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Importance: Oxidative stress contributes to the progression of non-alcoholic
fatty liver disease (NAFLD). Antioxidants from food can reduce NAFLD incidence,
and the Composite Dietary Antioxidant Index (CDAI) measures total antioxidant
capacity (TAC). However, the relationship between CDAI and NAFLD in the US
adult population remains unclear.

Objective: To assess whether CDAI is associated with NAFLD in US adults.

Design, setting, and participants: This population-based cross-sectional study
used data on US adults from the National Health and Nutrition Examination
Survey (NHANES) 2005–2016 cycles. Data were analyzed from January to
February 2024.

Exposures: CDAI obtained from the dietary intake questionnaire.

Main outcomes andmeasures: Themain outcomewas NAFLDwhich defined by
the US fatty liver score (USFLI)≥30. Sampling weights were calculated according
to NHANES guidelines.

Results: Among 9,746 adults included in this study [mean age, 48.3 years; 4,662
(47.6%) males], 3,324 (33.0%) were classified as having NAFLD using USFLI. In the
fully adjusted of multivariable logistic regression, CDAI was negatively associated
with NAFLD (odds ratio [OR], 0.95; 95% CI, 0.93–0.98). Furthermore, individuals
in the highest quartile of CDAI were 34% less likely to have NAFLD compared
to those in the lowest quartile (OR, 0.66; 95% CI, 0.52–0.85). In subgroup
analyses, CDAI was inversely associated with NAFLD among participants with a
BMI <25 (OR, 0.89; 95% CI, 0.83–0.95) and without metabolic syndrome (OR,
0.93; 95% CI, 0.91–0.96). The interaction tests revealed significant di�erences
in these subgroups (P for interaction = 0.04 for BMI and 0.003 for metabolic
syndrome). Sensitivity analyses confirmed this association using the hepatic
steatosis index (HSI) to define NAFLD, applying unweighted logistic regression,
adjusting for physical activity or after excluding non-Hispanic Black participants,
and after excluding medications known for their potential hepatotoxic e�ects.
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Conclusions and relevance: In this cross-sectional study based on six cycles
(2005–2016) of the NHANES, CDAI was negatively associated with NAFLD
in US adult population. This association highlights the potential for dietary
interventions to reduce NAFLD incidence and underscores the need for future
research, including clinical trials and mechanistic studies, to further explore the
role of dietary antioxidants in NAFLD prevention and management.

KEYWORDS

composite dietary antioxidant index, non-alcoholic fatty liver disease, NHANES, US fatty

liver index, hepatic steatosis index

Introduction

Non-alcoholic fatty liver disease (NAFLD) encompasses a

broad spectrum of liver pathologies, spanning from simple steatosis

(non-alcoholic fatty liver, NAFL) and non-alcoholic steatohepatitis

(NASH) to fibrosis and cirrhosis (1).With the prevalence of obesity,

type 2 diabetes mellitus (T2DM), andmetabolic syndrome, NAFLD

has emerged as the predominant chronic liver ailment globally

(2). NAFLD affects ∼25% of the world’s population (3). In 2016,

while China had the greatest number of NAFLD cases (243.67

million), its prevalence was lower (17.6%) compared to other

countries, with the highest prevalence found in the US at 26.3%,

affecting 85.3 million individuals (4). In the United States, it is

anticipated that NASHwill become the foremost indication for liver

transplantation in the foreseeable future (2, 5). A previous study

of NAFLD model estimated that ∼800,000 liver-related deaths will

occur in the NAFLD population from 2015 to 2030 (5). Given

the absence of universally accepted pharmaceutical or surgical

interventions for NAFLD, lifestyle modifications, including dietary

adjustments, are commonly advocated for both the prevention

and management of NAFLD (6). However, challenges such

as poor adherence, difficulty in sustaining long-term changes,

and the need for individualized approaches often limit their

effectiveness, underscoring the importance of identifying specific

dietary components, such as antioxidants, that may offer targeted

and practical interventions.

NAFLD is a complex and multifactorial disorder linked to a

plethora of genetic, epigenetic, and environmental determinants.

Despite ongoing research efforts, the intricacies of its pathogenesis

remain incompletely understood (7). Presently, the “multiple-

hit” hypothesis stands as a prominent theoretical framework for

elucidating NAFLD pathogenesis, positing that several factors

may concurrently contribute to disease development. Among the

various factors that contribute to the “multiple hits” is oxidative

stress, which is considered the main contributor to liver injury

and disease progression in NAFLD (8, 9). Oxidative stress is a key

factor in the progression of NASH, as it increases lipid peroxidation

in cell membranes and activates stellate cells in the liver, leading

to fibrosis, chronic inflammation, and apoptosis. Reactive oxygen

Abbreviations: NHANES, National Health and Nutrition Examination Survey;

PIR, Poverty Income Ratio; BMI, Body Mass Index; OR, odd ratio; CDAI,

Composite dietary antioxidant index; NAFLD, Non-alcoholic fatty liver

disease; USFLI, US fatty liver index; HSI, hepatic steatosis index.

species (ROS) and lipid peroxidation directly damage hepatocytes

by affecting membranes, proteins, and DNA (10). Inflammation is

closely linked to NAFLD (11), as the accumulation of liver fat is

associated with the production of inflammatory markers. Studies

have demonstrated that key inflammatory markers, including C-

reactive protein (CRP) and interleukins (ILs), are significantly

elevated in individuals diagnosed with NAFLD and NASH (12).

Dietary antioxidants have been shown to be vital in regulating

lipid homeostasis, as well as the expression and activity of

metabolism-related proteins, which influence lipid synthesis,

oxidation, peroxidation, and inflammation (13). When antioxidant

and anti-inflammatory defenses are depleted, a chronic state of

steatohepatitis develops. Hence, the intake of antioxidant-rich

diet may reduce risk, severity, or progression of this disease. An

expanding body of research indicates that elevated levels of dietary

antioxidants intake are associated with a decreased risk for NAFLD

or for disease progression (14–18). Qi et al. found that increasing

dietary intake of vitamin E is beneficial in preventing NAFLD,

especially among individuals without hyperlipidemia (19). Oliveira

et al. reported that a higher dietary total antioxidant capacity (TAC)

was observed in patients with lower hepatic injury (ballooning)

(10), suggesting that diets naturally rich in antioxidants may play

a role in reducing free radical production and, consequently,

oxidative stress. Moreover, higher intake levels of carotenoids were

associated with lower odds of NAFLD and could help reverse

hepatic steatosis (13, 16).

The Composite Dietary Antioxidant Index (CDAI) is a

composite score employed to assess an individual’s dietary total

antioxidant capacity (TAC). The CDAI is an individual antioxidant

index based on a combination of dietary antioxidant, including

vitamin A, vitamin C, vitamin E, zinc, selenium, and carotenoids

(20). Previous studies have indicated that a high CDAI is

correlated with a decreased risk of several types of cancer, diabetes,

as well as all-cause and cardiovascular mortality (21–24). The

relationship between CDAI and dietary antioxidants may vary

across populations due to factors like BMI, sex, and health

conditions. For example, higher BMI may enhance the benefits of

dietary antioxidants in stroke prevention (25), and CDAI has been

shown to protect against constipation inmales but not females (26).

However, the relationship between CDAI and NAFLD remains

unclear in the general population of U.S. adults.

We hypothesize that higher CDAI is associated with lower

odds of NAFLD, as assessed using the US fatty liver index

(USFLI). Therefore, the objective of this study was to investigate

this relationship among a nationally representative sample of
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US adults in the National Health and Nutrition Examination

Survey (NHANES).

Materials and methods

Study design

This study utilized publicly available data obtained from the

National Health and Nutrition Examination Survey (NHANES), a

comprehensive cross-sectional survey administered by physicians

and highly trained medical personnel. The survey encompasses

questionnaires, physical examinations, and laboratory data.

NHANES aims to ascertain the prevalence and identify risk

factors associated with major diseases in the U.S. population.

Released biannually, the survey provides data collected from

participants across the United States, selected through a

sophisticated multistage, stratified sampling method. This

study followed the Strengthening the Reporting of Observational

Studies in Epidemiology (STROBE) reporting guidelines for

cross-sectional studies.

Study population

In present study, we utilized data from six NHANES cycles

(2005–2006, 2007–2008, 2009–2010, 2011–2012, 2013–2014, and

2015–2016) that involved a total of 60,936 participants. We

excluded participants younger than 20 years, leaving 34,180 adults.

Participants were excluded by the following criteria (18, 27–

29): missing data for the CDAI calculation; missing data for

the calculation of US fatty liver index (USFLI) score; missing

data for alcohol consumption or presence of considerable alcohol

consumption (>21 drinks per week for male and >14 drinks per

week for female); participants with the hepatitis B surface antigen

or hepatitis C antibodies; missing data for covariates. Therefore,

a total of 9,746 participants was included in the present study,

and the flowchart of enrollment is presented in Figure 1. Referring

to previous NHANES literature (30, 31), data from the NHANES

project was analyzed using a complex stratified sampling method.

Definition of primary exposure

Diet affects the CDAI. CDAI data were derived from the

two 24-h dietary recall survey of NHANES participants. The first

24h was recorded face-to-face at a mobile examination center,

and the second 24 h was recorded by telephone 3–10 days later.

The University of Texas Food Intake Analysis System and the

United States Department of Agriculture Survey Nutrient Database

were used to assess the dietary nutrient intake (32). The nutritional

estimates did not include any nutrients obtained from dietary

supplements or medications. The average of the two 24-h intakes

was taken as the daily dietary intake for the present study (33).

The CDAI was calculated from the mean dietary intake of

vitamin A, vitamin C, vitamin E, zinc, selenium, and carotenoids

obtained from two 24-h recalls using a modified version developed

by Wright et al. (20). Six antioxidants were standardized by

subtracting the mean and dividing by the standard deviation.

Then the CDAI was calculated based on the sum of these

standardized values.

CDAI =

6
∑

i=1

Xi − µi

si

In this formula, Xi represents the individual daily intake of

antioxidant components;µi represents the mean ofXi; si represents

the standard deviation for µi (33–35).

Definition of outcome

NAFLD was defined according to the USFLI which was

developed using the NHANES database, which was moderately

improved accuracy compared to the Fatty Liver Index (FLI) in the

multiethnic US population (18). And it has been validated and used

in several previous studies (36–38). USFLI was developed based

on race/ethnicity, age, gamma-glutamyl transferase (GGT), waist

circumference (WC), fasting insulin, and fasting glucose with the

following formula:

USFLI =
e

(−0.8073× non− Hispanic Black+ 0.3458×Mexican American+ 0.0093× Age

+0.6151× lnGGT + 0.0249×WC + 1.1792× ln insulin

+0.8242× ln glucose− 14.7812)

1+ e

(−0.8073× non−Hispanic Black+ 0.3458×Mexican American+ 0.0093× Age

+0.6151× lnGGT + 0.0249×WC + 1.1792× ln insulin

+0.8242× ln glucose− 14.7812)

×100

Scores range from 0 to 100. In this study, a USFLI score ≥ 30

was considered to have NAFLD as suggested by Ruhl and Everhart

(18), with an area under the receiver operating characteristic curve

(AUROC) of 0.8 (sensitivity: 62%; specificity: 88%).

Covariates

Based on the literature, the following covariates were

selected, including: age, sex, race/ethnicity, education level,

marital status, family income, body mass index (BMI), alcohol

drinking status, smoking status, diabetes, hypertension,

metabolic syndrome, and total energy intake (39, 40). As

used by NHANES, we divided race/ethnicity into Mexican

American, other Hispanic, non-Hispanic White, non-Hispanic

Black and Other (including multiracial). Education level was

divided into two groups (high school or below and greater

than high school). The marital status was classified as married,

never married, living with a partner, and others (including

divorced, widowed, and separated). Family income was

categorized into 3 levels (<1.3, 1.3–3.5, and ≥3.5) based on

the family poverty income ratio (PIR). BMI was divided into

3 levels (<25, 25–30, and ≥30 kg/m2). Alcohol drinking

status was determined by the following survey question, “In

any 1 year, have you had at least 12 drinks of any type of

alcoholic beverage?” Participants who answered “yes” were

defined as alcohol drinkers. Serum cotinine concentration was
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FIGURE 1

Flow chart of the screening and enrollment of study participants. NHANES, National Health and Nutrition Examination Survey; NAFLD, non-alcoholic
fatty liver disease; CDAI, composite dietary antioxidant index; USFLI, US fatty liver index.

utilized as a proxy for environmental tobacco exposure and

categorized into active/secondhand smoker (>0.011 ng/mL) and

non-smoker (≤0.011 ng/mL). Diabetes was defined as using

antidiabetic medication or a fasting glucose level equal or >126

mg/dL. Hypertension was defined as using antihypertensive

medication or average systolic blood pressure ≥140 mmHg

and/or average diastolic blood pressure ≥80 mmHg. Metabolic

syndrome was defined based on the Adult Treatment Panel

III criteria in 2005 as having at least 3 of the following: waist

circumference >102 cm in men or 88 cm in women, triglyceride

level >150 mg/dL, high-density lipoprotein cholesterol <40

mg/dL in men or <50 mg/dL in women, systolic blood

pressure at least 130mm Hg or diastolic blood pressure at

least 85mm Hg or taking hypertension medications, or fasting

plasma glucose level at least 100 mg/dL or taking diabetes

medications (41, 42). Total energy intake was calculated by

averaging energy intake collected during two 24-h total nutrient

recall interviews

Statistical analysis

According to NHANES analytic guidelines, complex sampling

design and sampling weights were considered in our analyses (43).

The characteristics of participants are described asmeans (95%CIs)

for continuous variables and percentage frequencies (95% CIs) for

categorical variables. Continuous data were compared using t-tests,

and categorical data were compared by the χ
2 test. These means

and frequencies can be generalized to the US adult population. No

imputation method was used due to the percentage of missing data

was small for any variable.

Odds ratios (ORs) and 95% CIs were calculated to assess the

association between CDAI/antioxidant components and NAFLD

using weighted logistic regression models. Given that the values

of antioxidant components intake were skewed, a logarithmic

change was performed before statistical analysis to ensure a

normal distribution. And the CDAI was generally converted into

categorical variables according to quartiles, and the P-values for
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the trend were calculated. Three models were used in this study.

Model 1 was the crude model with no covariates adjusted. Model 2

was adjusted for age, sex, and race/ethnicity. Model 3 was the fully

adjusted model which including age, sex, race/ethnicity, education

level, marital status, PIR, BMI, alcohol drinking status, serum

cotinine, diabetes, hypertension, metabolic syndrome, and total

energy intake.

In addition, interaction and subgroup analyses of association

between CDAI and NAFLD were also performed according to sex

(male, female), age (20–40, 40–60, ≥60 years), BMI (<25, 25–30,

and ≥30 kg/m2), diabetes (no, yes), hypertension (no, yes), and

metabolic syndrome (no, yes) using logistic regression models.

To ensure the robustness of our research findings, we adopted

the methods used by Ruan et al. (36) and conducted several

sensitivity analyses. Initially, to assess the potential hepatotoxicity

of certain pharmacological agents, we conducted a sensitivity

analysis excluding participants who had been administered

methotrexate, acitretin, pioglitazone, liraglutide, semaglutide,

atorvastatin, or aspirin (44–53). Subsequent to this, drawing upon

extant literature which posited diminished prevalence rates of

NAFLD and suboptimal diagnostic precision of USFLI with the

non-Hispanic Black cohort (18, 36, 54, 55), we implemented

a sensitivity analysis that omitted individuals belonging to this

demographic. Finally, in an endeavor to mitigate the possibility of

misclassification stemming from USFLI scores, we performed an

additional sensitivity analysis utilizing the hepatic steatosis index

(HSI) (56). Here, we defined the NAFLD as an HSI score ≥ 36 in

present study with the following formula:

HSI = 8×
AST

ALT
+ BMI + 2

(

if female
)

+2(if diabetes mellitus present)

Considering the calculation if HSI was based on BMI, BMI

was not included as a covariate in this model to avoid the over

adjustment. Ultimately, numerous previous studies have examined

data from the NHANES to explore risk factors associated with

various diseases, and some researchers have utilized weighted

analysis methods, while others have employed unweighted

approaches. Although NHANES employed complex sampling

techniques to improve the representativeness and applicability

of findings, conclusions derived from weighted and unweighted

analyses can occasionally differ. Therefore, we conducted a

sensitivity analysis using unweight data. We also further adjusted

for physical activity which assessed by metabolic equivalent (MET)

in a typical week to ensure the robustness of our results.

All statistical analysis was performed with R (version 4.1.3,

R Project for Statistical Computing, Vienna, Austria) and

EmpowerStats (version 4.1, Boston, Massachusetts). In all tests, P

< 0.05 (2-sided) was considered to indicate statistical significance.

Results

Basic characteristics of the participants

A total of 9,746 participants (4,662 males [47.6%; 95% CI,

46.6–48.7%] and 5,082 females [52.4%; 95% CI, 51.3–53.4%];

6422 without NAFLD [67.0%; 95% CI, 65.4–68.5%] and 3,324

with NAFLD [33.0%; 95% CI, 31.5–34.6%]; mean age: 48.3 years

[95% CI, 47.7–48.9]) were included. Participants were excluded

if they were under 20 years of age, had missing data for CDAI

or USFLI calculations, reported excessive alcohol consumption,

tested positive for hepatitis B or C, or had incomplete covariate

information. The weighted baseline characteristics of included

participants are shown in Table 1. Age, BMI, total energy intake,

and zinc intake were lower in the participants without NAFLD

vs. who with NAFLD (P < 0.05). Family PIR, education level,

vitamin E intake, vitamin C intake, and Selenium intake were

higher in the participants without NAFLD (P < 0.05). In the terms

of alcohol drinking status, moderate-drinkers were more often

in participants without NAFLD compared with their counterpart

(P < 0.05). And participants with NAFLD were more likely to

be Mexican American (P < 0.05). Compared with participants

without NAFLD, those with NAFLD had a higher prevalence of

diabetes (1,026 [26.6%; 95% CI, 24.5–28.7%] vs. 542 [5.7%; 95%

CI, 5.0–6.5%]), hypertension (2,112 [62.2%; 95% CI, 59.8–64.5%]

vs. 2,465 [33.5%; 95% CI, 31.7–35.2%]), and metabolic syndrome

(1,846 [54.1%; 95% CI, 51.4–56.8%] vs. 802 [10.8%; 95% CI, 10.0–

11.7%]). In addition, no significant differences were observed for

serum cotinine, vitamin A intake, and carotenoids intake.

Multivariable regression analyses

The results from weighted multivariable regression analyses are

presented in Table 2. A negative correlation between CDAI and

NAFLD based on USFLI score was revealed in model 1 (crude

model) (OR, 0.99; 95% CI, 0.98–1.00), model 2 (OR, 0.97; 95%

CI, 0.96–0.99), and model 3 (the fully adjusted model) (OR, 0.95;

95% CI, 0.93–0.98). After transforming CDAI into quartiles, we

found that participants with highest quartile CDAI were 34% less

likely to have NAFLD than those with the lowest quartile (OR, 0.66;

95% CI, 0.52–0.85), and the trend test was also significant (P for

trend= 0.002). Furthermore, it is worth noting that the association

between CDAI related antioxidant components and NAFLD was

also conducted in this study. As shown in Table 2, after adjusted

for all variables, vitamin A (OR, 0.85; 95% CI, 0.77–0.95), vitamin

C (OR, 0.86; 95% CI, 0.80–0.93), vitamin E (OR, 0.73; 95% CI,

0.62–0.86), and Zinc (OR, 0.79; 95% CI, 0.65–0.97) intake were

independently associated with NAFLD.

Subgroup analyses

The results of the subgroup and interaction analyses are shown

in Figure 2. CDAI was significantly associated with a lower risk

of NAFLD among participants with a BMI < 25 (OR, 0.89; 95%

CI, 0.83–0.95) and without metabolic syndrome (OR, 0.93; 95%

CI, 0.91–0.96). The interaction tests revealed significant differences

in these subgroups (P for interaction = 0.04 for BMI and 0.003

for metabolic syndrome). While the negative association between

CDAI and NAFLD remained robust across most subgroups

stratified by sex, age, BMI, diabetes, and hypertension, the

protective effect was strongest among participants with lower

BMI and those without metabolic syndrome. In contrast, no
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TABLE 1 Characteristic of participants in the NHANES 2005–2016 cycles.

Characteristic Participantsa

Total (N = 9,746) Without NAFLD
(N = 6,422)

With NAFLDb

(N = 3,324)
P-value

Age, mean (95% CI), y 48.3 (47.7, 48.9) 46.3 (45.6–47.0) 52.4 (51.6–53.2) <0.001

Sex

Male 4,662 (47.6) [46.6–48.7] 2,805 (43.0) [41.6–44.4] 1,857 (57.1) [54.9–59.3] <0.001

Female 5,084 (52.4) [51.3–53.4] 3,617 (57.0) [55.6–58.4] 1,467 (42.9) [40.7–45.1]

Race/ethnicityc

Mexican American 1,485 (7.4) [6.2–8.8] 712 (5.6) [4.7–6.6] 773 (11.1) [9.0–13.5] <0.001

Other Hispanic 887 (4.8) [3.8–5.9] 573 (4.9) [3.9–6.0] 314 (4.6) [3.5–5.9]

Non-Hispanic

White 4,726 (72.5) [69.6–75.1] 3,051 (71.6) [68.7–74.2] 1,675 (74.3) [70.9–77.4]

Black 1,825 (9.3) [8.0–10.8] 1,455 (11.2) [9.2–13.0] 370 (5.5) [4.6–6.6]

Other race/multiracial 823 (6.0) [5.4–6.8] 631 (6.8) [5.9–7.7] 192 (4.6) [3.9–5.4]

Education level

High school or below 4,413 (37.2) [34.9–39.5] 2,661 (34.1) [31.8–36.6] 1,752 (43.4) [40.8–46.1] <0.001

Great than high school 5,333 (62.8) [60.5–65.1] 3,761 (65.9) [63.4–68.2] 1,572 (56.6) [53.9–59.2]

Marital status

Married 5,328 (59.4) [57.6–61.2] 3,388 (58.2) [56.0–60.2] 1,940 (61.9) [59.4–64.3] <0.001

Never married 1,614 (15.9) [14.6–17.2] 1,236 (17.8) [16.3–19.4] 378 (11.9) [10.3–13.8]

Living with partner 748 (7.5) [6.6–8.6] 522 (8.1) [7.0–9.3] 226 (6.4) [5.5–7.5]

Othersd 2,056 (17.2) [16.2–18.2] 1,276 (16.0) [15.0–17.0] 780 (19.8) [17.9–21.8]

Family PIR

<1.3 2,841 (19.2) [17.5–20.6] 1,751 (18.2) [16.6–19.9] 1,090 (20.6) [18.8–22.6] <0.001

1.3–3.5 3,748 (36.6) [35.1–38.2] 2,463 (35.6) [33.9–37.4] 1,285 (38.7) [36.4–41.1]

≥3.5 3,157 (44.4) [42.1–46.6] 2,208 (46.2) [43.8–48.6] 949 (40.7) [37.9–43.5]

BMI, kg/m2

<25 2,772 (29.2) [27.8–30.7] 2,643 (42.0) [40.3–43.7] 129 (3.3) [2.6–4.2] <0.001

25–30 3,275 (33.9) [32.8–34.9] 2,410 (38.6) [37.1–40.0] 865 (24.3) [22.6–26.1]

≥30 3,699 (36.9) [35.5–38.4] 1,369 (19.5) [18.2–20.8] 2,330 (72.4) [70.5–74.2]

Alcohol drinking statuse

No 2,804 (23.8) [22.1–25.5] 1,804 (22.6) [21.0–24.4] 1,000 (26.1) [23.9–28.4] <0.001

Yes 6,942 (76.2) [74.5–77.9] 4,618 (77.4) [75.6–79.0] 2,324 (73.9) [71.6–76.1]

Serum cotininef

≤0.011 ng/mL 2,685 (29.5) [27.6–31.4] 1,774 (30.1) [28.0–32.3] 911 (28.1) [25.7–30.7] 0.13

>0.011 ng/mL 7,061 (70.5) [74.5–77.9] 4,648 (69.9) [67.7–72.0] 2,413 (71.9) [69.3–74.3]

Diabetes

No 8,178 (87.4) [86.4–88.3] 5,880 (94.3) [93.5–95.0] 2,298 (73.4) [71.3–75.5] <0.001

Yes 1,568 (12.6) [11.7–13.6] 542 (5.7) [5.0–6.5] 1,026 (26.6) [24.5–28.7]

Hypertension

No 5,169 (57.1) [55.5–58.7] 3,957 (66.5) [64.8–68.3] 1,212 (37.8) [35.5–40.2] <0.001

Yes 4,577 (42.9) [41.3–44.5] 2,465 (33.5) [31.7–35.2] 2,112 (62.2) [59.8–64.5]

(Continued)
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TABLE 1 (Continued)

Characteristic Participantsa

Total (N = 9,746) Without NAFLD
(N = 6,422)

With NAFLDb

(N = 3,324)
P-value

Metabolic syndrome

No 7,098 (74.9) [73.6–76.1] 5,620 (89.2) [88.3–90.0] 1,478 (45.9) [43.2–48.6] <0.001

Yes 2,648 (25.1) [23.9–26.4] 802 (10.8) [10.0–11.7] 1,846 (54.1) [51.4–56.8]

Total energy intakes mean

(95% CI), kcal/day

2,081.9 (2,061.6–2,102.2) 2,055.8 (2,034.2–2,077.5) 2,134.7 (2,096.7–2,172.6) <0.001

CDAI, mean (95% CI) 0.3 (0.2–0.4) 0.3 (0.2–0.5) 0.2 (0.0–0.4) 0.19

Vitamins A

mean (95% CI), mcg

657.8 (638.1–677.5) 665.5 (639.0–692.0) 642.3 (617.1–667.4) 0.21

Vitamins C

mean (95% CI), mg

82.3 (79.5–85.2) 85.9 (82.5–89.3) 75.2 (72.3–78.1) <0.001

Vitamins E

mean (95% CI), mg

9.1 (8.8–9.3) 9.3 (9.0–9.6) 8.6 (8.3–8.9) <0.001

Carotenoids

mean (95% CI), mcg

10,065.5 (9,664.5–10,466.4) 10,264.0 (9,733.4–10,794.7) 9,662.9 (9,197.9–10,127.8) 0.08

Zinc

mean (95% CI), mg

11.7 (11.5–11.9) 11.5 (11.3–11.7) 12.1 (11.8–12.5) 0.004

Selenium

mean (95% CI), mcg

113.4 (112.1–114.7) 111.5 (110.0–113.1) 117.2 (114.8–119.7) <0.001

NHANES, National Health and Nutrition Examination Survey; NAFLD, non-alcoholic fatty liver disease; CDAI, composite dietary antioxidant index; USFLI, US fatty liver index; PIR, Poverty

Income Ratio; BMI, Body Mass Index.
aData are presented as unweighted number (weighted percentage) [95% CI] unless otherwise specified.
bNAFLD was defined as USFLI score ≥30.
cRace and ethnicity were self-reported.
dIncluded widowed, divorced or separated.
eDetermined by the survey question, “In any year, have you had at least 12 drinks of any type of alcoholic beverage?”.
fCategorized into active/secondhand smoker (>0.011 ng/mL) and non-smoker (≤0.011 ng/mL).

TABLE 2 Weighted logistic regression analysis on the association between CDAI/antioxidant components and NAFLD.

Exposures NAFLD defined by USFLIa

Model 1b OR
(95% CI)

P-value Model 2c OR
(95% CI)

P-value Model 3d OR
(95% CI)

P-value

Continuous CDAI 0.99 (0.98–1.00) 0.19 0.97 (0.96–0.99) <0.001 0.95 (0.93–0.98) <0.001

Categories

CDAI-Q1 1 [Reference] 1 [Reference] 1 [Reference]

CDAI-Q2 1.06 (0.91–1.24) 0.44 0.96 (0.82–1.13) 0.64 0.90 (0.74–1.11) 0.33

CDAI-Q3 0.96 (0.82–1.13) 0.63 0.84 (0.71–1.00) 0.05 0.81 (0.63–1.06) 0.13

CDAI-Q4 0.95 (0.81–1.11) 0.52 0.75 (0.63–0.89) 0.002 0.66 (0.52–0.85) 0.002

P for trend 0.27 <0.001 0.002

ln (Vitamins A) 0.95 (0.88–1.02) 0.18 0.85 (0.78–0.93) <0.001 0.85 (0.77–0.95) 0.003

ln (Vitamins C) 0.88 (0.84–0.92) <0.001 0.83 (0.79–0.87) <0.001 0.86 (0.80–0.93) <0.001

ln (Vitamins E) 0.87 (0.80–0.95) 0.002 0.79 (0.72–0.87) <0.001 0.73 (0.62–0.86) <0.001

ln (Carotenoids) 0.97 (0.92–1.01) 0.16 0.94 (0.89–0.99) 0.02 0.98 (0.92–1.05) 0.59

ln (Zinc) 1.19 (1.07–1.34) 0.002 1.01 (0.89–1.15) 0.90 0.79 (0.65–0.97) 0.03

ln (Selenium) 1.34 (1.17–1.51) <0.001 1.22 (1.05–1.41) 0.01 0.87 (0.72–1.05) 0.14

NAFLD, non-alcoholic fatty liver disease; USFLI, US fatty liver index; CDAI, composite dietary antioxidant index; OR, odds ratio; PIR, Poverty Income Ratio; BMI, Body Mass Index.
aUSFLI scores range from 0 to 100, and NAFLD was defined as USFLI score ≥30.
bCrude model.
cAdjusted for age, sex, race/ethnicity.
dAdjusted for age, sex, race/ethnicity, education level, marital status, PIR, BMI, alcohol drinking status, serum cotinine, diabetes, hypertension, metabolic syndrome, and total energy intake.
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significant association was observed among participants with

metabolic syndrome (OR, 0.99; 95% CI, 0.95–1.03) or those with

a BMI ≥ 30 (OR, 0.96; 95% CI, 0.94–0.99). These findings

emphasize that the protective effect of CDAI on NAFLD varies

across specific subgroups.

Sensitivity analyses

The results of sensitivity analyses are summarized in Table 3.

After excluding participants treated with methotrexate, acitretin,

pioglitazone, liraglutide, semaglutide, atorvastatin, and aspirin

(n = 8911), CDAI showed negative correlation with NAFLD

(OR, 0.95; 95% CI, 0.93–0.98). Following the exclusion of non-

Hispanic Black participants (n = 7,921), a negative association

was observed between CDAI and NAFLD (OR, 0.95; 95% CI,

0.93–0.98), further confirming the robustness of the findings

across diverse population groups. Moreover, when NAFLD was

defined using the HSI score and adjusted for various covariates

including age, sex, race/ethnicity, education level, marital status,

PIR, alcohol consumption, serum cotinine, diabetes, hypertension,

metabolic syndrome, and total energy intake (n = 9,732), the

inverse correlation between CDAI and NAFLD persisted (OR, 0.97;

95% CI, 0.95–0.99). This supports the stability of the observed

association even when using an alternative definition of NAFLD.

Additionally, a sensitivity analysis utilizing unweighted logistic

regression (n = 9,746) confirmed the stability of the negative

association between CDAI and NAFLD (OR, 0.96; 95% CI, 0.94–

0.98). Finally, a sensitivity analysis incorporating adjustments for

physical activity, measured byMET over a typical week (n= 7,677),

reaffirmed the robustness of the negative association between CDAI

and NAFLD (OR, 0.96; 95% CI, 0.93–0.98).

Discussion

In this cross-sectional study of nationally representative sample

of the US adult population, CDAI was found to be negatively

associated with NAFLD in adjusted model. Furthermore, it is

noteworthy that the intake of antioxidant components related

to CDAI, including vitamin A, vitamin C, vitamin E, and zinc,

were also negatively associated with NAFLD. To the best of our

knowledge, our study is the first to report a statistically significant

negative correlation between CDAI and NAFLD. Moreover, several

sensitivity analyses demonstrated the robustness of the relationship

between CDAI and NAFLD, affirming the reliability of our

study findings. The results of the subgroup analyses further

emphasize the complexity of the relationship between CDAI and

NAFLD. Specifically, we observed a stronger negative association

between CDAI and NAFLD among individuals with a lower

BMI (<25) and those without metabolic syndrome, suggesting

that the protective effect of CDAI may be more pronounced

in these subgroups. The interaction tests indicated significant

differences in the effect of CDAI on NAFLD based on BMI

and metabolic syndrome status, underscoring the importance

of considering these factors when assessing the impact of

dietary antioxidants on liver health. Interestingly, while CDAI

maintained a negative association with NAFLD across most

subgroups stratified by sex, age, and hypertension, the lack

of a significant association among individuals with metabolic

syndrome (OR, 0.99; 95% CI, 0.95–1.03) or those with higher

BMI (≥30) suggests that the protective effect of CDAI may

be attenuated in these groups. These findings highlight the

potential for differential effects of CDAI in individuals with distinct

metabolic profiles, emphasizing the need for further investigation

to elucidate the underlying mechanisms and identify the most

responsive populations.

Our findings contribute to an existing body of evidence

suggesting associations between the consumption of antioxidant

components related to CDAI and lipid metabolism as well as

obesity (10, 39, 57). It is noteworthy that, unlike previous

studies (16), in our fully adjusted model, we found no significant

association between the intake of carotenoids and NAFLD.

This finding highlights the potential influence of differing

methodologies, populations, or confounding factors in shaping

these results. This discrepancy may be attributed to the lack of

further categorization of carotenoids in our analysis. It should be

noted that NHANES lacks certain carotenoid species significantly

associated with NAFLD (58), such as astaxanthin. In our study, the

lack of a significant correlation between carotenoids and NAFLD

may be also attributed to their potential interaction with other

dietary components or demographic factors. When adjusted for

age, sex, and race/ethnicity, carotenoids demonstrated a significant

negative association with NAFLD. However, after adjusting for all

covariates, the negative association remained but was no longer

statistically significant. The biological mechanisms underlying

the non-significant inverse relationship between carotenoids and

NAFLD remain unclear. One potential hypothesis is that carotene

may act as an effective antioxidant at lower doses, such as

those typically achieved through dietary intake, but loses this

efficacy at higher concentrations (59). Notably, although the exact

mechanisms are not yet fully understood, a similar pattern has

been observed in studies investigating the relationship between

carotenoid intake and handgrip strength. In a cohort study by

Sahni et al., intake of α-carotene, β-carotene, lycopene, and

lutein/zeaxanthin was associated with a reduced loss of grip

strength (59). However, in a cross-sectional study by Wu et al.,

the overall intake of carotenoids was not significantly associated

with handgrip strength (35). Additionally, according to the study

by Wang et al. (60), there exists a non-linear relationship

between serum selenium levels and both ALT activity and the

prevalence of NAFLD. Serum selenium levels demonstrate a

significant positive correlation when exceeding 130 µg/L, while

no significant correlation is observed below 130 µg/L (60).

Interestingly, in our study, after stratifying CDAI into quartiles,

we found that participants in the highest quartile of CDAI had

a 34% lower likelihood of NAFLD compared to those in the

lowest quartile (OR, 0.66; 95% CI, 0.52–0.85). Further dose-

response studies on antioxidant compounds may be warranted to

elucidate the relationship. However, concerning the independent

association between intake of vitamin A, vitamin C, vitamin E,

and zinc with NAFLD, our results align with several prior studies

(61–64). Reactive oxygen species (ROS) and lipid peroxidation

directly damage hepatocytes by affecting membranes, proteins,
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FIGURE 2

Association between CDAI and NAFLD. NAFLD, non-alcoholic fatty liver disease; CDAI, composite dietary antioxidant index; OR, odds ratio. Each
stratification was adjusted for age, sex, race/ethnicity, education level, marital status, PIR, BMI, alcohol drinking status, serum cotinine, diabetes,
hypertension, metabolic syndrome, and total energy intake except the stratification factor itself. Rhombus indicates ORs with horizontal lines
indicating 95% CIs. Diamonds indicates overall ORs, with outer points of the diamonds indicating 95% CIs.

and DNA. Consequently, as antioxidant and anti-inflammatory

defenses are depleted, a chronic state of steatohepatitis ensues

(65). ROS induces the activation of nuclear factor κB (NF-κB),

a key regulator in the synthesis of proinflammatory cytokines,

including interleukin-1β (IL-1β), tumor necrosis factor α (TNFα),

and interleukin-6 (IL-6) (66–68). The secretion of inflammatory

cytokines activates hepatic resident macrophages, such as Kupffer

cells and hepatic stellate cells, leading to the infiltration of

inflammatory cells and the development of fibrosis. This cascade

of events can progress to hepatitis, cirrhosis, liver failure, and

potentially liver carcinoma (69). In a prospective cohort study,

Luu et al. found that CDAI was inversely associated with levels

of IL-1β and TNF-α (70). Traditionally, TNF-α is believed to

initiate apoptotic signals in hepatocytes via TNF receptor 1

(TNFR1), which leads to hepatocyte apoptosis, a key feature of

NAFLD progression (71). Additionally, recent research by Jin et al.
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TABLE 3 Sensitivity analyses.

Analysis Adjusted OR
(95% CI)a

P-value

Excluding participants taking potential hepatotoxic

medicationsb

Without NAFLD 1 [Reference] <0.001

With NAFLDc 0.95 (0.93–0.98)

Excluding non-Hispanic Black participants

Without NAFLD 1 [Reference] <0.001

With NAFLD 0.95 (0.93–0.98)

NAFLD defined by HSI scored

Without NAFLD 1 [Reference] 0.01

With NAFLD 0.97 (0.95–0.99)

Unweighted analysis

Without NAFLD 1 [Reference] <0.001

With NAFLD 0.96 (0.94–0.98)

Adjusted for physical activity

Without NAFLD 1 [Reference] 0.002

With NAFLD 0.96 (0.93–0.98)

NAFLD, non-alcoholic fatty liver disease; USFLI, US fatty liver index; HIS, hepatic steatosis

index; OR, odds ratio; PIR, Poverty Income Ratio; BMI, Body Mass Index.
aAdjusted for age, sex, race/ethnicity, education level, marital status, PIR, BMI, alcohol

drinking status, serum cotinine, diabetes, hypertension, metabolic syndrome, and total

energy intake.
bIncluded the following medications that may affect liver function: methotrexate, acitretin,

pioglitazone, liraglutide, semaglutide, atorvastatin, and asprin.
cNAFLD was defined as USFLI score ≥30.
dNAFLD was defined as an HSI score≥36. This model was adjusted for Adjusted for age, sex,

race/ethnicity, education level, marital status, PIR, alcohol drinking status, serum cotinine,

diabetes, hypertension, metabolic syndrome, and total energy intake.

uncovered a positive feedback loop involving macrophage TNF-

α-mediated degradation of Myc-interacting zinc-finger protein

1 (Miz1) (72). This degradation results in the inhibition of

hepatocyte mitophagy through peroxiredoxin 6 (PRDX6), which

exacerbates mitochondrial damage and further amplifies TNF-

α production by macrophages. Interestingly, Palladini et al.

observed an inverse correlation between serum zinc levels

and interleukin-1beta (IL-1β) and tumor necrosis factor alpha

(TNF-α) in animal models (73). Furthermore, deficiencies in

zinc and vitamin C may exacerbate insulin resistance, thereby

increasing the risk of NAFLD (74, 75). These studies may

partially elucidate the mechanisms by which antioxidant intake

mitigates NAFLD.

While individual nutrients may contribute to the etiology

of NAFLD, it is important to acknowledge the potential

biological interactions among dietary antioxidants. The notion

of an interconnected antioxidant network holds merit, as

antioxidants with diverse solubilities are situated in proximal

cellular compartments and exhibit the ability to regenerate

one another (76). In summary, this study presents a novel

approach to exploring factors influencing dietary interventions

targeting the reduction of NAFLD incidence. Given the cross-

sectional design of this study, we are unable to infer causal

relationships, further randomized controlled trials or cohort

studies are urgently warranted to validate these findings and

offer more precise and effective prevention and treatment

strategies for NAFLD Specifically, future research could explore

the duration of interventions, appropriate study populations, and

potential dietary interventions that could further elucidate the

observed associations.

Limitations

There are several limitations to the present study. First,

as a result of the cross-sectional nature of the study, we

were unable to construct or confirm any causal inferences.

Second, despite the adjustment for potential confounders,

residual confounders may still exist which may affect the

results. Third, we diagnosed NAFLD in our study using USFLI

score, although we conducted sensitivity using HSI score,

these non-invasive markers may lack accuracy compared

with liver biopsy. Additionally, the use of USFLI >30 as the

diagnostic criterion does not allow for the differentiation

between NAFL and NASH due to the lack of histological or

advanced imaging data. Forth, as the population of this study

was American, further studies are needed to determine whether

the benefits of dietary antioxidant can be extended to other

populations. Finally, recall bias in dietary data may have influenced

the accuracy of self-reported food intake, which could affect

the findings.

Conclusion

In conclusion, this cross-sectional study based on six

cycles (2005–2016) of the NHANES suggested a negative

association between the CDAI and NAFLD in US adult population.

This study provides a new approach to explore the factors

affecting dietary interventions to reduce the incidence of

NAFLD. In the future, well-designed randomized controlled

trials are needed to confirm our findings and provide more

accurate and effective prevention and treatment options

for NAFLD.
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