, the food 
we  consume, and the world around us. This multifaceted 
communication has been named the gut-liver axis (69). In both the 
gut and liver, a “symphony of nutrients, microbial antigens, 
metabolites, and bile acids” conducts the “orchestra” of metabolism 
and immune responses. This intricate “dance,” in turn, shapes the 
composition and function of the gut microbiome. Gut microbes aren’t 
just passive residents; they are active players influencing our health 

throughout the body. Generally, gut and liver are in constant 
“conversation” for the digestion, nutrient processing, and even filtering 
out microbial leftovers. However, in experimental models of liver 
disease, this harmonious interplay is disrupted. A weakened intestinal 
barrier or a “leaky gut” allows for the melody to go off-key, that allows 
harmful gut microbes and their toxins to enter the portal circulation 
and reach the liver to elicit an inflammatory response by the Kupffer 
cells (70, 71). This local hepatic inflammation leads to further 
recruitment of systemic inflammatory cells, such as neutrophils, 
T-cells and monocytes, which perpetuate additional inflammation, 
hepatic fibrosis, hepatocyte cell death (68, 72, 73) that ultimately leads 
to rapid progression to multiple organ failure (74).

Indeed, alterations in the gut-liver axis characterized by increased 
portal and circulating levels of gut microbes/microbial components 
from compromised gut barrier and microbiota changes has emerged 
as central mediators in promoting ALD and MASLD progression (50, 
51, 75–78).

The gut barrier

Three main defense mechanisms make up the intestinal barrier 
function: (1) The immune barrier, which is made up of gut associated 
lymphoid tissue (GALT), effector and regulatory T cells, 
IgA-producing B cells, group  3 innate lymphoid cells, resident 
macrophages, and dendritic cells in the lamina propria; (2) the 
biological barrier, which is made up of normal intestinal flora, is 
responsible for colonization resistance; and (3) the mechanical barrier, 
which consists of intestinal epithelial cells that line the lumen (79, 80). 
This physical barrier is finely regulated by large molecular complexes 
which link intestinal epithelial cells to each other and seal the 
intercellular spaces on the luminal surface (81). These intercellular 
complexes regulate passage of molecules through the paracellular 
spaces (82) that simultaneously performs two opposing tasks. It 

FIGURE 1

The spectrum of ALD encompasses a broad spectrum of pathologies, including steatosis (fatty liver), which can progress to steatohepatitis (steatosis 
with inflammation and necrosis) and fibrosis. If harmful drinking continues, liver cirrhosis can develop, during which hepatocytes dedifferentiate, lose 
their phenotype, and can become neoplastic, resulting in hepatocellular carcinoma. The early stages of ALD reverse with abstinence. Created with 
biorender.com.
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selectively permits the passage of necessary nutrients from the 
intestinal lumen into the bloodstream and the internal milieu at large; 
on the other hand, it prevents the entry of hazardous substances such 
as microbes, the luminal antigens and proinflammatory factors (83). 
The most apical part of the junctional complexes are tight junctions 
(TJs), which are highly specialized and dynamic supramolecular 
entities composed of several transmembrane proteins (such as the 
claudin family, junctional adhesion molecule (JAM)-A, occludin, 
tricellulin) and the cytoplasmic plaques comprised of scaffolding 
proteins [zonulae occludens (ZO-1, ZO-2, ZO-3, cingulin)] and 
effector proteins (84–87) that provide a physical link to the 
cytoskeleton. There are also biochemical components, including 
enzymes and antimicrobial proteins that regulate the survival and 
proliferation of gut microbes (88, 89).

Gut microbiota

The gastrointestinal tract harbors a complex and dynamic 
population of microorganisms, known as the gut microbiota. The gut 
microbiome encompasses a complete array of microorganisms 
including bacteria, viruses, fungi, and protozoa (90). It is an intricate 
ecosystem consisting of 10–100 trillion microorganisms, with gut 
bacteria being the most well-studied component (88). The major gut 
bacterial species belong to the phyla Firmicutes and Bacteroidetes 
(Figure  3), while smaller proportions belong to Actinobacteria, 
Fusobacteria, Proteobacteria, and Verrucomicrobia (91).

These microorganisms contribute to various physiological 
functions, such as strengthening gut integrity, shaping the intestinal 

epithelium, harvesting energy, protecting against pathogens, and 
regulating host immunity (92). The microbiome has significantly 
enriched metabolism of glycans, amino acids, xenobiotics, 
methanogenesis and 2-methyl-d-erythritol 4-phosphate pathway-
mediated biosynthesis of vitamins and isoprenoids (88, 93). The 
concentration and makeup of bacterial species vary throughout the 
entire gastrointestinal tract. These differences can vary between 
individuals due to age, ethnicity, lifestyle, medications, and dietary 
patterns indicating that the composition of the microbiota is shaped 
by both host and environmental selection pressures. The complexity 
of this symbiotic relationship and its implications for overall health are 
highlighted by the fact that the survival and proliferation of gut 
microbes are ultimately determined by their phenotypic features (94, 
95). The intricate intestinal barrier comprised of physical, biochemical, 
and immunological elements acts as a shield, preventing the host 
immune system from being exposed to the microbiota while still 
permitting vital interactions to take place (96).

In summary, the intricate interplay between the gut microbiota 
and the host’s gastrointestinal tract is essential for maintaining overall 
health and homeostasis as shown in Figure 4.

Alterations in gut homeostasis and liver 
disease pathogenesis

Several patient and animal studies have established that TJ 
disassembly occurs from altered expression of claudins, occludin and 
ZO1 (Figure 5), which promotes the pathogenesis of several diseases 
including ALD and MASLD (96–109).

FIGURE 2

Factors influencing the development of MASLD. Metabolic factors promote the accumulation of fat in the liver, leading to inflammation, cell death, and 
fibrosis. Adipose tissue and muscle produce adipokines and myokines, respectively, which promote inflammation and oxidative stress in the liver. 
Additionally, the gut microbiota influences fat accumulation and inflammation in the liver, contributing to MASLD development. Created with 
biorender.com.
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In the context of ALD, ethanol and its primary metabolite, 
acetaldehyde, induce redistribution of TJ proteins to disrupt apical 
junctional complexes, facilitating increased intestinal permeability 
(34, 110–115). Studies have addressed the mechanisms by which 
ethanol and acetaldehyde disrupt these junctional complexes, but no 
unifying theory has yet been presented. It is clear, however, that 
alcohol/acetaldehyde alters post-translational modifications on the 
protein components of TJ that disrupt the formation and function of 
these apical junctional complexes (116–118). Another compelling 
evidence indicates that alcohol-induced intestinal TJ disruption is 
caused through elevations in intracellular levels of SAH, a detrimental 
metabolite of the methionine metabolic pathway (34). The importance 
of maintaining the barrier integrity is reinforced by reports that 
successful therapeutic interventions are associated with restoration of 
normal TJ protein expression (119). A recent study compared gut 
barrier dysfunction in patients with MASLD and ALD and reported 
more abnormalities in early stage of MASLD than in ALD (120).

Alcohol consumption stands as the primary cause of liver 
disease and influences the quantity and makeup of gut microbiota 
(121, 122). These imbalances or alterations in the gut microbiota 
composition and function are generally referred to as ‘dysbiosis’ 
(123). Alcohol intake, a Western diet high in animal fats and 
sugars, as well as factors such as bowel movement frequency, 
genetic predisposition, and disturbances in circadian rhythm, can 
increase the likelihood of dysbiosis (124). Ethanol acts as a 
modulator of the gastric microenvironment (Figure 6) through 

complex mechanisms, including altering gastric juice output, 
impairing gastric motility, damaging gut mucosa, weakening 
gastric barrier and disrupting mucosal defense (44, 125–127). 
Ethanol exposure also promotes the release of inflammatory and 
vasoactive substances, which can cause ischemia resulting in 
further mucosal damage (126). Alcohol by significantly changing 
the gastric microenvironment affects the composition of not only 
the gastric microbiota but also the microbes in the lower segments 
of the gastrointestinal tract. Interestingly, moderate alcohol use, 
particularly wine or beer, is linked to a lower risk of Helicobacter 
pylori infection (128). Conversely, alcohol consumption is 
associated with an increased risk of gastric cancer, especially in 
heavy drinkers (129). Alcohol misuse leads to bacterial overgrowth 
primarily in the upper small bowel, as reported in both preclinical 
models and human studies (130). This overgrowth results in 
qualitative changes in the intestinal microflora, dysbiosis in the 
cecum, and suppression of bactericidal proteins in the small 
intestine. The changes in alcohol-induced gut composition shows 
a decrease in beneficial bacteria and an increase in harmful 
bacteria. As summarized recently, alcohol increases the relative 
abundance of Proteobacteria, Fusobacteria, Clostridium, and 
Lactococcus and Enterobacteriaceae and decreases in that of 
Firmicutes and Bacteroidetes (131). Importantly, administrations 
of probiotics and their culture supernatants suppresses alcohol-
induced increased intestinal permeability and endotoxemia in 
mice with ALD (132–134). In humans, the severity of ALD is 

FIGURE 3

Schematic of the gut bacterial composition along the different segments of the small and large intestine. Created with biorender.com.
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linked to a specific microbiota signature, since fecal microbiota 
transplantation from patients with severe alcohol-associated 
hepatitis promotes liver inflammation in germ-free mice (135). 

Conversely, transplanting intestinal flora of a healthy donor to 
steroid-ineligible patients with hepatitis improved gut dysbiosis 
and clinical outcomes (136).

FIGURE 4

Various factors that regulate the gut microbiome.

FIGURE 5

Ethanol and unhealthy food intake-induced tight junction (TJ) disruption that promotes the development of ALD and MASLD.
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Furthermore, different drinking patterns, dose or 
experimental subjects may show varying effects and even 
completely different changes in the gut microbiota (93, 130, 137–
144). Interestingly, alcohol consumption induces distinct changes 
in the gut composition that varies with short-term low-dose 
versus high-dose intake. In addition, while the acute alcohol-
induced changes to the gut microbiota are found to be reversible 
(142), chronic alcohol consumption can lead to more drastic 
changes and have a more serious effect on the gut microbiota 
(137). The effects of short-term, low-dose alcohol consumption 
could be mitigated with appropriate probiotics and interventions 
like fermented rice liquors, red wine polyphenols or short chain 
fatty acid produced by protective gut bacteria (138, 141, 145, 
146). Recovery from gut microbiota disruption caused by high-
dose alcohol consumption requires longer and more complex 
interventions (146).

With regards to MASLD, the reader is referred to a recent 
review on changes in microbiota in MASLD patients (147). A 
noteworthy study revealed reduced gut microbiota diversity in 
MASLD patients compared to healthy individuals that leads to the 
disruption of the intestinal barrier in association with liver disease 
progression in the patient population (148). Furthermore, the 
severity of MASLD is linked to gut microbiota dysbiosis and 
alterations in the metabolic functions of the gastrointestinal 
microbiota. Notably, Bacteroidetes have been independently 
associated with MASH, while Ruminococcus is linked to significant 
fibrosis (149). Gut microbiota contribute to MASLD development 
through various mechanisms, including disruption of liver choline 
metabolism (necessary for VLDL synthesis and liver lipid export) 
(150), alterations in bile acid synthesis (151, 152), ethanol 
production (153), and increased lipopolysaccharides (LPS), which 
results in liver inflammation (154–156). These findings highlight 
the critical role of gut microbiota in the pathogenesis of MASLD 
and underscore the potential of microbiota-targeted therapies in 
managing the disease. Given the role of altered gut-liver axis in 
promoting liver ALD and MASLD, betaine has attracted attention 
as a potential therapeutic agent that supports gut health and 
protects the microbiome and intestinal barrier function (20, 
157–159).

Betaine, a functional nutrient

In recent years, there has been a global trend towards the use of 
natural substances existing in fruits, vegetables, and herbs as 
antioxidants and functional nutrients (20). One such compound is 
betaine (trimethylglycine), which is a short chain, non-essential 
amino acid derivative and a naturally occurring compound found in 
animals, plants, and microorganisms. Its rich dietary sources include 
seafood, especially marine invertebrates; wheat germ/bran; spinach 
and sugar beets (22, 160–162). While betaine can be  obtained 
externally through nutrition (163), it is also endogenously generated 
through the metabolism of choline (164). Numerous organisms use 
betaine because of its vital biochemical roles, and they have developed 
distinct metabolic routes for both its biosynthesis and catabolism (20). 
This valuable compound has gained popularity as an ingredient in 
novel and functional foods due to its demonstrated health benefits. 
Cereals and cereal products are the main sources of betaine in human 
nutrition (165). Of the commonly consumed food, refined and whole 
grains are the best sources of betaine; however, there is 2–4 times 
higher betaine content in wholegrain products compared to refined 
grain products (165). Dietary betaine intake is generally less than 
150 mg/day (165). Betaine can be synthesized chemically for use in 
secondary industries or extracted somewhat expensively from sugar 
beets or processed beet byproducts. Three types of commercial betaine 
are available: betaine hydrochloride, synthetic anhydrous betaine, and 
natural anhydrous betaine (157). Because natural betaine has better 
functional qualities than its synthetic counterpart, the pharmaceutical, 
cosmetic, and healthcare sectors prefer to employ it (157, 166).

Human plasma/serum typically contains 20–70 μmol/L betaine 
with the concentration being higher in the adult males than females 
(27). It is present in almost all tissues, with the highest concentrations 
in liver, kidney, and testes (28). Betaine insufficiency is associated with 
dysregulated lipid metabolism, diabetes, metabolic syndrome, and 
vascular diseases in patients (27, 28). Furthermore, patients with 
MASLD also exhibit betaine insufficiency (167). The depletion of 
hepatic betaine is also reported in animal models of ALD (168, 169). 
Betaine generally appears to be safe at a daily intake of 9–15 g (164, 
170). Subacute and sub chronic rat studies determined that betaine is 
non-toxic at 1, 2 and 5% added to chow diet (171).

FIGURE 6

Alcohol-induced alterations in the gastric environment. Created with biorender.com.
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Betaine intake as a dietary supplement or through food has a 
similar bioavailability and is rapidly absorbed to participate in two 
main biological processes. In one, betaine acts as a donor of methyl 
groups in the methionine metabolic pathway (159, 172, 173) for 
remethylating and removing homocysteine (174, 175). In the second 
process, betaine acts as an osmolyte regulating cells’ adaptation to 
adverse osmotic environment and environmental stressors, such as 
low water levels, high salinity, and extreme temperatures (35, 176). In 
its role in remethylating homocysteine, betaine generates methionine, 
which upon enzymatic conversion to a key methyl donor, 
S-adenosylmethionine (SAM) is utilized in a variety of essential 
transmethylation reactions (22). The conversion of homocysteine to 
methionine is catalyzed by BHMT, an enzyme that was at first was 
thought to be present primarily in the liver (22). However, studies 
from several laboratory have reported the expression of BHMT in 
other important organs such as white adipose tissue and intestine (25, 
34, 177). These results have prompted investigations into the potential 
health benefits of betaine (178). Several BHMT gene polymorphisms 
regulating its activity and protein level have been reported suggesting 
that loss-of-function polymorphisms by affecting betaine metabolism 
could adversely its efficacy in regulating homocysteine levels and 
related metabolic pathways (179, 180). However, studies on how 
genetic factors or population differences influence the efficiency of 
betaine utilization are few and limited to data collected from healthy 
population and only offer several speculative mechanisms of liver 
disease pathogenesis (179, 180). Interestingly, there is a complete loss 
of BHMT transcripts in liver tumors (181, 182).

Betaine and liver

Research from our laboratory has demonstrated that betaine 
exerts its protective effects through its role in the BHMT-catalyzed 
reaction, which not only remethylates and removes homocysteine but 
also eliminates its detrimental precursor, SAH (21, 29, 30, 183–185). 
Thus, by preventing the ethanol-induced lowering of SAM: SAH ratio 
that impairs the activity of several crucial methyltransferase, betaine 
prevents the development of hallmark features of ALD such as 
steatosis, apoptosis, accumulation of altered proteins, lysosomal and 
proteasome dysfunction (24, 29, 30, 184–186). In relation to the 
gut-liver axis, betaine administration upregulates anti-oxidant defense 
system and prevents the ethanol-induced increases in serum 
endotoxin, alanine aminotransferase (AST), aspartate 
aminotransferase levels (ALT) and liver inflammatory factors, 
including TNF-α, IFN-γ, interleukin (IL)-18, cyclooxygenase-2 
(COX-2), nitric oxide synthase 2 (NOS2), toll-like receptor 4 (TLR4), 
cluster of differentiation 14 (CD14) (187, 188). However, an earlier 
study using the intragastric ethanol-feeding model failed to show any 
protection by betaine feeding in the ethanol-induced up-regulation of 
CD14 and TNF-α expression (189). Using the same model, however, 
other laboratories have shown that betaine feeding prevented the 
alcohol-induced upregulation of several genes including TLR2/4, 
Janus kinase 3, α-2-macroglobulin (190) which implies that there are 
multiple pathways that betaine could act on to protect against the 
development of inflammation during ALD progression.

Similarly in the context of MASLD, studies have reported that 
betaine prevents the development of MASLD and reduces indices of 
liver damage in animal models and in patients (31, 32, 177, 191–195).

Readers are encouraged to refer to other comprehensive reviews 
on the protective effects of betaine on the liver in the context of ALD 
and MAFLD (20, 160, 192, 196, 197), as these aspects are not covered 
in detail here. Instead, this review focuses on the alterations in the 
gut-liver interaction, which has emerged as a crucial factor in the 
progression of advanced liver injury in both ALD and MASLD.

Betaine and gut function

Intestinal enzyme activities are crucial for physiological processes 
(198). Betaine administration increases the activities of digestive 
enzymes, amylase, lipase, trypsin, and chymotrypsin, in the small 
intestine of stressed rats (35). Dietary betaine supplementation also 
increases the epithelial crypt-villus ratio in the guts of both healthy and 
challenged chicks, suggesting betaine’s protective role against coccidial 
infection is by stabilizing the mucosal structure (199). In addition to 
improving intestinal morphology and nutrient absorption in yellow-
feathered broilers (200), dietary betaine reduces serum levels of the 
pro-inflammatory cytokines IL-1β, IL-6, TNF-α, and IFN-γ in goslings 
(201). Betaine not only regulates the osmotic microenvironment for 
microbes to survive but also provides extra sources of carbon and 
nitrogen for microbial growth. Furthermore, as a potent organic 
osmolyte, betaine can cooperate with endocrine hormones to regulate 
water and electrolyte balance and it plays an important role in 
improving intestinal functions by enhancing digestive enzymes, 
ameliorating damaged intestinal morphology, enriching intestinal 
microbiota (35) and enhancing intestinal barrier function (202).

Betaine and intestinal barrier function

The direct protective effect of betaine on intestinal TJs and 
barrier integrity was revealed by an in vitro study using Caco-2 
cells. The authors reported that co-treatment of these intestinal 
epithelial cells with betaine prevented both ethanol-and high 
SAH-induced TJ disruption to maintain epithelial barrier integrity 
(34). Many other studies have demonstrated the efficacy of betaine 
in other models of liver injury such as acute liver failure (ALF) 
showing that betaine protection occurred by an enhanced 
expression of TJ proteins, ZO-1 and occludin, thus modulating the 
TLR4 signaling pathway (203). Similarly, betaine treatment 
reversed LPS-induced downregulation of TJ proteins in intestinal 
porcine epithelial cells, thereby preventing barrier disruption 
(202). Furthermore, another study demonstrated that betaine 
pretreatment alleviates the inflammatory response and improves 
intestinal barrier function by enhancing the expression of TJ 
proteins, occludin and ZO-1 in a dextran sulfate sodium-induced 
colitis model (204). Overall, these studies highlight the significant 
therapeutic potential of betaine in protecting intestinal health by 
enhancing production of TJ proteins and their interaction, thereby 
mitigating gastrointestinal disorders and inflammatory diseases.

Betaine and gut microbiota

Betaine administration changed the intestinal bacterial communities 
to promote the abundance of the commensals while reducing the 
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pathogenic bacteria as shown in Table 1. There is yet no reports or 
publications related to modulation of the fungal or viral communities 
by betaine treatment in any animal models or patient studies.

Mechanism (s) of betaine protection 
against the development of chronic 
liver diseases

Several publications indicate that the mechanism of betaine 
protection against ALD and MASLD development is through 
remethylating homocysteine that by removing SAH preserves the 
methionine metabolic pathway and methylation pathways in the liver 
(20, 21, 24–26, 29, 30, 177, 183–185, 189, 191, 192, 195, 205–209). 
Despite extensive documentation on betaine’s effect on the liver, as 
shown in Table  2, only a few studies have been conducted that 
demonstrates its efficacy in preserving adipose and gut function in cell/
animal models of MASLD or ALD. However, these limited studies also 
indicate that the protective effect of betaine is by preserving the 
methionine metabolic pathway via reducing SAH and/or homocysteine 
and rectifying the hypomethylation state (20, 34, 177, 210). Regarding 
gut-liver axis, several studies have indeed established that the trigger 
that causes systemic/liver inflammation to exacerbate liver injury (211) 
is prevented by betaine through stabilizing TJs between enterocytes and 
preventing the translocation of harmful gut-derived toxins/pathogens 
to the liver (34, 35, 202, 203). In addition, betaine modulates the gut 
microbiota, promoting a balanced microbial composition that supports 
healthy digestion and production of protective factors such as short 

chain fatty acids (SCFA), vitamins etc. (33, 212). These metabolites, in 
turn, regulate intestinal inflammation and barrier function (164, 213). 
Additional studies reveal that betaine influences bile acid metabolism, 
which is critical in regulating gut microbiota composition and intestinal 
permeability (214). This modulation helps maintain gut-liver 
homeostasis and reduces liver inflammation (203, 215). Another 
mechanism of betaine protection is by influencing gut osmolality and 
potentially altering intestinal pH, which enhancing digestive enzyme 
activity, restoring intestinal morphology, and increasing microbiota 
diversity (35). Further, this modulation of the microbiota can decrease 
the production of harmful metabolites and inflammatory mediators, 
thus preventing liver and systemic inflammation (13, 204).

Betaine supplementation maintains the stability of the 
intestinal morphological structure by preventing cellular water loss 
(173), increasing the villus height, crypt depth and villus height/
crypt depth ratio in the gut which prevent bacterial translocations 
(216). Betaine modulates the gut microbiota by increasing the 
abundance of commensals Prevotella, Ruminococcus, Oscillospira, 
Bifidobacterium, Akkermansia muciniphila, Lactobacillus, Dorea, 
Bacteroidaceae, Bacteroides, Parabacteroides and decrease the 
abundance of pathobionts including Desulfovibrio, Mucispirillum 
schaedleri, Coriobacteriaceae, Lachnospiraceae, Enterorhabdus, 
Coriobacteriales (33). Betaine increases the level of secretory 
immunoglobulin A (sIgA), which plays an important role in the 
clearance of pathogens and harmful substances, and also 
up-regulates IL-4 and down-regulated TNF-α in small intestinal 
mucosa (216). Betaine prevents nitric oxide (NO) generation 
markedly by inhibiting the expression of NO synthase, a principal 

TABLE 1 Protective role of betaine in regulating gut microbiome.

Physiological role Affected microbial populations References

Increase Decrease

Betaine modulates the gut microbiota composition, promoting the growth of 

beneficial strains that produce short-chain fatty acids (SCFA)

Prevotella, Ruminococcus, Oscillospira, 

Bifidobacterium, Akkermansia 

muciniphila, Lactobacillus, and Dorea

Desulfovibrio and 

Mucispirillum schaedleri

(33)

Maternal betaine intake regulates gut microbiota and short chain fatty acids in 

offspring mice

Desulfovibrio, Blautia; Romboutsia Intestinimonas; 

Acetatifactor

(233)

Betaine prevents Coccidiosis in avian species. Eimeria tenella; Eimeria 

acervulina

(234)

Betaine strengthens microbial-associated phytoremediation process Methylotrophic bacteria (235)

Betaine improves intestinal functions by enhancing the digestive enzymes, 

ameliorating intestinal morphology, and enriching intestinal microbiota of 

high salt stressed rats.

Romboutsia; Ruminiclostridium (35)

Betaine effectively improves intestinal injury in alcohol-associated liver disease 

animal model by inhibiting the TLR4/MyD88 signaling pathway, improving 

the intestinal mucosal barrier, and maintaining the gut microbiota composition

Bacteroidaceae; Bacteroides; 

Parabacteroides; Prevotella

Coriobacteriaceae; 

Lachnospiraceae; 

Enterorhabdus; 

Coriobacteriales

(203)

Betaine supplementation significantly improves growth performance, nutrient 

digestion, concentrations of total and individual volatile fatty acids, and total 

cecal beneficial bacterial count in rabbits

Total beneficial bacterial count Enterococcus sp.; E. coli (236)

Betaine supplementation improves gut health and supports the well-being of 

pullet chickens

Lactobacillus agilis, Lactobacillus 

aviarius, Lactobacillus ingluviei, 

Lactobacillus johnsonii, and Lactobacillus 

saerimneri

(237)
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TABLE 2 Protective role of betaine in various diseases/dysfunctional states.

Disease/
Dysfunctional state

Model Role References

Ethanol-induced hepatic 

steatosis

Wister rats fed with Lieber-

DeCarli control or ethanol diet

Betaine supplementation prevents and reverses alcohol-induced steatosis (257)

Betaine attenuates alcohol-associated steatosis by restoring phosphatidylcholine 

generation via the phosphatidylethanolamine methyltransferase pathway by 

normalizing hepatocellular S-adenosylmethionine (SAM) to 

S-adenosylhomocysteine (SAH) ratio

(29)

Betaine prevents or blunts chronic ethanol-mediated alterations by normalizing 

SAM:SAH ratio to reduce hepatic triglycerides and CYP2E1 protein 

upregulation

(206, 208)

Betaine administration corrects ethanol induced defective VLDL secretion, 

increased fat export from the liver and attenuates the development of alcohol-

associated fatty liver

(185)

Male Wistar rats’ drinks 5–25% 

water and ethanol

Betaine attenuates the alcohol-induced steatosis by improving hepatic lipid 

metabolism via upregulating PGC-1α and suppressing DGAT1, DGAT2, SREBP-

1c, FAS, SREBP-2, and HMG-CoA reductase

(238)

Guinea pigs fed with commercial 

chow diet

Betaine treatment decreases hepatic triglyceride, lipid peroxide levels and serum 

transaminase activities and increases GSH levels

(239)

Ethanol-induced hepatic 

apoptosis

Hepatocytes isolated from Wistar 

rats fed with Lieber-DeCarli 

control or ethanol diet,

Betaine prevents ethanol-induced rise in intracellular SAH levels, thereby 

mitigating alcohol-induced apoptosis by restoring normal methylation reactions

(26)

Ethanol-induced hepatic 

accumulation of damaged 

proteins

Wistar rats fed with Lieber-

DeCarli control or ethanol diet

Betaine prevents ethanol-induced increase in accumulation of proteins bearing 

atypical isoaspartyl residues by normalizing SAM:SAH ratio to preserve the 

activity of the repair enzyme, protein-l-isoaspartyl methyltransferases

(30)

Ethanol-induced toxicity Wistar rats fed with Lieber-

DeCarli control or ethanol diet

Betaine prevents ethanol induced oxidative damage and peroxidative membrane 

injury in the brain as evident from a significant decrease in MDA, protein 

carbonyl levels and adenosine deaminase activities

(240)

Ethanol-induced hepatic 

oxidative stress

CYP2E1 over expressing HepG2 

cells exposed to ethanol

Betaine reduces the oxidative stress induced HSP70 mRNA expression (241)

Ethanol-induced adipose 

dysfunction and liver injury

Mice fed with Lieber-DeCarli 

control or ethanol diet

Betaine rectifies the impaired methylation status in adipose tissue, concomitant 

with attenuating lipolysis and alleviated alcohol-induced pathological changes in 

the liver

(210)

MASLD Rats fed with high-fat diet Betaine alleviates ROS-induced mitochondrial respiratory chain dysfunction (242)

Betaine protects by inhibiting high-mobility group box 1 and toll-like receptor 4 

expression

(195)

Mice fed with high-fat diet Betaine reduces the high-fat diet induced fasting glucose and insulin, thereby 

improving insulin resistance, and preventing hepatic steatosis development

(191)

Betaine enhances the conversion of white adipose tissue to brown adipose tissue 

through stimulated mitochondrial biogenesis

(243)

Betaine supplementation alleviates hepatic pathological changes by attenuating 

insulin resistance and correcting abnormal adipokine (adiponectin, resistin, and 

leptin) production

(177)

Maternal betaine intake regulates gut microbiota and short chain fatty acids and 

ameliorates hepatic steatosis in the offsprings

(233)

Betaine modulates the gut microbiota composition by promoting the growth of 

beneficial strains that produce short chain fatty acids

(33)

Maternal betaine supplementation inhibits hepatic NLRP3 inflammasome 

activation in the offspring

(244)

(Continued)

https://doi.org/10.3389/fnut.2025.1478542
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Perumal et al. 10.3389/fnut.2025.1478542

Frontiers in Nutrition 11 frontiersin.org

TABLE 2 (Continued)

Disease/
Dysfunctional state

Model Role References

Mice fed with high-sucrose diet Betaine attenuates hepatic steatosis by increasing activation of hepatic AMP-

activated protein kinase (AMPK) and attenuating lipogenic capability (enzyme 

activities and gene expression) in the liver

(193)

Rats fed the methionine-and 

choline-deficient (MCD) diet

Betaine stimulates liver β-oxidation (245)

Mice fed the MCD diet Betaine remethylates homocysteine, restores phosphatidylcholine generation and 

protect from oxidant stress

(246)

Betaine reduces liver oxidant stress, inflammation, and apoptosis (247)

Clinical trials Betaine attenuates steatosis, inflammation, and fibrosis (192, 248–250)

MASH Clinical trials Betaine, improves hepatic function tests, homocysteine levels and histology in 

NASH patients

(192)

Methionine load Human Betaine lowers fasting plasma homocysteine levels and prevents a rise in plasma 

homocysteine levels after methionine intake

(251)

Homocystinuria Humans Betaine reduces plasma homocysteine concentrations and increases plasma 

methionine values

(252)

LPS-induced toxicity White goslings Betaine possesses anti-inflammation properties and improves intestinal barrier 

functions

(201)

Intestinal porcine epithelial cells Betaine attenuates LPS-induced downregulation of occludin and claudin-1 and 

restores the intestinal barrier function

(202)

Caco-2 cells Betaine pretreatment improves the inflammatory response and intestinal barrier 

function

(204)

Cell cultures and animal models Betaine independently reduces measures of oxidative damage, improves 

enterocyte health, as well as attenuates LPS-induced markers of liver damage and 

inflammatory responses

(163)

Rats Betaine intake attenuates the LPS-induced hepatotoxicity by preventing Kupffer 

cell activation and attenuating circulating TNF-α, ALT and AST levels

(253)

Inflammatory bowel disease Dextran sodium sulfate-induced 

colitis in mice

Betaine attenuates colitis by regulating the inflammatory response, enhancing 

intestinal barrier function, and modulating gut microbiota composition

(204)

High salt stress High salt stressed rats Betaine improves intestinal function by enhancing the digestive enzymes, 

ameliorating intestinal morphology, and enriching intestinal microbiota. In 

addition, betaine, significantly improves markers of gut health (intestinal villi 

length and the ratio of villus height to crypt depth)

(35)

Infection Coccidial infection in broiler 

chicks

Dietary betaine protects the jejunal villi against coccidial infection and stabilizes 

the mucosal structure in healthy broiler chicks

(199)

Heat stress Meat-type ducks Betaine supplementation increases body weight, and maintains blood pH and 

biochemical parameters (RBC count, hemoglobin, partial pressure of oxygen and 

carbon dioxide, Na+, K+, Cl−)

(254)

Minor hypertonic and 

thermal stress

Generic cell Preserve cell volume, decrease long-term Na+ accumulation (163)

Severe hypertonic and 

thermal stress

Generic cell Decrease protein denaturation, decrease need for HSPs

Restraint stress Wister albino rats Betaine inhibits the level of lipid peroxidation, corticosterone and protects the 

enzymatic antioxidant defense mechanisms

(170)

Stressful stimulus Desert sheep and goats Betaine ameliorates the endocrinological effects induced by the stressful stimulus (255)

Anhedonia-like behavior (a 

key symptom of depression)

Mice subjected to chronic social 

defeat stress

Betaine modulates gut microbiota composition and associated metabolites (256)
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enzyme for NO formation, consequently repressing inflammation 
in the intestinal wall (164). Betaine decreases malondialdehyde and 
increases glutathione and glutathione peroxidase activities in the 
small intestinal mucosa, thereby improving the antioxidant 
capacity of small intestine (217). Betaine supplementation 
up-regulates the gene expression of solute carrier family 7, member 
6 (SLC7A6) solute carrier family 6, member 20 (SLC6A20), solute 
carrier family 38, member (SLC38A2) in the intestine. The 
consequent activation of mammalian target of rapamycin (mTOR), 
down-regulate the gene expression of pro-inflammatory factors by 
activating the phosphorylation state of downstream signaling 
factors 4EBP-2 and P70S6k1, to alleviate intestinal inflammation 
and maintain intestinal health (216). Figure 7 depicts the multiple 
pathways by which betaine modulates the gut homeostasis. While 
there is indication that the regulation of intestinal barrier function 
is through maintaining the methylation state (34), there has been 
no investigation till date on the mechanism by which betaine can 
maintain the commensal microbiota. Is it by regulating the 
intestinal pH, sIgA or by some other yet unknown mechanism? 
This area of research is highly underdeveloped. There is a need for 
characterizing how betaine regulates the gut microbiome and the 
further exploration of its role in maintaining intestinal barrier to 
prevent the development of not only common chronic liver 
diseases, but also inflammatory diseases of the 
gastrointestinal system.

Betaine’s efficacy relative to other 
common therapeutic agents

Betaine exerts significant therapeutic and biological effects that 
are potentially beneficial for alleviating a diverse range of diseases 
(20). Probiotics have gained popularity in the last decade by its ability 
to restore the composition of the gut microbiome and introduce 
beneficial functions to gut microbial communities, resulting in the 
amelioration or prevention of gut inflammation and other intestinal 
or systemic disease phenotypes including liver diseases (218, 219). The 
major effects of probiotics include the restoration of commensal 
intestinal microbial communities, suppression of pathogenic bacterial 
communities, immunomodulation, stimulation of epithelial cell 
proliferation, and fortification of the intestinal barrier (220). These 
protective effects of probiotics enhance intestinal epithelial cell 
function and provide protection against physiological stress (220, 
221). The most widely used probiotics like Lactobacillus and 
Bifidobacterium modulate gut microbiota composition and restore 
balance (222). Probiotics also enhance SCFA production and improve 
gut barrier integrity, thereby reducing systemic inflammation (33). 
Hajirezaee et  al. (223) reported significant growth enhancement, 
digestive enzyme activities, antioxidant capacity, and immune 
performance in fish receiving a combination of the probiotic 
Lactobacillus rhamnosus and betaine therapy. In comparison with 
probiotics, betaine alone can directly protect liver, adipose, intestinal 

FIGURE 7

Multiple pathways by which betaine restores gut homeostasis. Created with biorender.com.

https://doi.org/10.3389/fnut.2025.1478542
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
http://biorender.com


Perumal et al. 10.3389/fnut.2025.1478542

Frontiers in Nutrition 13 frontiersin.org

barrier integrity and restore the commensal microbiota and SCFA 
production (33) and thus in comparison functions to prevent liver 
disease and other inflammatory condition without any adjunct 
probiotic use.

Antioxidants like N-acetylcysteine and glutathione effectively 
mitigate oxidative stress and inflammation, primarily through 
scavenging reactive oxygen species (224, 225). However, betaine also 
possesses antioxidant properties by not only reducing oxidative stress 
via homocysteine remethylation but also by stabilizing the gut barrier 
and reducing LPS-mediated inflammation (164). Unlike probiotics or 
traditional antioxidants, betaine addresses both gut microbiota 
modulation and systemic inflammation through dual pathways: 
enhancing methylation processes and regulating osmoregulation in 
gut epithelial cells. This dual role is especially critical in the gut-liver 
axis, where betaine prevents endotoxin translocation and reduces 
hepatic inflammation (20).

There are many studies that have illustrated the therapeutic 
potential of betaine in combination with other compounds for 
improving health outcomes in both animals and human studies across 
a range of conditions ranging from inflammation, metabolic stressors, 
infections to metabolic regulation and immune support (226–232). 
While these combination therapies exploited betaine’s efficacy in 
reducing oxidative stress, preventing inflammation and, enhancing 
methylation processes to improve outcomes, none were related to 
maintaining gut-liver interaction to prevent chronic liver diseases. 
Hence discussion of these combinational therapies is beyond the 
scope of this review.

Limitations and challenges of using 
betaine as a therapeutic agent

Betaine helps to maintain health levels of stomach acids, increase 
nutrient absorption and support digestion. Betaine helps to manage 
harmful microbes and reduce the bacterial infections in the gut. 
Betaine reduces insulin resistance, lipid synthesis, inflammation, 
endoplasmic reticulum stress, hepatic oxidative stress, promoting fatty 
acid oxidation, reshape the intestinal microbiota, prevent liver 
steatosis. Despite the efficacy of betaine in multiple preclinical studies 
in promoting overall health by its effect in the gut, liver, adipose, there 
are several limitations and challenges. One minor challenge is that 
betaine supplementation causes gastrointestinal discomfort, including 
bloating or diarrhea in some individuals, particularly when consumed 
in high amounts. In addition to these mild adverse events, it is likely 
that loss-of-function BHMT polymorphisms may also pose a 
challenge in conducting human trials. However, prior selection of the 
participants can overcome this obstacle. The biggest challenge in its 
use in clinical settings is the lack of interest by pharmaceuticals to 
fund these studies. This is because betaine is easily accessible, orally 
bioavailable, very soluble and a naturally occurring metabolite in our 
body. It therefore falls on the investigator-initiated efforts to solicit 
funds for conducting robust clinical trials to validate betaine efficacy 
outcomes in individuals with inherent differences in gut microbiota 
composition, dietary habits, metabolic profiles, and liver disease 
severity. Further, collaborative research involving multi-omics 
approaches (genomics, metabolomics, and microbiomics) could 
provide insights into individual variability and enhance the predictive 
power of preclinical findings. Future research must address these 

limitations through well-designed studies exploring betaine dose, 
molecular mechanisms, and long-term safety to harness its potential 
in promoting gut and overall health in preventing chronic 
liver diseases.

Despite the challenges mentioned above, there are a few 
randomized clinical trials conducted using betaine supplementation 
demonstrating its potential therapeutic applications in a range of 
diseases and conditions such as cardiovascular diseases, metabolic 
disorder during pregnancy, inflammatory disorders etc. 
(NCT01371357, NCT00102843, NCT00126347, NCT01950039, 
NCT04633044, and NCT06042270). However, none of these clinical 
trials were related to gut-liver axis modulation in relation to chronic 
liver diseases, hence no details are included in this review. The reader 
can refer to the NCT numbers for details on these clinical trials 
and outcomes.

Translation from preclinical findings to 
clinical applications

Despite the limitations and challenges, the development of 
therapeutic protocols to ensure the translational potential of betaine 
from preclinical to clinical studies are important. The primary goal is 
to conduct advanced preclinical studies using diverse animal model 
studies that mimic human conditions to understand the mechanism 
of betaine’s protective effect on not only gut biology but also other 
organ systems such as the brain. Another important goal is to validate 
the preclinical data by (1) conducting well organized early phase 
clinical trials to assess safety, optimal dosages, and initial efficacy of 
betaine in humans; (2) incorporating different layers of patient criteria 
such as genetic polymorphisms, gut microbiota composition and 
metabolic profiles to understand how individual differences may affect 
betaine’s efficacy; and (3) conducting long-term observational studies 
and randomized controlled trials in diverse populations to validate 
betaine’s effectiveness in modulating gut-liver axis for treating chronic 
liver and other inflammation-related diseases. These steps will bridge 
the gap between preclinical research and clinical application of betaine 
in preventing the development of chronic liver diseases.

Conclusion

In conclusion, gastrointestinal alterations play a significant role 
in the development and progression of chronic liver diseases such 
as ALD and MASLD. Disruption of gut homeostasis, including 
alterations in gut microbiota composition, impaired intestinal 
barrier function and increased microbial translocation, initiates a 
cascade of immune activation and inflammatory responses that 
promotes advanced liver damage. Many therapeutic approaches 
targeting chronic liver diseases focus on modulating gut dysbiosis 
and enhancing barrier function. Betaine, through its ability to 
regulate the protective gut microbiota and maintain intestinal 
barrier integrity, emerges as a promising therapeutic agent for 
preventing the development of chronic liver diseases, including 
ALD and MASLD. Betaine protection is mediated via donating a 
methyl group in methionine metabolic pathway to remove 
homocysteine and SAH and preserves cellular methylation 
potential, thereby safeguarding the gut microbiota and intestinal 
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barrier function. Further exploration of the molecular mechanisms 
of betaine action in preclinical and clinical studies will enhance our 
understanding of its therapeutic potential and pave the way for 
targeted interventions in the management of liver diseases and 
other inflammatory bowel diseases or systemic 
inflammatory conditions.
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