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Background: Salt usage patterns have been associated with a risk of multiple 
diseases; however, their relationship with heavy metal exposure has not been 
extensively studied.

Methods: This study analyzed survey data from 11,574 NHANES participants. 
Weighted linear regression models were used to examine the relationship 
between the type of salt used by participants, the frequency of adding salt at the 
table, and the frequency of adding regular or seasoned salt to cooking or food 
preparation, and urinary concentrations of 10 heavy metals. Multiple sensitivity 
analyses were also performed.

Results: The weighted regression analysis indicated that participants’ salt usage 
patterns were associated with an increased urinary excretion of certain heavy 
metals. Specifically, regarding the type of salt used, compared to regular salt, 
the use of salt substitutes was significantly positively correlated with urinary 
molybdenum (Mo) levels, while not using salt or substitutes at the table was 
significantly positively correlated with urinary levels of both Mo and arsenic (As). 
In terms of the frequency of adding regular salt at the table, frequent addition 
compared to rarely adding salt was significantly positively correlated with urinary 
levels of cadmium (Cd), and antimony (Sb), while showing a significant negative 
correlation with urinary Mo levels. Additionally, when examining the frequency 
of using regular salt during cooking or food preparation, those who occasionally 
or very often added regular salt had significantly higher urinary levels of barium 
(Ba), cesium (Cs), and thallium (Tl) compared to those who never added regular 
salt during cooking. These associations remained stable in sensitivity analyses.

Conclusion: Our analysis revealed that participants’ salt usage patterns are 
associated with increased excretion of certain heavy metals, suggesting possible 
increased exposures to these metals. While these findings are concerning, 
they require validation in other populations and should be confirmed through 
prospective studies designed based on this hypothesis.
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1 Introduction

With industrialization’s progression, the impact of environmental pollutants on human 
health has become increasingly severe. It is reported that the global disease burden attributed to 
environmental factors accounts for approximately 8–9% of the total disease burden (1), with even 
higher proportions observed in developing countries (2). Heavy metals play a particularly 
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significant role in this regard (3). These metals are widely present in the 
surrounding environment and primarily enter the human body through 
food, drinking water, inhalation, and skin contact (4). Consuming 
contaminated food and water is a major source of human heavy metal 
exposure. Long-term excretion of heavy metals is associated with an 
increased risk of various diseases, including cardiovascular disease (5), 
diabetes (6), respiratory diseases (7), dermatological disorders (8), and 
certain cancers (9). Even at low concentrations, prolonged excretion of 
heavy metals can adversely affect human health (4, 10). Studies show a 
significant positive association between excretion of heavy metals and 
their mixtures and all-cause mortality in U.S. populations (11). In 2019 
alone, nearly 1 million deaths globally were attributed to lead (Pb) 
exposure, accounting for approximately 50% of deaths linked to known 
chemical exposures (12). This has led to widespread concern regarding 
heavy metal exposure.

Salt is a common ingredient in food preparation and seasoning; 
its usage patterns and quantities can significantly impact human 
health. Adding salt to food is directly linked to an individual’s 
preference for a salty diet and habitual salt intake (13). The frequency 
of adding salt can serve as an indicator of long-term preferences for 
salty flavors and overall sodium intake, which is directly associated 
with 24-h urinary sodium excretion (14).

Numerous studies have explored the relationship between salt 
consumption patterns and health outcomes. There is a strong and 
consistent association between salt intake, consumption of salty foods, 
and the incidence of gastric cancer and other precancerous conditions, 
possibly due to heavy metal contamination in salt (15, 16). Previous 
research has shown that, compared to those who never add salt at the 
table, individuals who always or frequently do so face an increased risk 
of gastric, lung, testicular, and bladder cancers. The consumption of 
processed meats, which generally have high sodium contents, is also 
significantly associated with an elevated risk of gastrointestinal cancers, 
urinary system cancers, and malignancies of the lung, prostate, testicles, 
and blood (17). Research indicates that high sodium intake is strongly 
associated with increased risks of cardiovascular diseases and related 
mortality (18). Further studies suggest that the frequency of salt addition 
to food is closely linked to cardiovascular disease risk, with lower 
frequencies of salt addition reducing the risk of heart failure and 
ischemic heart disease (IHD) (14). Moreover, higher frequencies of salt 
use are significantly associated with increased risks of multiple 
conditions, including psoriasis (19), chronic kidney disease (20), sleep 
apnea (21), and type 2 diabetes (22). One study found that individuals 
who frequently add extra salt to prepared meals have twice the risk of 
developing type 2 diabetes compared to those who never add salt (23). 
Furthermore, salt consumption habits have been causally linked to 
cognitive impairment (24).

In addition to the quantity and frequency of salt used, the type of 
salt may also influence health outcomes. Recent studies suggest that 
substituting regular salt with salt alternatives may lower blood 
pressure and reduce the incidence of stroke, major cardiovascular 
events, and all-cause mortality (25). However, salt may also pose 
additional health risks due to contamination with heavy metals (26–
29). The cooking process may alter the metal content in food. For 
instance, Devesa et al. observed a significant increase in arsenic levels 
in salted cod after cooking (30). Similarly, other studies have reported 
elevated concentrations of heavy metals—including lead (Pb), 
cadmium (Cd), arsenic (As), and mercury (Hg)—in salted fish (31). 
Many researchers attribute the health risks associated with salt 

consumption primarily to high sodium intake, often overlooking the 
potential role of contaminant exposure.

Some studies suggest that contaminants in salt may mediate the 
relationship between salt use and adverse health outcomes (20). This 
is because some studies have found that the use of 24-h urinary 
sodium alone may not fully explain the association between the 
frequency of salt addition and certain health outcomes (32). This 
raises the question of whether salt usage patterns might influence 
health outcomes, in part, by altering heavy metal exposure in the body. 
Could heavy metal exposure act as an intermediary in the complex 
relationship between salt use and health outcomes? While the effects 
of salt usage patterns on cardiovascular and other diseases have been 
widely studied, the relationship between salt consumption patterns 
and heavy metal exposure remains largely unexplored.

To address these questions and fill this research gap, this study 
aims to explore the association between salt usage patterns and heavy 
metal exposure using data from the National Health and Nutrition 
Examination Survey (NHANES). Specifically, we will examine the 
relationships between the types of salt regularly used by participants, 
the frequency of adding salt at the table, and the frequency of adding 
regular or seasoned salt during cooking or food preparation, with the 
urinary concentrations of 10 heavy metals: barium (Ba), Cd, cobalt 
(Co), cesium (Cs), molybdenum (Mo), Pb, antimony (Sb), thallium 
(Tl), tungsten (W), and As. The findings will provide a deeper 
understanding of the role of salt usage patterns in certain health 
outcomes and offer valuable insights into how dietary habits may 
influence heavy metal exposure. Additionally, this research will 
provide a crucial reference for future studies investigating the complex 
interactions among diet, environmental pollutants, and human health.

2 Methods

2.1 Study population

The data for this study are sourced from NHANES, a cross-sectional 
survey conducted by the National Center for Health Statistics (NCHS) 
within the Centers for Disease Control and Prevention (CDC). NHANES 
is designed to assess the health and nutritional status of U.S. adults and 
children. Using a complex, multistage, probability sampling design, the 
survey provides a representative sample of the U.S. population across all 
age groups. To generate reliable statistical data, NHANES oversampled 
individuals aged 60 and older, as well as African Americans and 
Hispanics. The NHANES study protocol was approved by the NCHS 
Ethics Review Board, and all participants provided informed consent. 
The NHANES data are fully anonymized public data, collected and 
utilized in accordance with NHANES privacy protection policies and 
relevant laws and regulations. All data used in this study are derived from 
publicly available datasets and do not involve any personally identifiable 
information; therefore, no additional ethical review is required.

Since 2003, NHANES has conducted continuous surveys on salt 
usage patterns among the U.S. population. Therefore, this study 
selected participants aged 20 and older from eight consecutive 
NHANES cycles between 2003 and 2018. We filtered the data by first 
excluding participants under 20 years old (N = 35,522), then excluding 
those missing urinary metal data (N = 30,871), followed by excluding 
those lacking data on the type of salt added at the table and salt usage 
habits during cooking (N = 1,235). Finally, we excluded participants 
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with missing covariate data (N = 1,110), resulting in a total of 11,574 
participants included in the analysis. The detailed data filtering 
process is illustrated in Figure 1.

2.2 Heavy metal measurements

Participants were instructed to collect spot urine samples at the 
Mobile Examination Center (MEC), which were then processed, 
stored, and transported to the Division of Laboratory Sciences, 
National Center for Environmental Health, Centers for Disease 
Control and Prevention in Atlanta, GA, for analysis. All heavy metals 
were analyzed using inductively coupled plasma dynamic reaction cell 
mass spectrometry (ICP-DRC-MS). This study included 10 urinary 
heavy metal elements with detection rates exceeding 76.19%, namely 
Ba, Cd, Co, Cs, Mo, Pb, Sb, Tl, W, and As, with Sb having the lowest 
detection rate. For metals with concentrations below the limit of 
detection (LOD), NHANES replaced the values with LOD divided by 
the square root of 2. Detailed information on the detection rates of 
metal elements can be  found in Supplementary Table  1. Urinary 
creatinine levels were also measured to account for urine dilution.

2.3 Survey of salt use patterns

Since the 2003–2004 cycle, NHANES has continuously collected 
data on participants’ salt usage patterns through dietary interviews. 
During these interviews, participants are asked, “What type of salt do 
you  usually add to your food at the table?” They can choose one 
answer from four options: 1. Ordinary salt including regular iodized 

salt, sea salt, and seasoning salts made with regular salt; 2. Lite salt; 3. 
Salt products or salt substitutes; 4. Does not use or add salt products 
at the table. So-called lite salt was recorded as such and has a reduced 
sodium content. Salt substitutes do not contain sodium (33). Low salt 
is usually a mixture containing NaCl and KCl (34), while salt 
substitutes usually contain KCl (35). If participants select one of the 
first three options, they are subsequently asked, “How often do you add 
ordinary salt to your food at the table?” They can choose one answer 
from three options: 1. Rarely; 2. Occasionally; 3. Very often. Following 
this, all participants are asked, “How often is ordinary salt or seasoned 
salt added in cooking or preparing foods in your household?” They 
select one answer from four options: 1. Never; 2. Rarely; 3. 
Occasionally; 4. Very often. Participants who refuse to answer, select 
“other,” or respond with “I do not know” are assigned a missing value.

2.4 Covariates

In this study, several potential confounding factors were considered 
in the statistical analysis, including demographic characteristics such as 
age (continuous), gender (male and female), and race/ethnicity 
(Mexican American, Non-Hispanic White, Non-Hispanic Black, Other 
Hispanic, and Other groups). Socioeconomic status (SES) indicators 
included educational attainment (Less than 9th Grade, 9th-11th Grade, 
High School Graduate/GED or Equivalent, Some College or AA Degree, 
and College Graduate or Above) and the poverty-to-income ratio (PIR) 
(≤1, 1–4, and ≥ 4). Additionally, body mass index (BMI) was 
categorized as underweight (<18.5), normal (18.5 to <25), overweight 
(25 to <30), and obese (30 or greater), along with smoking status 
(categorized as never smoker, former smoker, and current smoker).

2.5 Statistical analysis

Continuous variables are presented as medians (IQR), while 
categorical data are expressed as percentages. To minimize the impact 
of urine dilution, urinary metal concentrations were adjusted using 
their ratios to urinary creatinine, units in μg/mg creatinine. Since all 
metal elements exhibited significant skewness, their natural logarithms 
were used in regression analyses to enhance normality. Taking into 
account the design of NHANES and following the analysis guidelines 
published by the National Center for Health Statistics, the two-year 
metal subsample weights were incorporated in the analysis to ensure 
that the results are nationally representative.

The primary analysis employed a weighted multivariable linear 
regression model to examine the association between heavy metal 
levels and salt usage patterns. The models were adjusted for age, 
gender, race/ethnicity, educational attainment, PIR, BMI, and 
smoking status. Results are presented as regression coefficients (β) 
along with their 95% confidence intervals.

2.6 Sensitivity analysis

Firstly, as the consumption of fish and shellfish is a significant 
source of human exposure to certain heavy metals, such as As and Cd 
(36–38), we  further adjusted for participants’ fish and shellfish 
consumption over the past 30 days in the sensitivity analysis.

FIGURE 1

Participant screening flowchart.
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Secondly, given that smoking is a significant source of heavy 
metals in the body (4, 39), we further excluded current smokers and 
repeated the analysis on the remaining population, adjusting for fish 
and shellfish intake.

All analyses were conducted using R version 4.4.1, with weighted 
regression analysis performed using the “survey” package. Our study 
aims to provide preliminary exploratory insights into the relationship 
between salt use patterns and heavy metal exposure and to propose 
potential directions for future prospective research. To maintain 
sensitivity to the results, no multiple corrections were applied to 
p-values, and a two-sided p-value of <0.05 was considered statistically 
significant (40–43).

3 Results

3.1 General characteristics of participants 
and distribution of urinary metals

As shown in the baseline characteristics in Table 1, the median age 
of participants was 46.0 years (IQR: 33.0, 59.0), with females 
comprising 52% of the sample. The majority racial/ethnic group was 
Non-Hispanic White (69%). Most participants had higher educational 
attainment (Some College or AA degree: 32%) and a high PIR (> 1: 
86%), 54% reported never smoking, and 37% were classified as obese.

As shown in Table 1, participants categorized by the type of salt 
typically added to food exhibit the following age distributions: those 
using Lite salt and Salt substitute have median ages of 53.0 (33.0, 66.0) 
and 56.0 (38.0, 67.0), respectively, while participants using Ordinary 
salt and those who reported not using salt at the table have median ages 
of 45.0 (32.0, 57.0) and 49.0 (35.0, 62.0), respectively. The proportion 
of females was significantly higher than that of males across all four 
types of salt usage (p = 0.027). Non-Hispanic Black participants were 
more likely to use lite salt (15%), salt substitutes (15%), or to avoid 
adding salt at the table (14%), while Non-Hispanic White participants 
more commonly used ordinary salt (71%) and salt substitutes (65%). 
Obese participants were more likely to opt for lite salt (44%) and salt 
substitutes (44%). Current smokers predominantly chose ordinary salt 
(23%), possibly influenced by an impaired sense of taste, whereas 
never-smokers more frequently reported not using table salt (58%).

Figure  2 illustrates the distribution of urinary metals and the 
results of the correlation analysis. Among the overall participants, the 
levels of As and Mo are the highest, while the levels of Sb, Tl, and W 
are the lowest. After adjusting for urine dilution, the Pearson 
correlation analysis of log-transformed urinary metals revealed 
significant positive associations among all metals. The strongest 
correlation was observed between Cs and Tl (r = 0.58), followed by Ba 
and Co (r = 0.41) and Cd and Pb (r = 0.40).

3.2 Urinary metal levels by type of salt 
used, frequency of adding ordinary salt at 
the table, and frequency of using ordinary 
salt during cooking

Table  1 and Supplementary Table  2 present the differences in 
urinary metal levels categorized by the type of salt used, frequency of 
adding salt at the table, and frequency of using salt during cooking. As 
shown in Table 1, the differences in urinary levels of Cd, Mo, and As 

between the four groups of participants were significant, while the 
differences in the other metals were not significant.

As shown in Supplementary Table  2, among participants 
categorized by the frequency of adding salt at the table, those who 
responded “Very Often” have significantly higher levels of Cd, Pb, and 
Sb in their urine compared to those who responded “Rarely” and 
“Occasionally.” For the other metals, the differences among the three 
groups were not statistically significant. Among the participants 
divided according to the frequency of salt use during cooking, there 
were significant differences in urinary levels of Cd, Mo, and Pb among 
the four groups of participants.

3.3 Association between type of salt used, 
frequency of adding ordinary salt at the 
table, and frequency of using ordinary salt 
during cooking with urinary metal levels

The association between urinary metal levels and the type of salt 
used is presented in Table 2. After adjusting for confounding factors, 
a correlation was found between the type of salt used and urinary 
heavy metals. Specifically, the use of salt substitutes was significantly 
positively correlated with urinary Mo levels compared to the use of 
ordinary salt, while not using salt or substitutes at the table was 
significantly positively correlated with urinary Mo and As levels.

The association between the frequency of adding salt at the table 
and urinary metal levels is shown in Table 3. Compared to rarely 
adding salt at the table, frequently adding salt was significantly 
positively correlated with urinary Cd, Pb, and Sb levels and 
significantly negatively correlated with urinary Mo levels. Trend 
analysis indicates a significant positive trend in urinary Cd, Pb, and 
Sb excretion levels with increasing frequency of table salt use, while 
urinary Mo levels show a significant negative trend.

The association between the frequency of using salt during 
cooking and urinary metal levels is shown in Table 4. Compared to 
never adding salt during cooking, occasionally or very often adding 
salt is significantly positively correlated with urinary levels of Ba, Cs, 
Pb, and Tl. Trend analysis indicates a significant positive trend in 
urinary exposure levels of Cs, Pb, Tl, and As with increasing frequency 
of salt use during cooking, while urinary Mo levels exhibit a significant 
negative trend.

3.4 Sensitivity analysis

After adjusting for fish and shellfish consumption over the past 
30 days, the analysis results regarding the association between the 
type of salt used, the frequency of adding salt at the table, and 
heavy metals are consistent with the previous findings 
(Supplementary Tables 3, 4). Compared to never adding salt during 
cooking, occasionally or very often adding salt is significantly 
positively correlated with urinary levels of Ba, Cs, Pb, and Tl. 
Trend analysis indicates a significant positive trend in urinary 
exposure levels of Cs, Pb, and Tl with increasing frequency of salt 
use during cooking. Urinary Mo levels continue to exhibit a 
significant negative trend (Supplementary Table 5).

After excluding current smokers, the analysis results regarding the 
association between the type of salt used and urinary heavy metals 
remain consistent with the previous findings (Supplementary Table 6). 
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TABLE 1 Basic characteristics of the study population (N = 11,574), NHANES, United States.

Overall Type of table salt used

Characteristic Overall, 
N = 11,574 

(100%)1

Ordinary salt, 
N = 7,525 

(68%)1

Lite salt, 
N = 351 
(2.6%)1

Salt substitute, 
N = 178 (1.4%)1

Does not add 
salt or 

substitutes, 
N = 3,520 

(28%)1

p-value2

Age (years) 46.0 (33.0, 59.0) 45.0 (32.0, 57.0) 53.0 (33.0, 66.0) 56.0 (38.0, 67.0) 49.0 (35.0, 62.0) <0.001

Sex 0.027

Female 5,932 (52%) 3,776 (51%) 178 (59%) 91 (55%) 1887 (54%)

Male 5,642 (48%) 3,749 (49%) 173 (41%) 87 (45%) 1,633 (46%)

Race/ethnicity <0.001

Non-Hispanic White 5,228 (69%) 3,539 (71%) 152 (68%) 89 (73%) 1,448 (65%)

Non-Hispanic Black 2,473 (11%) 1,445 (9.6%) 98 (15%) 50 (15%) 880 (14%)

Mexican American 1803 (7.9%) 1,264 (8.4%) 42 (6.7%) 21 (6.0%) 476 (6.9%)

Other/multiracial 1,090 (6.7%) 668 (6.2%) 33 (6.2%) 8 (3.3%) 381 (7.9%)

Other Hispanic 980 (4.9%) 609 (4.6%) 26 (4.4%) 10 (3.3%) 335 (5.9%)

Education attainment 0.083

Some College or AA degree 3,460 (32%) 2,249 (32%) 101 (32%) 59 (40%) 1,051 (31%)

High School Grad/GED 2,706 (24%) 1789 (24%) 98 (27%) 42 (23%) 777 (23%)

College Graduate or above 2,633 (29%) 1718 (29%) 64 (21%) 37 (22%) 814 (30%)

9-11th Grade 1,626 (10%) 1,057 (10%) 56 (15%) 23 (11%) 490 (10%)

Less Than 9th Grade 1,149 (5.2%) 712 (4.9%) 32 (6.2%) 17 (4.2%) 388 (5.9%)

PIR group 0.6

1 ~ 4 6,253 (50%) 4,029 (50%) 208 (57%) 106 (55%) 1910 (50%)

≥ 4 2,957 (36%) 1920 (36%) 83 (32%) 38 (33%) 916 (36%)

≤ 1 2,364 (14%) 1,576 (14%) 60 (12%) 34 (13%) 694 (14%)

BMI group 0.2

Normal(18.5 to <25) 3,168 (29%) 2,154 (29%) 93 (25%) 41 (23%) 880 (27%)

Obese(30 or greater) 4,358 (37%) 2,724 (36%) 147 (44%) 84 (44%) 1,403 (38%)

Overweight(25 to <30) 3,873 (33%) 2,536 (33%) 105 (29%) 52 (32%) 1,180 (33%)

Underweight(<18.5) 175 (1.4%) 111 (1.4%) 6 (1.9%) 1 (0.8%) 57 (1.4%)

Smoke group <0.001

Never smoker 6,313 (54%) 3,944 (52%) 204 (55%) 86 (51%) 2079 (58%)

Former smoker 2,922 (25%) 1859 (25%) 105 (33%) 62 (34%) 896 (26%)

Current smoker 2,339 (21%) 1722 (23%) 42 (12%) 30 (15%) 545 (16%)

Hypertension <0.001

Hypertensive 6,194 (50%) 3,748 (47%) 208 (59%) 129 (67%) 2,109 (55%)

Non-Hypertensive 5,380 (50%) 3,777 (53%) 143 (41%) 49 (33%) 1,411 (45%)

Taking prescription for 

hypertension

<0.001

Yes 3,509 (26%) 1953 (22%) 146 (42%) 96 (46%) 1,314 (32%)

No 8,065 (74%) 5,572 (78%) 205 (58%) 82 (54%) 2,206 (68%)

Ba (μg/L) 1.28 (0.61, 2.45) 1.29 (0.63, 2.48) 1.35 (0.58, 2.05) 1.21 (0.51, 2.34) 1.22 (0.59, 2.43) 0.2

Cd (μg/L) 0.21 (0.10, 0.40) 0.20 (0.09, 0.39) 0.20 (0.11, 0.45) 0.20 (0.12, 0.42) 0.22 (0.11, 0.42) 0.021

Co (μg/L) 0.35 (0.21, 0.56) 0.36 (0.21, 0.56) 0.35 (0.23, 0.49) 0.32 (0.17, 0.53) 0.35 (0.21, 0.55) 0.6

Cs (μg/L) 4.5 (2.6, 6.9) 4.5 (2.6, 6.9) 4.1 (2.4, 6.2) 4.2 (2.2, 7.1) 4.6 (2.7, 6.9) 0.074

Mo (μg/L) 38 (20, 67) 37 (19, 66) 33 (19, 62) 40 (18, 76) 40 (21, 70) 0.033

Pb (μg/L) 0.42 (0.23, 0.75) 0.42 (0.22, 0.75) 0.39 (0.23, 0.72) 0.40 (0.23, 0.73) 0.42 (0.23, 0.75) 0.8

Sb (μg/L) 0.05 (0.03, 0.09) 0.05 (0.03, 0.09) 0.05 (0.03, 0.09) 0.05 (0.02, 0.09) 0.05 (0.03, 0.09) 0.9

Tl (μg/L) 0.16 (0.09, 0.25) 0.16 (0.09, 0.25) 0.13 (0.08, 0.24) 0.13 (0.07, 0.25) 0.16 (0.09, 0.25) 0.054

W (μg/L) 0.06 (0.03, 0.13) 0.06 (0.03, 0.13) 0.06 (0.03, 0.12) 0.06 (0.03, 0.12) 0.07 (0.03, 0.13) 0.6

As (μg/L) 7 (3, 15) 7 (3, 14) 6 (3, 12) 6 (3, 17) 8 (4, 17) <0.001
1Median (Q1, Q3); n (unweighted) (%).
2Design-based KruskalWallis test; Pearson’s X^2: Rao & Scott adjustment.
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Compared to rarely adding salt at the table, frequently adding salt is 
significantly positively correlated with urinary levels of Cd, Pb, and 
Sb, while it shows a significant negative correlation with urinary Mo 
levels. Trend analysis indicates a significant positive trend in urinary 
exposure levels of Pb and Sb with increasing frequency of adding salt 
at the table. Urinary Mo levels continue to exhibit a significant 
negative trend (Supplementary Table 7). Compared to never adding 
salt during cooking, occasionally or very often adding salt is 
significantly positively correlated with urinary levels of Ba, Cs, and Tl. 
Trend analysis suggests that with increasing frequency of salt use in 
cooking, the urinary excretion levels of Cs, Pb, and Tl exhibit a 
significant positive trend (Supplementary Table 8).

The association between urinary metal levels and the use of 
antihypertensive prescription medications is shown in 
Supplementary Table 9. After adjusting for covariates, including age, 
gender, race/ethnicity, education attainment, smoking status, PIR, 
BMI, and consumption of shellfish and fish in the past 30 days, the 
analysis indicates a significant negative correlation between the use of 
antihypertensive medications and urinary levels of Ba, Cd, Cs, and Pb, 
while a significant positive correlation was found with urinary W 
levels. No significant associations were observed between 
antihypertensive medication use and other metals.

Given the potential impact of antihypertensive medication use, 
we included the use of antihypertensive drugs as a confounding factor 
in our sensitivity analysis and conducted a regression analysis to further 
validate whether the association between salt usage patterns and heavy 
metal exposure remained stable. The analysis of the association between 
the type of salt used and urinary metal levels showed that, compared to 
ordinary salt, the use of salt substitute was significantly positively 
associated with urinary Mo levels, while not using salt or substitutes at 
the table was significantly positively associated with urinary Mo and As 
levels (Supplementary Table  10). In the association between the 

frequency of salt use at the table and urinary metal levels, frequent use 
of salt at the table was significantly positively correlated with urinary 
Cd, Pb, and Sb levels, and negatively correlated with Mo levels, 
compared to rarely adding salt at the table. Trend tests remained 
significant (Supplementary Table 11). In the association between salt use 
during cooking and urinary metal levels, compared to never adding salt 
during cooking, rare, occasionally, or very often adding salt during 
cooking was significantly positively associated with urinary Ba, Cs, Pb, 
and Tl levels (Supplementary Table 12).

4 Discussion

To our knowledge, this is the first report on the association 
between salt usage patterns and heavy metal excretion in the general 
population. In this cross-sectional study involving 11,574 
participants from NHANES, we found that participants’ patterns of 
salt usage are associated with an increased urinary excretion of 
certain heavy metals. Specifically, regarding the type of salt used, 
compared to ordinary salt, which is high in sodium, the use of salt 
substitutes, which are high in potassium is significantly positively 
correlated with urinary levels of Mo, while not using salt or 
substitutes at the table is significantly positively correlated with 
urinary levels of both Mo and As. Concerning the frequency of 
adding ordinary salt at the table, frequently adding salt compared 
to rarely doing so is significantly positively associated with urinary 
levels of Cd, Pb, and Sb, while being negatively associated with 
urinary levels of Mo. In terms of the frequency of using ordinary 
salt during cooking, those who occasionally or very often add salt 
are significantly positively correlated with urinary levels of Ba, Cs, 
Pb, and Tl compared to participants who never add salt 
while cooking.

FIGURE 2

The distribution and correlations of 10 urinary metals. (A) Violin plot of urine concentration distribution of 10 heavy metals; (B) Pearson correlation 
analysis of log-transformed urine metals after adjusting for urine dilution, the depth of the red color represents the correlation’s strength.
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We found a significant positive correlation between the frequency 
of adding ordinary salt at the table and/or during cooking and urinary 
levels of Ba, Cd, Cs, Sb, Pb, and Tl. This association remained stable 

in sensitivity analyses. We suggest several possible explanations for 
this correlation: (1) Salt contains trace amounts of heavy metals (44, 
45), and with increasing frequency of salt usage, the accumulation of 

TABLE 2 Association between urinary levels of 10 metals and the type of salt used.

Urine metals (μg/
mg creatinine)

Type of table salt used β (95%CI) p-value

Ba

Ordinary salt Reference

Lite salt 0.024(−0.097,0.146) 0.695

Salt substitute −0.084(−0.263,0.095) 0.362

Does not add salt or substitutes −0.02(−0.066,0.026) 0.401

Cd

Ordinary salt Reference

Lite salt −0.014(−0.099,0.071) 0.75

Salt substitute 0.01(−0.105,0.126) 0.86

Does not add salt or substitutes 0.012(−0.025,0.05) 0.515

Co

Ordinary salt Reference

Lite salt 0.027(−0.05,0.105) 0.491

Salt substitute −0.041(−0.153,0.072) 0.479

Does not add salt or substitutes −0.023(−0.057,0.012) 0.206

Cs

Ordinary salt Reference

Lite salt −0.003(−0.094,0.087) 0.946

Salt substitute 0.002(−0.085,0.09) 0.961

Does not add salt or substitutes −0.003(−0.025,0.019) 0.775

Mo

Ordinary salt Reference

Lite salt 0.022(−0.051,0.095) 0.557

Salt substitute 0.155(0.062,0.247) 0.001

Does not add salt or substitutes 0.046(0.014,0.078) 0.006

Pb

Ordinary salt Reference

Lite salt −0.026(−0.117,0.065) 0.578

Salt substitute −0.033(−0.169,0.104) 0.639

Does not add salt or substitutes −0.016(−0.051,0.019) 0.374

Sb

Ordinary salt Reference

Lite salt 0.063(−0.02,0.146) 0.139

Salt substitute 0.031(−0.091,0.153) 0.619

Does not add salt or substitutes 0.002(−0.036,0.04) 0.916

Tl

Ordinary salt Reference

Lite salt −0.005(−0.084,0.074) 0.896

Salt substitute −0.003(−0.11,0.105) 0.96

Does not add salt or substitutes 0.004(−0.029,0.037) 0.805

W

Ordinary salt Reference

Lite salt 0.074(−0.05,0.198) 0.246

Salt substitute 0.104(−0.039,0.247) 0.158

Does not add salt or substitutes 0.04(−0.004,0.083) 0.075

As

Ordinary salt Reference

Lite salt −0.105(−0.231,0.021) 0.105

Salt substitute 0.063(−0.101,0.228) 0.452

Does not add salt or substitutes 0.087(0.031,0.143) 0.003

Barium (Ba), Cadmium (Cd), Cobalt (Co), Cesium (Cs), Molybdenum (Mo), Lead (Pb), Antimony (Sb), Thallium (Tl), Tungsten (W), and Arsenic (As). Models were adjusted for age, gender, 
race/ethnicity, education attainment, smoking status, PIR, and BMI.
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heavy metals in the body may also rise. (2) Salt use may facilitate the 
release of heavy metal elements from food (46, 47). (3) The dietary 
habits of these participants may result in higher levels of heavy metals 
in the food and water they consume. (4) The use of sodium and 
potassium may influence the absorption and excretion of certain 
metal elements.

Ba, Cd, Pb, Sb, Tl, and Cs are commonly occurring heavy metal 
elements that are known to exhibit bioaccumulation and magnification 
effects (48–52). Some studies have detected the presence of heavy 
metals in ordinary salt (such as Pb, As, Hg, Cd, and Ba), although the 
levels are generally considered safe and acceptable (44, 45). Despite 
significant individual variation in salt intake, the cumulative daily 
consumption of salt can be substantial (53), potentially contributing 
to the bioaccumulation and magnification of trace if the salt contains 
metal contaminants.

The impact of salt use during cooking on the release of heavy 
metals remains a relatively under-researched area. Although studies 
have shown that cooking methods and food preparation techniques 
can influence the bioavailability and release of heavy metals (54, 55), 
there is a notable lack of in-depth exploration regarding the specific 
role of salt. Salt serves not only as a seasoning in cooking but may also 
influence the migration of heavy metals by altering the chemical 
environment of food and the moisture content. For instance, studies 
have found that the levels of Hg, Pb, As, and Cd in salted sardines are 
significantly higher than those in fresh or canned sardines (46). 
Similarly, salted meat products tend to have relatively high levels of Cs 
(47). Additionally, some studies have found higher levels of Pb and Cd 
in certain spices (56). Since salt and spices are often used together, 
particularly in certain regions or dietary habits, this could further 
increase the metal burden from dietary intake. Furthermore, changes 

TABLE 3 Association between urinary levels of 10 metals and the frequency of adding salt at the table.

Urine metals (μg/mg 
creatinine)

Frequency of adding 
salt at the table

β (95%CI) p-value p for trend

Ba

Rarely Reference

Occasionally 0.012(−0.049,0.073) 0.696
0.144

Very Often 0.045(−0.014,0.103) 0.137

Cd

Rarely Reference

Occasionally −0.001(−0.038,0.036) 0.957
0.002

Very Often 0.086(0.037,0.134) <0.001

Co

Rarely Reference

Occasionally −0.016(−0.053,0.021) 0.403
0.838

Very Often 0.01(−0.04,0.059) 0.704

Cs

Rarely Reference

Occasionally 0.003(−0.029,0.035) 0.875
0.286

Very Often 0.019(−0.013,0.052) 0.245

Mo

Rarely Reference

Occasionally −0.034(−0.072,0.004) 0.084
0.014

Very Often −0.055(−0.102,-0.009) 0.022

Pb

Rarely Reference

Occasionally 0.022(−0.021,0.065) 0.316
<0.001

Very Often 0.156(0.113,0.199) <0.001

Sb

Rarely Reference

Occasionally 0.046(0.002,0.091) 0.045
<0.001

Very Often 0.082(0.036,0.128) <0.001

Tl

Rarely Reference

Occasionally 0.011(−0.022,0.043) 0.518
0.745

Very Often −0.01(−0.049,0.029) 0.615

W

Rarely Reference

Occasionally 0.002(−0.055,0.059) 0.944
0.268

Very Often −0.047(−0.121,0.028) 0.222

As

Rarely Reference

Occasionally −0.006(−0.077,0.064) 0.857
0.367

Very Often 0.037(−0.03,0.104) 0.285

Barium (Ba), Cadmium (Cd), Cobalt (Co), Cesium (Cs), Molybdenum (Mo), Lead (Pb), Antimony (Sb), Thallium (Tl), Tungsten (W), and Arsenic (As). Models were adjusted for age, gender, 
race/ethnicity, education attainment, smoking status, PIR, and BMI.
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in pH, salinity, and temperature during cooking may affect the 
leaching of heavy metals from cooking utensils (57). High 
temperatures and acidic conditions during cooking can potentially 

promote the leaching of Tl from aluminum food contact materials, 
thereby increasing the sources of heavy metal exposure in food 
(58, 59).

TABLE 4 Association between urinary levels of 10 metals and the frequency of using salt during cooking or preparing foods.

Urine metals (μg/mg 
creatinine)

Salt used in preparation β (95%CI) p-value p for trend

Ba

Never Reference

Rarely 0.047(−0.045,0.139) 0.322

0.071Occasionally 0.092(0.009,0.175) 0.032

Very Often 0.077(−0.004,0.159) 0.067

Cd

Never Reference

Rarely −0.004(−0.068,0.06) 0.907

0.241Occasionally −0.018(−0.078,0.043) 0.569

Very Often 0.025(−0.04,0.091) 0.454

Co

Never Reference

Rarely −0.01(−0.071,0.052) 0.76

0.114Occasionally −0.005(−0.063,0.052) 0.858

Very Often −0.034(−0.09,0.021) 0.23

Cs

Never Reference

Rarely 0.076(0.028,0.123) 0.002

<0.001Occasionally 0.069(0.024,0.115) 0.003

Very Often 0.108(0.07,0.146) <0.001

Mo

Never Reference

Rarely −0.018(−0.09,0.053) 0.622

0.016Occasionally −0.043(−0.109,0.024) 0.211

Very Often −0.063(−0.132,0.006) 0.075

Pb

Never Reference

Rarely −0.023(−0.089,0.043) 0.493

<0.001Occasionally 0.005(−0.053,0.063) 0.868

Very Often 0.075(0.017,0.133) 0.013

Sb

Never Reference

Rarely −0.022(−0.095,0.051) 0.554

0.263Occasionally −0.021(−0.093,0.052) 0.578

Very Often −0.04(−0.112,0.032) 0.274

Tl

Never Reference

Rarely 0.045(−0.009,0.1) 0.106

0.002Occasionally 0.057(0.003,0.111) 0.042

Very Often 0.083(0.032,0.133) 0.002

W

Never Reference

Rarely −0.007(−0.079,0.065) 0.85

0.056Occasionally −0.006(−0.079,0.067) 0.878

Very Often −0.055(−0.124,0.014) 0.122

As

Never Reference

Rarely −0.019(−0.117,0.079) 0.705

0.031Occasionally 0.008(−0.092,0.108) 0.873

Very Often 0.062(−0.043,0.166) 0.25

Barium (Ba), Cadmium (Cd), Cobalt (Co), Cesium (Cs), Molybdenum (Mo), Lead (Pb), Antimony (Sb), Thallium (Tl), Tungsten (W), and Arsenic (As). Models were adjusted for age, gender, 
race/ethnicity, education attainment, smoking status, PIR, and BMI.
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Higher frequencies of salt use at the table and during cooking are 
associated with increased consumption of processed foods, red meat, 
and processed meats, along with lower intake of vegetables and fruits 
(60). More studies have found generally high levels of heavy metals in 
numerous processed foods (61), including grains, tubers (62, 63), 
meats (64), and algae (65). Additionally, food packaging materials 
represent another significant pathway for heavy metal exposure (66, 
67). Moreover, higher heavy metal exposure from primary processed 
foods should not be overlooked (68, 69). Furthermore, excessive salt 
intake may indirectly lead to increased water consumption (70), and 
the intake of water contaminated with metals is also a critical pathway 
for heavy metal exposure.

Our study found that Mo is positively correlated with the use of 
salt substitutes and not using salt at the table (Table 2), while it 
shows a negative correlation with the frequency of adding ordinary 
salt at the table (Table 3) and a significant negative trend with the 
frequency of using ordinary salt during cooking (Table 4). It is worth 
noting that in this study, the proportion of participants using salt 
substitutes was relatively low (1.4%). Despite the limited sample size, 
we still observed highly significant effects. Currently, there is a lack 
of reports on the Mo content in salt substitutes. The primary 
component of salt substitutes is potassium chloride along with some 
spices and additives. Some studies have found that Mo levels in 
spices are generally high (71). This may represent an important 
source of Mo, but further investigation is needed, as the origin and 
preparation of different spices can significantly affect their Mo 
content (72). However, participants who tend to choose salt 
substitutes may primarily follow a lighter vegetarian diet (73), and 
research indicates that vegetarians have significantly higher Mo 
intake compared to those on mixed diets (74). This may explain the 
observed negative trend between the frequency of adding salt at the 
table and during cooking and Mo excretion. Another possible 
explanation relates to the types of foods consumed. Participants who 
frequently add salt during meals and cooking may consume more 
foods and beverages that are lower in Mo. This demographic often 
has lower socioeconomic status (75). It has been reported that the 
main dietary sources of Mo include legumes, grain products, and 
nuts, with Mo content in legumes ranging from approximately 2.99 
to 3.49 μg/g (74). Mo is an essential trace element involved as a 
cofactor in several key enzymes, such as xanthine oxidase and sulfite 
oxidase, playing a role in uric acid metabolism and maintaining 
normal neuronal activity (76). Most Mo intake in the human body 
comes from food and water (77). Individuals with normal diets and 
digestive function rarely suffer from Mo deficiency, as sufficient 
amounts can typically be obtained from food (78). In the body, Mo 
acts as an antagonist to copper, and excess Mo may lead to various 
diseases due to copper homeostasis disruption, the interaction of Cu 
and Mo could similarly mirror an interaction of Na or K and Mo. 
Additionally, studies have shown that high blood levels of Mo are 
closely associated with reduced sperm quality in men (79). 
Regarding hypertension, high airborne Mo exposures are 
significantly linked to a reduced risk of hypertension (80), and prior 
research has indicated that using salt substitutes can lower blood 
pressure (25).

As exposure primarily originates from drinking water, tobacco 
consumption, and the ingestion of As-contaminated foods (81). Our 
study found a significant positive correlation between As excretion 
and not using salt at the table, while no correlation was observed with 

the frequency of adding ordinary salt at the table or during cooking. 
This association remained significant even after adjusting for fish and 
shellfish consumption and excluding smoking participants. It should 
be noted, however, that the above explanations regarding Mo and As 
are speculative and currently lack direct supporting evidence. 
Therefore, targeted studies are needed to further explore and validate 
these findings.

Whether the use of table salt could influence the absorption and 
excretion of certain metal elements remains uncertain, as, to the best 
of our knowledge, no directly relevant studies have been reported. 
Despite the lack of direct evidence, we  propose the following 
hypothetical mechanisms: (1) Salt intake may affect the intestinal 
absorption of certain metals. A high-salt diet could potentially damage 
gastrointestinal epithelial cells or mucosa (82), thereby facilitating the 
entry of metal ions into the bloodstream. (2) High-salt diets have been 
found to significantly alter the composition of the gut microbiota (83). 
Changes in the gut microbiota may, in turn, influence the absorption 
and excretion of heavy metals by modifying gastrointestinal 
physiological conditions (e.g., pH), intestinal permeability, and the 
activity of enzymes involved in heavy metal metabolism (84). (3) The 
intake levels of sodium and potassium may influence the absorption 
and excretion of certain metal ions (85–90).

In this study, we analyzed spot urine sample data provided by 
NHANES to assess metal exposure levels, as it was the only biomarker 
dataset containing information on multiple metal levels in 
participants. Urine is one of the most common biomarkers for metal 
exposure, offering the advantages of being non-invasive and easily 
obtainable. It has also been widely applied as a marker of human metal 
exposure in numerous studies (8, 91). However, urinary metal 
detection does not always provide an accurate or comprehensive 
reflection of overall metal exposure in the body. Urinary metal levels 
are closely related to the absorption, biotransformation, and excretion 
processes of metals within the human body (92). Specifically, urinary 
Cd is a good biomarker for total body burden and long-term 
cumulative exposure (93), but urinary Pb is not an effective biomarker 
for assessing lead exposure in the general population (94). Total As in 
urine reflects both organic and inorganic As exposure. However, in 
populations with high fish and seafood intake, urinary total As 
primarily indicates organic As content rather than the more toxic 
inorganic As (95). Urinary Ba concentrations mainly reflect recent 
exposure, typically within the past 3 days to 2 weeks (96). Since Mo is 
primarily excreted through urine, urinary Mo serves as a good 
biomarker for short-term Mo exposure, but it is more sensitive to 
dietary Mo intake (97, 98). Sb primarily enters the body through diet. 
A study on populations exposed to electronic waste found that 
occupationally exposed individuals had higher median urinary Sb 
levels, while blood Sb levels were similar between exposed and 
unexposed groups (99). Co is also primarily excreted through urine, 
making urinary Co a critical biomarker for environmental Co 
exposure (100). Previous studies have shown an association between 
respiratory and urinary Co levels in workers with occupational Co 
exposure (101). Cs is excreted approximately 85% through urine, 
making it a reliable biomarker for Cs exposure (102). Similarly, Tl 
levels in urine and other biological samples are significantly correlated 
with environmental Tl exposure (103). For W, its distribution and 
excretion in mammals are similar to those of Mo, with the majority 
being filtered by the kidneys and ultimately excreted in urine (104). 
These findings underscore the objective limitations of using urinary 
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metal elements as biomarkers for human metal exposure. Such 
limitations pose challenges to the interpretation of our results and 
highlight the need for caution when inferring associations between 
salt usage patterns and metal exposure levels based on these findings. 
Specifically, the associations observed in this study between salt use 
patterns and Ba, Cd, Cs, Mo, Sb, Tl, and As are more likely to reflect 
recent or long-term metal exposure levels in participants. However, 
the association with Pb may not necessarily reflect the participants’ 
true exposure level.

This study has several unique strengths. First, this study is the first 
to reveal the potential association between heavy metal urinary 
excretion and salt consumption patterns. Second, the research assesses 
various aspects of salt consumption habits, including the type of salt 
used, the frequency of adding salt at the table, and the frequency of 
salt use during cooking, in relation to the risk of heavy metal exposure. 
This study has some limitations. First, the consumption patterns of salt 
was based on self-reports from participants, which may introduce 
potential bias. Second, while we adjusted for potential confounding 
factors, we could not eliminate all influences on heavy metal exposure. 
Third, the data were sourced from the general population in the 
United States, and further confirmation is needed regarding their 
representativeness for other populations. Fourth, due to restricted 
access to geographic coding data, we were unable to adjust for this 
information in the regression analyses. However, the potential impacts 
of dietary patterns and heavy metal exposure levels resulting from 
geographic differences should not be  overlooked. Fifth, the low 
detection rates for some metal elements may affect statistical power or 
introduce bias in the results (105, 106). Sixth, this study is based on a 
cross-sectional design. Although we identified significant associations, 
whether these associations are causal remains to be further verified.

5 Conclusion

In summary, our analysis of 11,574 NHANES participants 
revealed associations between participants’ salt usage patterns and 
urinary excretion concentrations of certain heavy metals. 
Specifically, compared to using regular table salt, which is based on 
NaCl, the use of salt substitutes, which are typically based on KCl 
was significantly positively correlated with urinary Mo levels, while 
the frequency of adding regular salt at the table or during cooking 
was significantly positively correlated with urinary levels of Ba, Cd, 
Cs, Sb, and Tl. These findings have uncovered some intriguing 
interactions between salt use patterns and urinary metal excretion, 
while also highlighting the complexity of the interplay between 
dietary habits, metal metabolism, and human health. They also 
provide public health agencies with critical information that must 
be taken into account when formulating dietary recommendations 
concerning salt and salt substitute use. While these findings are 
potentially concerning, they require validation in other populations 
and should be  confirmed through prospective studies designed 
based on this hypothesis.
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