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Tea flower, with characteristic flavor formed during blooming, are a significant 
tea resource. However, studies on the volatile compounds of tea flower and 
their aroma characteristics during flowering are scarce. In this study, the odor 
characteristics of tea flower during blooming were comprehensively investigated 
by GC–MS, PCA, ACI determination and sensory evaluation. The tea flower of 
unopened buds (TF-S1) contained the highest alcohol amounts, while fully opened 
tea flowers (TF-S3) had the highest heterocyclic compounds. Half-opened tea 
flowers (TF-S2) had the most volatile compounds, including high levels of linalool 
and its oxides, and low levels of (Z)-3-hexen-1-ol. Acetoin and cosmene were first 
identified in TF-S1 and TF-S2, respectively. The major ACI components differed, with 
linalool being prominent exhibiting ACI above 27 in all samples. Acetophenone, 
unique to TF-S2 with ACI of 57.35, contributed to sweet odor. Furthermore, PCA 
analysis and sensory evaluation revealed distinct aroma characteristics among the 
samples. Overall, TF-S2 and TF-S3 had higher volatile amounts and better aroma 
properties with floral, powdery or almond-like odors. These results advance the 
understanding of aroma properties of tea flower during blooming, and provide 
a reference for resource utilization and promotion of the application in food or 
cosmetics industries.
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1 Introduction

The tea flower, derived from Camellia sinensis (L.) O. Kuntze, is a reproductive organ of the tea 
plant and constitutes an edible portion of the tea bush. It has increasingly become the second tea 
resource after tea leaves, which can be used to make scented teas and beverages (1). Studies have 
shown that tea flowers have similar bioactive compounds to those found in tea leaves, which 
contains polyphenols, caffeine, polysaccharides, amino acids, 2-ketobutyric acid, phenolamides 
(2–4). These compounds contribute to various health-promoting benefits, including antioxidant, 
anti-cancer, anti-inflammatory, anti-cholesterol, antifungal, hypoglycemic, hypotensive, 
immunomodulatory, improvement of dermal hyperpigmentation and maintaining intestinal health 
(5–14). Regarding the excellent biological activities, tea flowers have been paid more attentions in 
health products, and hold potential for application in the development of functional foods and 
medicines over recent years (15, 16). On the other hand, tea flower is renowned for its aroma 
properties, characterized by pleasant floral, fragrance, fresh, fruity and sweet odors (17), and is rich 
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in active ingredients, such as tea polyphenols and amino acids, making it 
an excellent candidate for beverage production (18), particularly 
enhancing the fruitiness of kombucha (19). Additionally, research by 
Khat-Udomkiri et al. (20) highlights the potential of tea flower extract in 
cosmetic and pharmaceutical applications, as it effectively protects 
fibroblast cells from oxidative damage. To date, the majority of research 
has concentrated on the health benefits in  vitro and the analysis of 
non-volatile secondary metabolites of tea flowers (21, 22), while 
comparatively fewer studies have investigated their volatile compounds 
and aroma characteristics.

Aroma is a crucial quality aspect of flowers or products produced 
thereform, affecting their sensory characteristics and economic value (23). 
Flowers exhibit different aroma profiles due to the presence of diverse 
volatile compounds, which find applications in the food flavoring and 
cosmetic industries (24). Furthermore, the quality and market value of tea 
flower related products are significantly influenced by the presence of 
volatile compounds. The aroma profile of tea flower is a critical factor in 
determining its market appeal and consumer acceptance (25). A pleasant 
and natural aroma can enhance the user experience and contribute to the 
perceived efficacy of the product, thereby increasing its market value. 
Notably, certain volatile compounds may also possess antimicrobial or 
anti-inflammatory effects, showing additional skin benefits, which can 
further boost the market value of tea flowers (26).

The volatile compounds in flowers are mainly formed during 
blooming (50), and those formed at different flowering stages possess 
distinct aroma characteristics. However, the volatile compounds in tea 
flowers, either in volatile compositions, their variations or aroma profiles 
at different blooming stages, have been rarely studied and reported so far. 
It would greatly affect the comprehensive development and utilization of 
tea flowers. Notably, tea flowers have been assigned as a new food resource 
in China, where they are abundant, with an annual output exceeding 1.8 
billion kilograms (14). Given their potential as a food source and the lack 
of research on their aroma characteristics, it is crucial to analyze the 
volatile compounds and aroma profiles of tea flowers at different flowering 

stages. This research will not only contribute to a better understanding of 
tea flower aroma development but also support the comprehensive 
development and utilization of this abundant resource.

Headspace (HS) extraction is a convenient and straightforward 
method to extract aroma compounds and does not produce artifacts 
during operation. This method is commonly employed for extracting and 
enriching volatile compounds, including those found in flowers (27). 
Thereafter, the gas chromatography–mass spectrometry (GC–MS) is 
applied for the separation and analysis of volatile compounds in complex 
matrix (28, 29). In the current study, the aroma compounds in tea flowers 
were extracted using HS and analyzed by GC–MS to reveal their aroma 
compositions and odor profiles at different blooming stages, aiming to 
provide scientific foundation for the development and resource utilization 
of tea flowers, ultimately enhancing the overall quality of related products.

2 Materials and methods

2.1 Reagents and materials

The fresh tea flowers (Camellia sinensis cv. Population) of three 
different flowering stages, which were of flower buds (stage I, unopened 
buds, TF-S1), half opened tea flowers (stage II, including the ones that 
petal started to split, TF-S2) and fully opened tea flowers (stage III, 
TF-S3). The detailed descriptions and states of tea flowers from three 
flowering stages were provided in Supplementary material and illustrated 
in Figure 1. These tea flower samples were collected at Guangde City 
(Anhui province, China) in October 2019, then immediately deep frozen 
in liquid nitrogen and stored in a −80°C ultra-low freezer before 
processing. The tea flower samples were freeze-dried using freeze dryer 
(ALPHA 1–4 LD plus, Martin Christ Freeze Dryer, Germany) and 
powdered to pass through a 350 μm sieve. All authentic standards were 
obtained from Sigma Aldrich (Shanghai, China) unless specified 
otherwise. The detail information of reference compounds and their 

FIGURE 1

The identified volatile compounds in TF-S1 (A), TF-S2 (B) and TF-S3 (C). The bubble diagram of volatile compounds, where circles of identical colors 
signify compounds belonging to the same volatile category, and the size of each circle corresponds to their relative amount.
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suppliers are shown in Supplementary Table S1. A mixture of C5-C28 
n-alkanes were purchased from Supelco, United States.

2.2 Volatile extraction and detection by 
HS-GC–MS

Volatile compounds in tea flowers were extracted by HS using a 
method similar to that reported previously (30) with some 
modification. Three grams of dried tea flowers were directly placed 
into a 20 mL headspace vial, and covered by a headspace auto-loading 
crimp cap with septa. Volatile compounds were analyzed on a GC 
(7890A, Agilent, Santa Clara, CA, United  States) coupled to a 
headspace injector (Agilent 7697A, Agilent, United  States) with 
splitless mode. The oven temperature, manifold temperature, and 
transfer-line temperature were set at 120, 140, and 150°C, respectively. 
The incubation and injection time were 20 min and 60 s, respectively. 
The temperature program was initially set at 50°C, held for 5 min, 
increased to 210°C at a rate of 3°C min−1 and retained 3 min, raised 
to 230°C at 10°C min−1 and subsequent maintained at 230°C for 
2 min, finally increased to 280°C at a rate of 10°C min−1 and held for 
another 10 min. Injection volume was 1 μL.

The GC–MS analytical procedure for the analyzing volatile 
compounds in tea flowers, as described by Guo et  al. (31) were 
followed, with minor modification. Separation was achieved by a 
fused-silica capillary column (DB-5, 30 m × 0.25 mm, 0.25 μm film 
thickness, J&W Scientific, Folsom, CA, United States). Helium gas 
(1 mL/min) was used as a mobile phase. The mass spectrometer was 
operated in electron ionization mode (positive ion, 70 eV). Ion 
source and transfer-line temperatures were 250 and 150°C, 
respectively. The detection electric pressure was 1905 V, the mass 
spectra were acquired in full scan mode from 30 to 500  amu. 
Retention indices (RI) were calculated from the retention time of 
n-alkanes by linear interpolation. The peak was deconvoluted and 
the compounds were identified by comparing the mass spectral data 
with those of the NIST virtual library (NIST 2017 version), 
references and in-house database (30–33). Components were 
tentatively identified by agreement of their retention times, retention 
index and mass spectra with published data and, if available, 
positively identified with those of authentic compounds. The 
amounts of the identified volatile compounds were expressed as the 
average of the peak area of three replicates.

2.3 Calculation of aroma character impact

Aroma character impact (ACI), which was the percentage of the 
ratio of the concentration of a volatile compound to its odor threshold 
value, was applied to compare aroma contributions of the identified 
volatile compounds in a mixture (34), which was determined by the 
Equation 1:
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where Ci is the concentration of the volatile compound and Ti is 
its corresponding odor threshold value in air; Rai is the relative 
amount (peak area) of the volatile compound in tea flowers 
during flowering.

2.4 Sensory evaluation

The method of sensory analysis on tea flower aroma was from 
Guo et  al. (33) with modification. The tea flower samples from 
different stages of flowering were subjected to a sensory test. Three-
digit numbers were used to code samples, and they were randomly 
offered to panelists, the intensity values and aroma descriptors of 
samples were recorded by evaluators. The aroma attributes, including 
floral, powdery, green, citrus, waxy, fragrance, and almond-like odor 
were recorded by panelists. As for the TF-S2, the green odor was noted 
following by the floral odor, which was a little different from the green 
flavor of TF-S1. The intensities of the aroma attributes were scored 
using a scale from 0 to 10, the higher the score, the stronger the 
intensity, where 0 = none or not perceptible intensity, 3 = weak 
intensity, 5 = moderate intensity, 7 = high intensity, and 10 = extremely 
high intensity. Each sample was evaluated three times by each panelist 
on different days. Data were expressed as mean values.

The tea flower samples were evaluated by a well-trained panel of 
10 members (four males and six females, age from 27 ~ 45). All 
assessors had more than 5 years of experience in the descriptive 
sensory analysis of natural plant and flower related products. Panelists 
were trained by a series of important volatile compounds, including 
(E)-2-pentenal for its fruity odor, (Z)-3-hexenal and hexanal for their 
green and grassy scents, (E,E)-2,4-nonadienal for its fatty odor, 
phenethyl alcohol, linalool and its oxides for their floral fragrances, 
phenylacetaldehyde for its honey-like odor, α-terpineol for its woody 
odor, maltol for its sweet odor, as well as the flavor of actual products 
such as almonds.

2.5 Statistical analysis

All experiments were replicated 3 times. Statistical analysis was 
performed with one-way analysis of variance (ANOVA) and Duncan’s 
multiple-range tests by use of SPSS Statistics 22.0 (SPSS Inc., Chicago, 
IL, United  States). All comparisons were considered statistically 
significant if p-value <0.05. In addition, the circular stacking diagrams 
were generated using Chiplot.1

3 Results and discussion

3.1 Volatile compositions of tea flowers

Totally 63 volatile compounds were identified in tea flowers with 
different flowering stages of TF-S1 (38), TF-S2 (49), and TF-S3 (35) 
(Table  1). The identified components belonged to various chemical 
groups, including alcohols, aldehydes, alkenes, ketones, esters, 

1 https://www.chiplot.online/
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TABLE 1 The identified volatile compounds and their odor description of tea flowers during blooming.

No. Volatile 
compounds

RT 
(min)

RI RI-f IDζ Threshold 
(mg/m3)#

Odor 
qualityψ

Relative amount (peak area, 
×106)

TF-S1 TF-S2 TF-S3

1 2-(Vinyloxy)ethanol 3.12 724 728 MS,RI n.f. —— nd nd 0.34 ± 0.04

2 Acetoin* 3.21 729 718 MS,RI,S 14 Milky 0.33 ± 0.01 nd nd

3 (Z)-2-Penten-1-ol 3.84 763 765 MS,RI 720 Green, fruity 7.22 ± 0.25 14.85 ± 2.13 7.44 ± 0.16

4 Hexanal* 4.55 801
801

MS,RI,S 0.23
Grassy, green, 

fresh, fatty
18.74 ± 0.98 44.47 ± 1.14 18.57 ± 1.86

5 2-Methyl-2-pentenal 5.05 815
810

MS,RI 290
Green, pungent, 

fruity
nd 0.34 ± 0.03 nd

6 Furfural* 5.57 829

833

MS,RI,S 2.8

Almond, caramel, 

honey, roasted, 

fatty

11.14 ± 0.83 52.82 ± 7.07 14.26 ± 0.51

7 (E)-2-Hexenal* 5.98 840 847 MS,RI,S 0.0031 Green, fresh, fruity 0.55 ± 0.02 0.57 ± 0.02 nd

8 2-Hexenal* 6.33 850 851 MS,RI,S 0.48 Grassy, herbal 34.18 ± 4.3 58.13 ± 0.32 27.43 ± 4.50

9 (Z)-3-Hexen-1-ol* 6.39 852 854 MS,RI,S 0.013 Green, grass, fruity nd 2.57 ± 0.36 nd

10 (Z)-4-Hexen-1-ol* 6.42 853
857

MS,RI,S 100
Green, herbal, 

musty
0.40 ± 0.05 0.85 ± 0.05 0.60 ± 0.06

11 2-Furanmethanol* 6.65 859

859

MS,RI,S 32

Burnt, sweet, 

bready, caramel-

like

nd 3.53 ± 0.27 2.64 ± 0.19

12 1,3-Dimethylbenzene 6.90 866 866 MS,RI 0.18 Plastic, aromatic nd nd 5.26 ± 0.19

13 1-Hexanol* 6.95 867 868 MS,RI,S 0.034 Green, grassy nd 4.38 ± 0.70 nd

14
4-Cyclopentene-1,3-

dione
7.37 879

880
MS,RI n.f. —— nd 1.37 ± 0.16 nd

15 3(2H)-Pyridazinone 7.43 880 885 MS,RI n.f. Burnt, smoky nd 1.29 ± 0.14 nd

16 2-Heptanone 7.75 889 891 MS,RI 0.0035 Pear-like, fruity 0.29 ± 0.01 nd nd

17 Heptanal* 8.26 903 907 MS,RI,S 0.26 Green, oily, grassy nd 18.23 ± 0.30 nd

18 2-Heptanol 8.27 903
900

MS,RI 0.1
Leafy green, 

vegetable-like
18.47 ± 0.04 nd 21.24 ± 0.45

19 Methional 8.49 907

907

MS,RI 0.06

Creamy, earthy, 

vegetable, potato-

like

nd 0.25 ± 0.02 nd

20 2-Acetylfuran 8.57 909
911

MS,RI 15025.2
Almond-like, nutty, 

cocoa-like
nd 1.84 ± 0.26 0.34 ± 0.04

21 2,5-Dimethylpyrazine* 8.85 915
917

MS,RI,S 1.82
Peanut, coffee, 

cocoa-like, nutty
nd 0.17 ± 0.01 1.88 ± 0.13

22
5-Methyl-2-

furanmethanol
10.68 953

958
MS,RI 32

Roasted, meaty, 

baked potato-like
nd 3.64 ± 0.12 0.98 ± 0.04

23
5-Methyl-2-

furancarboxaldehyde

11.00 960 961 MS,RI 500 Sweet, caramellic, 

bready, brown, 

coffee-like

nd 0.31 ± 0.03 nd

24 Benzaldehyde* 11.01 960 962 MS,RI,S 0.085 Almond-like, 

fruity, cherry-like, 

powdery, nutty

1.82 ± 0.13 3.85 ± 0.34 2.25 ± 0.30

25 2,4-Dihydroxy-2,5-

dimethyl-3(2H)-furan-3-

one

12.04 981 977 MS,RI n.f. —— 3.19 ± 0.06 nd 5.06 ± 0.78

26 6-Methyl-5-hepten-2-

one*

12.21 985 986 MS,RI,S 0.01889 Fruity, apple-like, 

citrus

nd 0.18 ± 0.03 nd

(Continued)
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TABLE 1 (Continued)

No. Volatile 
compounds

RT 
(min)

RI RI-f IDζ Threshold 
(mg/m3)#

Odor 
qualityψ

Relative amount (peak area, 
×106)

TF-S1 TF-S2 TF-S3

27 Hexanoic acid 12.23 985 982 MS,RI 0.0048 Acrid flavor 5.59 ± 0.09 8.22 ± 1.48 8.25 ± 1.27

28 2-Pentylfuran 12.40 989 989 MS,RI 0.019 Fruity, green, 

earthy, beany

1.75 ± 0.13 2.95 ± 0.23 2.07 ± 0.20

29 2-Methyl-6-hepten-1-ol 12.66 994 994 MS,RI 2000 Green, sweet nd 1.06 ± 0.07 nd

30 6-Methyl-5-hepten-2-ol 12.68 995 993 MS,RI 2000 Coriander-like, 

green, sweet

0.46 ± 0.08 nd nd

31 Octanal 13.13 1,004 1,004 MS,RI 0.17 Fatty, green, citrus, 

waxy

1.10 ± 0.10 3.13 ± 0.54 nd

32 (E)-3-Hexen-1-ol acetate 13.24 1,006 1,005 MS,RI 870 Fresh, green, fruity, 

sweet

13.17 ± 0.33 14.10 ± 1.95 9.55 ± 1.28

33 N-Acetyl-4(H)-pyridine 13.86 1,018 1,032 MS,RI n.f. —— 1.03 ± 0.10 nd 1.39 ± 0.24

34 Limonene* 14.31 1,027 1,026 MS,RI,S 0.21 Citrus, lemon, 

orange-like, green

0.42 ± 0.06 1.26 ± 0.01 0.46 ± 0.06

35 Benzyl alcohol* 14.74 1,036 1,036 MS,RI,S 2546.21 Fruity, rose-like 2.79 ± 0.30 2.46 ± 0.03 0.83 ± 0.12

36 2-Methylphenol 14.90 1,039 1,044 MS,RI 0.0012 Musty, phenolic, 

plastic, medicinal, 

herbal

nd 0.42 ± 0.02 nd

37 Benzeneacetaldehyde* 15.09 1,043 1,045 MS,RI,S 6.3 Floral, rose, 

cherry-like

4.84 ± 0.28 1.26 ± 0.24 4.98 ± 0.04

38 1-Ethyl-1H-pyrrole-2-

carboxaldehyde

15.28 1,046 1,046 MS,RI 65,000 Burnt, roasted, 

smoky

nd 2.13 ± 0.18 1.80 ± 0.16

39 α-

Methylbenzenemethanol

16.01 1,061 1,063 MS,RI 5,100 Floral, light 

gardenia-like

2.29 ± 0.10 12.50 ± 2.04 3.11 ± 0.11

40 Acetophenone* 16.16 1,064 1,065 MS,RI,S 0.0012 Sweet, cherry pit, 

vanilla-like

nd 50.18 ± 6.46 nd

41 2-Acetylpyrrole* 16.20 1,064 1,064 MS,RI,S >2 Nutty, musty 4.09 ± 0.08 0.45 ± 0.06 8.80 ± 1.69

42 Linalool oxide II* 16.49 1,070 1,074 MS,RI,S 60 Sweet, floral, 

creamy

2.16 ± 0.35 4.87 ± 0.08 1.94 ± 0.06

43 Linalool oxide I* 17.30 1,086 1,098 MS,RI,S 100 Sweet, floral, 

creamy

3.40 ± 0.07 8.44 ± 0.91 3.08 ± 0.05

44 2-Nonanone 17.56 1,091 1,092 MS,RI 0.032 Fruity, floral, fatty, 

herb

0.64 ± 0.02 nd nd

45 Linalool* 18.02 1,100 1,104 MS,RI,S 0.0024 Floral, sweet, green 21.99 ± 1.32 47.67 ± 0.84 19.15 ± 2.68

46 Hotrienol* 18.17 1,103 1,101 MS,RI,S 110 Fresh, floral, fruity 0.94 ± 0.07 nd nd

47 Nonanal* 18.27 1,105 1,104 MS,RI,S 0.0031 Floral, green, 

lemon-like

3.19 ± 0.44 18.75 ± 2.82 3.34 ± 0.19

48 Maltol 18.39 1,108 1,110 MS,RI 1,240 Caramel-like nd 2.13 ± 0.19 1.73 ± 0.02

49 Phenylethyl alcohol* 18.56 1,111 1,116 MS,RI,S 0.012 Floral, rose-like 31.97 ± 3.25 12.77 ± 1.52 25.46 ± 0.30

50 Cosmene 19.42 1,129 1,130 MS,RI n.f. Herb, citrus nd 0.55 ± 0.08 nd

51 Pyranone 20.07 1,142 1,151 MS,RI n.f. Hay-like 34.00 ± 3.16 nd 87.52 ± 10.20

52 2,3-Dihydro-3,5-

dihydroxy-6-methyl-4H-

pyran-4-one

20.15 1,143 1,154 MS,RI n.f. —— nd 92.99 ± 17.39 nd

53 3(Z)-Hexenyl butanoate 22.26 1,186 1,184 MS,RI 500 Fresh, green, fruity, 

vegetable-like

0.54 ± 0.02 0.87 ± 0 nd

(Continued)
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heterocyclics, hydrocarbons and aromatics, as shown in Figure 1. The 
proportions and numbers of these volatile categories were different 
among the three samples (Figures 2A,B). Notably, alcohols, aldehydes 
and heterocyclics were the most abundant compounds, accounting for 
more than 18% of the total volatiles amount in each sample. With the 
advancement of flower growth, the proportions of alcohols and esters 
were diminished, whereas the heterocyclic compounds were enhanced. 
The peak proportion of heterocyclic compounds was observed in TF-S3, 
reaching to 41.06%, which was 1.87 and 1.38 times of that in TF-S1 and 
TF-S2, respectively. In addition, twenty-two volatile compounds were 
commonly found in all three samples, accounting for 34.92% of the total 
identified compounds. However, 7, 17, and 2 volatiles were uniquely 
identified in TF-S1, TF-S2, and TF-S3 samples, respectively 
(Figures 2C–E).

3.1.1 Volatile profiling of TF-S1
A total of 41 volatiles were detected in TF-S1, with 38 volatile 

compounds successfully identified (Table 1). The TF-S1 samples tended 
to contain the highest proportion of alcohols (37.13%), among which 
phenylethyl alcohol, linalool and 2-heptanol were the three most 
abundant compounds, accounting for 77.81% of the total alcohols 
detected. Phenylethyl alcohol imparting floral, rose-like odors (35), is the 
product of glycoside hydrolysis in tea (36, 37). 2-Heptanol having herbal 
flavor is derived from lipid degradation, with the unsaturated fatty acids 
such as palmitoleic acid and oleic acid as precursors (36). Linalool, a 
contributor for floral odor in teas, is recognized as the key aroma 
compound in all tea samples (38, 39). In addition, benzyl alcohol, linalool 
oxide I and linalool oxide II, which contribute to floral odors (36), were 

identified in TF-S1 but were of low abundance. Among the seven 
aldehydes identified in TF-S1, 2-hexenal and hexanal exhibiting green or 
grassy odors (38, 39), were the major volatile compounds. Particularly, 
the amount of 2-hexenal was significantly higher than the other 
aldehydes, nearly twice as much as hexanal. In addition to the two 
components and (E)-2-hexenal, the other four aldehydes, namely 
benzaldehyde, octanal, benzeneacetaldehyde and nonanal have floral or 
fruity odors (36), which are the important contributors to tea aroma. The 
two most abundant heterocyclic compounds were pyranone and furfural, 
comprising 81.78% of the total amounts of heterocyclic compounds. The 
former was detected in tea related products for the first time, while the 
latter was commonly identified in baked teas as a contributor of almond-
like and caramel-like odors (30, 40, 41). Most of the identified esters had 
green or fatty flavor, in which (E)-3-hexen-1-ol acetate and methyl 
salicylate were the major compounds with high amounts. Methyl 
salicylate is considered as an important aroma compound for tea quality, 
and is mainly liberated by hydrolyzing glycosides in tea (38, 39, 42). 
Three ketones, including acetoin, were identified in TF-S1. Acetoin with 
pleasant milky odor (43) is rarely detected in previous tea samples. In 
addition, only one chemical compound with a relatively low amount, was 
identified in alkenes, hydrocarbons, and aromatics.

3.1.2 Volatile profiling of TF-S3
Totally 35 volatiles were identified in TF-S3 using GC–MS 

technology (Table 1). In contrast to TF-S1, these identified components 
belonged to seven chemical groups, with no ketones detected in the 
sample. The volatile compositions, amounts, and proportions of volatile 
categories were different from those in TF-S1. Similarly, alcohols, 

TABLE 1 (Continued)

No. Volatile 
compounds

RT 
(min)

RI RI-f IDζ Threshold 
(mg/m3)#

Odor 
qualityψ

Relative amount (peak area, 
×106)

TF-S1 TF-S2 TF-S3

54 Methyl salicylate* 22.42 1,189 1,192 MS,RI,S 0.016 Peppermint, 

wintergreen mint

9.42 ± 0.82 9.73 ± 1.39 3.49 ± 0.64

55 α-Terpineol* 22.65 1,194 1,191 MS,RI,S 0.86 Pleasant, floral 0.45 ± 0.01 0.89 ± 0.02 nd

56 Decanal* 23.26 1,207 1,205 MS,RI,S 0.0026 Sweet, citrus, waxy, 

floral

nd 0.77 ± 0.05 nd

57 Geraniol* 25.36 1,251 1,255 MS,RI,S 0.6 Rose-like, sweet, 

honey-like

0.55 ± 0.08 nd nd

58 Methyl 

2-methoxybenzoate

29.13 1,334 1,337 MS,RI 790 Hyacinth-like, herb nd 1.48 ± 0.11 nd

59 2-(1,3-Butadienyl)-1,3,5-

trimethylbenzene

29.84 1,350 1,373 MS,RI n.f. —— 0.05 ± 0.01 nd nd

60 6,10,14-Trimethyl-2-

pentadecanone

48.87 1841 1846 MS,RI n.f. —— nd 18.17 ± 3.03 nd

61 Butyl hexadecanoate 59.86 2,184 2,188 MS,RI >2000 Waxy 4.48 ± 0.50 4.52 ± 0.5 9.78 ± 1.50

62 Tricosane* 63.44 2,300 2,300 MS,RI,S 10,000,000 Alkane 0.78 ± 0.08 nd 2.59 ± 0.29

63 Butyl octadecanoate 65.63 2,371 2,382 MS,RI >500 Waxy 0.89 ± 0.01 1.11 ± 0.02 1.03 ± 0.03

Total 250.74 543.04 308.64

RI, the retention index (RI) was computed by using n-alkanes (C5-C28) under the same chromatographic conditions with the detected volatile compounds; RI-f, the data was from the 
literature (http://webbook.nist.gov/chemistry/). Each value in the table was presented as the mean ± standard deviation (n = 3). The compounds indicated with “*” were identified using 
authentic standard compounds. TF-S1, unopened tea flowers; TF-S2, half-opened tea flowers; TF-S3, fully opened tea flowers. ζIdentification method. MS, identification based on the NIST 
2017 mass spectral database; RI, retention index; S, the compounds were identified using authentic standard compounds. #All the odor thresholds were obtained from: a, “Odor & Flavor 
Detection Thresholds in Air (In Parts per Billion, lg/L)” (http://www.leffingwell.com/odourthre.htm). “n.f.”, data was not found in the literature. “——,” no odor description information was 
found in the literature. nd, not detectable.
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aldehydes and heterocyclic compounds were the most abundant, 
accounting for 86.91% of the total identified volatiles, while alkenes were 
the least abundant (0.15%). Limonene was the sole alkene compound 
identified, and its amount did not significantly differ from that in TF-S1. 
In comparison to TF-S1, five heterocyclic compounds including 
2-furanmethanol, 2-acetylfuran, 2,5-dimethylpyrazine, 5-methyl-2-
furanmethanol and 1-ethyl-1H-pyrrole-2-carboxaldehyde were newly 
identified. The former two compounds have been found in large-leaf 
yellow tea under high intensity of roasting treatment (30), and the latter 
one exhibiting roasted or smoky notes (41) is generated in the final 
product Shuixian oolong tea after full fire processing (32). The formation 
of 5-methyl-2-furanmethanol is in relation to Maillard reaction from 
D-glucose and L-theanine (32), and 2,5-dimethylpyrazine, which 
imparts characteristic roasted peanutty flavor, is considered as the key 
aroma compound in tea (32). In terms of the common volatiles in TF-S1 
and TF-S3, heterocyclic compounds were still dominated by pyranone, 
accounting for 69.05% of the total amounts of this group in TF-S3. 
Additionally, the amounts of these common volatile compounds, except 
for 2-acetylpyrrole, raised significantly as the tea flower progressed from 
stage I to stage III. A total of 11 alcohols were identified in the sample, of 
which 2-(vinyloxy)ethanol and maltol absent in TF-S1. Maltol having 
caramel-like odor, which is an important flavor ingredient detected in 
Japanese soy sauce (44), was not found in previous tea samples. 
Meanwhile, trace amounts of alcohols in TF-S1, such as 6-methyl-5-
hepten-2-ol, hotrienol and geraniol, which are identified in Wuyi rock 

tea (31), were not detected in TF-S3. Although phenylethyl alcohol, 
linalool and 2-heptanol remained the three most abundant alcohols in 
TF-S3, the amounts of the former two volatiles dropped compared to 
TF-S1. With the flowers development (from stage I to stage III), the 
amounts of aldehydes and esters with green flavor were decreased, 
whereas the aldehydes with floral odors or the esters with fatty notes were 
enhanced. Octanal, (E)-2-hexenal and 3(Z)-hexenyl butanoate were not 
found in TF-S3.

3.1.3 Volatile profiling of TF-S2
In total, 52 volatile compounds were detected in TF-S2, with 49 

volatiles being identified (Table 1). Among these, alcohols (21.26%), 
aldehydes (27.58%) and heterocyclic compounds (29.85%) comprised 
78.69% of the total amount. The number and amounts of identified 
volatiles in TF-S2 were much higher than those of TF-S1 and TF-S3. 
Moreover, the proportions or amounts of alkenes, ketones and 
hydrocarbons were enhanced significantly. The amount of limonene, a 
representative component common to all three samples, was almost 
three times higher in TF-S2 compared to the other two samples. 
Cosmene, an unsaturated alkene commonly found in herbal essential oils 
(45) and a bound-form volatile compound of Rubus corchorifolius fruit 
(46), was detected in tea flowers firstly. Different from TF-S1, three new 
ketones were identified in TF-S2, with 6-methyl-5-hepten-2-one being 
the least amount. This compound is identified in oolong tea as a 
carotenoid-derived aroma compound (36, 47). Acetophenone imparts 

FIGURE 2

The volatile profiling of tea flowers during flowering. The number (A) and proportion (B) of volatile compounds in tea flowers. The volatile compounds 
uniquely identified in TF-S1 (C), TF-S2 (D) and TF-S3 (E). Compound nos. Correspond to Table 1.
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sweet, or citrus flavor, which is derived from L-phenylalanine in tea 
flowers (48), was also found in tea leaves (49). It was identified in high 
abundance only in TF-S2, differing slightly from the results of Joshi et al. 
(50) due to variations in  location, variety, sample status, and aroma 
extraction methods of the tea flowers. Although the largest number of 
esters were identified in TF-S2, their proportions significantly decreased 
from stage I  to stage II. Among them, (E)-3-hexen-1-ol acetate and 
methyl salicylate remained the two compounds with the highest 
amounts. Similar to esters, the proportions of alcohols first decreased and 
then increased with the advancement of flower growth, with the lowest 
observed in TF-S2. However, the amounts of alcohols imparting floral 
flavor, such as linalool, linalool oxide I and linalool oxide II, increased 
significantly. These are aroma-active compounds in tea, with linalool 
being a vital contributor of the floral odor in tea (36), and the most 
abundant alcohols in TF-S2. In practice, linalool has a floral odor with 
green flavor, which might be the main source of floral and green notes in 
the sensory evaluation of TF-S2. Four aldehydes, namely 2-methyl-2-
pentenal, heptanal, methional and decanal were only identified in TF-S2. 
Heptanal and decanal are produced by lipid oxidation in tea (36), and 
contribute to the fruity or floral flavor of tea flowers (36, 51). Methional, 
with a low threshold value (0.06 ppb in air), is usually recognized as the 
precursor of methanethiol (52). Among the common aldehydes, the 
amounts of hexanal, 2-hexenal, benzaldehyde, and nonanal were 
significantly higher in TF-S2 than those of the other two samples, while 
benzeneacetaldehyde presented an opposite pattern.

Eleven heterocyclics were identified in TF-S2, among which furfural, 
2-phetylfuran and 2-acetylpyrrole were the common heterocyclics in 
three tea flower samples. Furfural and 2-phetylfuran were most abundant 
in TF-S2, whereas TF-S2 had the least amount of 2-acetylpyrrole. In 
comparison to TF-S3, TF-S2 had the significantly lower amounts of 
2,5-dimethylpyrazine but much higher amounts of 2-acetylfruan, 
5-methyl-2-furanmethanol and 2-furanmethanol. 5-Methyl-2-
furancarboxaldehyde, which has been found in large-leaf yellow tea and 
oolong tea after high intensity of roasting treatment (30, 32) together 
with 3(2H)-pyridazinone were solely identified in TF-S2. In addition, 
hexanoic acid with acrid odor (53) was identified in all samples. The 
amounts of hexanoic acid gradually increased with the development of 

blooming, while their proportion first declined and then raised during 
flowering, being lowest in TF-S2 (1.51%) and highest in TF-S3 (2.67%).

As the flowering stage progressed, TS-S2 possessed a significantly 
greater number and amounts of volatiles, most of which had floral and 
fruity odors as well as the pleasant flavor. Their amounts had a significant 
increasement compared with the other two tea flower samples. 
Meanwhile, some volatile compounds with green or fatty odors 
decreased or volatilized during flowering. These findings were in line 
with those of Joshi et al. (50), who observed that half-opened tea flowers 
had the most volatiles, and the highest levels of linalool, linalool oxide 
I  & II, benzaldehyde, and acetophenone, which was only identified 
in TF-S2.

3.2 Principal component analysis

To further understand intuitively the aroma characteristics of tea 
flowers and distinguish the differences among tea flowers from 
various flowering stages, the PCA was conducted on the identified 
volatiles (Figure 3). As can be seen in Figure 3A, the accumulated 
contribution rate of the first two principal components (PC 1 for 
71.6%, PC 2 for 25.4%) was 97.0%, which appeared to represent the 
sufficient information of tea flower samples. Notably, the three 
samples were well separated according to the flowering stages. 
Specifically, TF-S1 exhibited high scores on the negative PC 1 and 
positive PC 2, where the loadings of characteristic volatile compounds 
including hotrienol, geraniol, 2-nonanone, 6-methyl-5-hepten-2-ol, 
acetoin, 2-(1,3-butadienyl)-1,3,5-trimethylbenzene were prominent. 
These compounds, along with phenylethyl alcohol and 
benzeneacetaldehyde, were uniquely identified in the initial stages of 
florescence of tea flower. This suggests that the different aroma 
properties of TF-S1 compared to TF-S2 or TF-S3 might be attributed 
to its uniquely volatile compounds. On the other hand, TF-S3 showed 
high scores on both the negative PC 1 and negative PC 2, containing 
high loadings of compounds, such as 2,5-dimethylpyrazine, 
1,3-dimethylbenzene, butyl hexadecanoate, 2-acetylpyroole, 
tricosane, pyranone. Among these, pyranone was the most abundant 

FIGURE 3

PCA analysis of tea flowers in different flowering stages. The score plot (A) and biplot (B) of PCA analysis. Compound nos. Correspond to Table 1.

https://doi.org/10.3389/fnut.2024.1531185
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Guo et al. 10.3389/fnut.2024.1531185

Frontiers in Nutrition 09 frontiersin.org

aroma compound in TF-S3 of the late stages of tea flowering 
(Figure  3B). In addition, the levels of benzeneacetaldehyde, 
2-heptanol, N-acetyl-4(H)-pyridine, and 2,4-dihydroxy-2,5-
dimethyl-3(2H)-furan-3-one were similar in TF-S1 and TF-S3, 
suggesting they were co-characteristic aroma compounds in both 
samples. TF-S2 scored high on the positive PC 1, which contained 
high loadings of benzyl alcohol, (E)-3-hexen-1-ol acetate, 
3(Z)-hexenyl butanoate, linalool oxide II, linalool, linalool oxide I, 
benzaldehyde, furfural, 2-acetylfuran, 5-methyl-2-furanmethanol, 
2-pentylfuran, 2-furanmethanol, maltol. These characteristic volatiles 
with floral, fruity, almond-like odors, along with heterocyclic 
compounds, were of most abundance in the half-opened tea flowers. 
The PCA results indicated that the fully and half-opened tea flowers 
possessed large amounts of volatiles with floral or fruity odors and 
heterocyclic compounds, whereas volatile compounds imparting 
green or fatty odors were abundant in the initial stages of tea 
flower blossoming.

However, it is important to note that the aroma impact of a 
component depends on its concentration and odor threshold value. 
Therefore, a comprehensive analysis of the aroma contributions of 
volatile compounds in tea flowers is necessary, and the actual aroma 
profile of tea flowers should be assessed from a sensorial point of view.

3.3 Odor profiles of volatiles in tea flowers 
during blooming

The contribution of an individual component to the overall aroma 
of tea flowers is determined by its aroma character impact (ACI). The 
ACI values of aroma compounds in tea flowers were calculated based on 
the threshold data from reported references, and the ACI of identified 
volatiles is presented in Supplementary Table S2. Totally, 8 volatile 
compounds had ACI values higher than one in three samples, of which 
7, 5, and 6 volatiles with ACI greater than one were identified in TF-S1, 
TF-S2, and TF-S3, respectively (Table  2). Generally, these aroma 
character impact molecules mainly imparted floral, sweet or green notes, 
contributing 97.49, 97.78, and 97.68% to the aroma of TF-S1, TF-S2, and 
TF-S3, respectively (Table 2).

Among the identified volatiles, linalool was the only volatile 
compound with an ACI above 27 in all samples. It also made the most 
significant contribution to the aroma character in TF-S1 and TF-S3, 
indicating that it had the positive influence on floral or green notes in tea 
flower samples, consistent with the findings from Gao et al. (54) that 

linalool has been reported to be the potential key aroma compound in 
tea flowers from albino cultivars with the highest relative abundance. In 
contrast, for TF-S2, acetophenone imparting sweet odor was the most 
prominent aroma contributor (ACI = 57.35). Nonanal, which contributes 
floral or green odors, had the third highest ACI value of 8.30, whereas 
the remaining compounds played a much less important role in the 
aroma contribution. In comparison to TF-S2, acetophenone was not 
found in TF-S1, where phenylethyl alcohol (ACI = 17.35), hexanoic acid 
(ACI = 7.58), (E)-2-hexenal (ACI = 1.16), and methyl salicylate 
(ACI = 3.83) had significantly higher ACI values. Similarly to TF-S1, the 
volatiles phenylethyl alcohol (ACI = 15.50), hexanoic acid (ACI = 12.60), 
nonanal (ACI = 7.90), and methyl salicylate (ACI = 1.60) were notable 
contributors for TF-S3. However, (E)-2-hexenal with green flavor was 
not observed in TF-S3. Notably, Cui et  al. (55) discovered that 
acetophenone is the most abundant volatile compound in tea flower at 
the fully-opened stage. The significant different might be due to the 
distinct tea cultivar utilized and the different aroma extraction 
techniques employed.

3.4 Sensory profiles of tea flowers during 
flowering

The radar profile illustrating the sensory aroma attributes of tea 
flowers during flowering stage is shown in Figure 4. The detailed 
scores on intensity of aroma attributes were shown in 
Supplementary Table S3. Only moderate green and weak fragrance 
odors were recorded in TF-S1, while TF-S3 had extremely high 
intensity of powdery odor, coupled with strong floral and waxy odors, 
as well as moderate citrus and fragrance notes. Compared to TF-S3, 
TF-S2 possessed higher intensity of floral odor and lower intensity of 
powdery odor. Notably, TF-S2 also featured a special characteristic of 
almond-like odor with high intensity, potentially attributed to the 
abundant presence of furfural, which imparts such an aroma. As for 
the green flavor in TF-S2, it differed from that of noted in TF-S1, 
accompanied with the floral odor, possibly originating from linalool. 
However, further research is required to ascertain the exact 
contribution of linalool to the floral and green notes of half-opened 
tea flowers. The green flavor was not noted in TF-F3 might 
be  associated with the absence of (E)-2-hexenal, which has been 
considered a positive contributor to green odor in tea flower (54). 
Practical sensory evaluation results revealed that half-opened and 
fully-opened tea flowers had different aroma characteristics, the latter 

TABLE 2 The identified volatiles with ACI above one in tea flowers during blooming.

Volatile compounds ACI (%)

TF-S1 TF-S2 TF-S3

(E)-2-Hexenal 1.16 0.25 nd

2-Heptanol 1.20 nd 1.56

Hexanoic acid 7.58 2.35 12.60

Acetophenone nd 57.35 nd

Linalool 59.66 27.24 58.48

Nonanal 6.70 8.30 7.90

Phenylethyl alcohol 17.35 1.46 15.55

Methyl salicylate 3.83 0.83 1.60

TF-S1, unopened tea flowers; TF-S2, half-opened tea flowers; TF-S3, fully opened tea flowers. nd, not detectable.

https://doi.org/10.3389/fnut.2024.1531185
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Guo et al. 10.3389/fnut.2024.1531185

Frontiers in Nutrition 10 frontiersin.org

exhibited powdery odor, whereas, the former was dominated by floral 
note, both with extremely high intensities. Linalool and phenylethyl 
alcohol might be  the potential contributors of powdery odor in 
TF-S3, while acetophenone and linalool contributed to the floral note 
in TF-S2. The unique aroma characteristics of tea flowers at different 
stages of flowering could be  harnessed to create distinctive and 
appealing products. The TF-S2 had strong floral and almond-like 
odors, with sensory scores of 7.84 and 6.77, respectively, making it an 
ideal choice for use in perfumes and cosmetics to impart a fresh and 
inviting scent. Similarly, the powdery odor of TF-S3, with a sensory 
score of 7.39, could add a unique and intriguing note to beverages 
and other products. Further research is encouraged to explore the full 
potential of tea flowers in these and other applications.

4 Conclusion

In the present study, the volatile compositions and aroma profiles 
of tea flowers at different developmental stages were analyzed using 
HS-GC–MS technology, complemented by ACI determination and 
sensory evaluation. The volatiles in tea flowers were dominated by 
alcohols, aldehydes and heterocyclic compounds, with variations 
across stages. TF-S2 tended to contain higher proportions of 
aldehydes, ketones, hydrocarbons, and alkenes, but lower alcohols and 
esters levels compared to flower buds and fully opened tea flowers. 
Eight volatiles, including linalool (ACI >27  in all samples) and 
acetophenone (unique to TF-S2), were the key aroma compounds. 
Half-opened tea flowers exhibited strong floral odor and the 
characteristic almond-like flavor, while fully opened tea flowers had 
strong powdery and moderate floral odors. Overall, half-opened or 
fully-opened tea flowers had higher amounts of total volatiles and 
superior aroma characteristics. These findings provide the theoretical 
basis for the understanding the aroma profiles and application 
performance of tea flowers, suggesting further research into their 
physicochemical composition, bioactivity, and the practical 
application in functional foods, beverages, and food flavor industries.
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