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Introduction: The incidence of type 2 diabetes mellitus (T2DM) has increased 
in recent years. Alongside traditional pharmacological treatments, nutritional 
therapy has emerged as a crucial aspect of T2DM management. Inulin, a 
fructan-type soluble fiber that promotes the growth of probiotic species like 
Bifidobacterium and Lactobacillus, is commonly used in nutritional interventions 
for T2DM. However, it remains unclear which type of T2DM patients are suitable 
for inulin intervention. The aim of this study was to predict the effectiveness of 
inulin treatment for T2DM using a machine learning model.

Methods: Original data were obtained from a previous study. After screening 
T2DM patients, feature election was conducted using LASSO regression, 
and a machine learning model was developed using XGBoost. The model’s 
performance was evaluated based on accuracy, specificity, positive predictive 
value, negative predictive value and further analyzed using receiver operating 
curves, calibration curves, and decision curves.

Results: Out of the 758 T2DM patients included, 477 had their glycated 
hemoglobin (HbA1c) levels reduced to less than 6.5% after inulin intervention, 
resulting in an incidence rate of 62.93%. LASSO regression identified six key 
factors in patients prior to inulin treatment. The SHAP values for interpretation 
ranked the characteristic variables in descending order of importance: HbA1c, 
difference between fasting and 2 h-postprandial glucose levels, fasting blood 
glucose, high-density lipoprotein, age, and body mass index. The XGBoost 
prediction model demonstrated a training set accuracy of 0.819, specificity of 
0.913, positive predictive value of 0.818, and negative predictive value of 0.820. 
The testing set showed an accuracy of 0.709, specificity of 0.909, positive 
predictive value of 0.705, and negative predictive value of 0.710.

Conclusion: The XGBoost-SHAP framework for predicting the impact of 
inulin intervention in T2DM treatment proves to be effective. It allows for the 
comparison of prediction effect based on different features of an individual, 
assessment of prediction abilities for different individuals given their features, and 
establishes a connection between machine learning and nutritional intervention 
in T2DM treatment. This offers valuable insights for researchers in this field.
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1 Introduction

The prevalence of type 2 diabetes mellitus (T2DM) around the 
world has reached a high level in recent decades. In China, the 
prevalence of T2DM among adults was 12.8%, and prediabetes was 
35.2% (1). T2DM is a metabolic disease caused by both genetic and 
environmental factors, characterized by hyperglycemia, insulin 
resistance, and/or insulin secretion disorder. The Da Qing Diabetes 
Prevention Outcome Study has revealed that lifestyle intervention can 
effectively delay the onset of T2DM and reduce the incidence of 
diabetic complications in people with impaired glucose tolerance. This 
suggests that lifestyle intervention plays an important role in the 
prevention and treatment of T2DM (2). Nutritional therapy is an 
important component of lifestyle intervention (3, 4). The DiRECT 
study demonstrated that diet replacement and supervision lead to 
weight loss in obese T2DM patients, making the goal of remission in 
diabetes achievable (5). Remission in T2DM is defined as glycated 
hemoglobin (HbA1c) < 6.5% measured at least 3 months after 
cessation of glucose-lowering pharmacotherapy, which is a possible 
goal for T2DM treatment, including nutritional therapy (6). Dietary 
or energy restriction, low or very low carbohydrate diets, and bariatric 
surgery are potential strategies to achieve T2DM remission. In 
addition, scientific nutrition supplements to improve insulin 
sensitivity are another possible approach (5, 7, 8).

Insulin resistance is the central etiologic factor in T2DM, which 
is attributed to chronic systemic low-grade inflammation. Reversion 
of insulin sensitivity is essential for remission in T2DM (9). Chronic 
inflammation in tissues is at least partially induced by gut microbial 
dysbiosis, a typical feature in T2DM patients characterized by the 
accumulation of LPS-producing bacteria and other opportunistic 
pathogens, as well as weakening of the gut barrier (10, 11). A recent 
study indicated that two core competitive microbiomes in the gut 
play a central role in the development and intervention of diabetes, 
and high dietary fiber consumption leads to the restoration of gut 
microbial eubiosis (12). Dietary fiber can be  utilized by gut 
microbiota as prebiotics to produce short chain fatty acids (SCFAs), 
particularly butyric acid. This supports the growth of colonic 
epithelial cells, repairs the gut barrier, and stimulates the secretion 
of GLP-1  in L cells, ultimately contributing to the remission of 
T2DM (13–16).

Inulin, a fructan-type soluble fiber, is a well-known prebiotic fiber 
that can support the proliferation of probiotic species Bifidobacterium 
and Lactobacillus and has been widely used in T2DM nutritional 
therapy. Several meta-analyses have summarized the protective effects 
of inulin against T2DM, showing that inulin supplementation can 
reduce fasting blood glucose (FBG) levels, HbA1c, and significantly 
improve insulin sensitivity in T2DM patients and prediabetic 
individuals (17–19). Our previous clinical trial revealed similar 
results: 12 weeks of consuming 20 g of inulin per day decreased 
HbA1c, FBG, 2-h postprandial glucose (2 h-PG) levels, as well as 
plasma total cholesterol and triglyceride levels (20). However, in 
reality, individuals with different ages, body mass indexes (BMIs), 
genders and time since diabetes diagnosis may have varying responses 
to inulin intervention. Accurately predicting the effectiveness will help 

identify T2DM patients suitable for inulin intervention. In the current 
study, we  used our previous clinical data to develop a machine 
learning algorithm to predict the effectiveness of inulin intervention 
against T2DM. We  hope our algorithm will be  a valuable tool to 
support nutritional therapy in T2DM.

2 Design and methodology

2.1 Subject of the study

Data from 758 patients with T2DM who were treated at the 
People’s Hospital and Hospital of Traditional Chinese Medicine in 
Huangpi District, Wuhan City, was retrospectively collected. The data 
used in this study were obtained from our previous studies (in 
Chinese) (20, 21). In summary, both newly diagnosed and previously 
diagnosed T2DM patients received regular anti-diabetic medication 
for a 4-week observation period. Following this, they were instructed 
to take 20 g of inulin per day (provided by Wuhan Inulin Biotech Co.) 
in addition to their medical treatment for an additional 12 weeks. This 
study was approved by the Biomedical Ethics Committee of Wuhan 
Polytechnic University (BME-2022-1-13).

2.2 Characterization and screening of 
subjects

Basic information about the patients was collected, including gender, 
age, BMI, fasting blood glucose (FBG), two-hour postprandial glucose 
(2 h-PG), difference value between 2 h-PG and FBG (ΔPG, or DeltaPG), 
area under the curve (AUC) of blood glucose changes, HbA1c, total 
cholesterol (TC), triglycerides (TG), low-density lipoprotein (LDL), 
high-density lipoprotein (HDL), and HbA1c of patients before and after 
inulin intervention (Supplementary Files 1 and 2). Initially, the 758 
patients were divided into a group that had an effect of receiving inulin 
intervention treatment and a group that did not have a significant effect 
of inulin intervention treatment based on their HbA1clevels below 6.5%. 
Secondly, the other indicators were analyzed individually using the 
“CBCgrps” package in R. The correlation between these variables was 
analyzed using the “corrplot” package. Subsequently, the “glmnet” 
package in R was utilized to analyze the correlation between these 
variables. The “glmnet” package in R was also used to screen the 
characteristic variables through LASSO regression (nfold = 20). The 
coefficients of the relevant independent variables were adjusted to zero 
to reduce the influence of multicollinearity on the regression results.

2.3 XGBoost machine learning for 
constructing predictive models

Before building the model, the dataset is divided into training 
and testing sets in a 7:3 ratio. The “XGBoost” package is then used to 
build the prediction model. Firstly, the feature variables are 
transformed into DMatrix format. Next, the train function is used to 
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optimize the parameters by inserting the symbol package and 
outputting the best parameter configurations. Finally, the learning 
rate (eta) is set to 0.01, max_depth to 3, lambda to 1, subsample to 
0.8, colsample_bytree to 0.8, and the number of iteration rounds to 
100 to construct the XGBoost model. By leveraging the “caret” 
package in R, the model’s performance metrics, including accuracy, 
specificity, positive predictive value, and negative predictive value are 
computed. Additionally, receiver operating curves (ROCs), 
calibration curves, and decision curves are generated to assess and 
evaluate the model.

2.4 SHAP interpretation of the XGBoost 
model

The XGBoost model was interpreted using the “shapviz” package 
in R. Two samples were randomly selected to test their respective 
predicted SHAP values. Simultaneously, the total number of feature 
factors was analyzed, the contribution of each feature factor to the 
model’s prediction was interpreted, and the features were ranked in 
order of importance based on the average absolute value of the 
SHAP values.

2.5 Statistics analysis

All statistical analyses and data visualization were performed 
using R version 4.4.1. Continuous variables were presented as 
mean ± standard deviation or median (interquartile range (IQR)), 
while categorical variables were displayed as frequencies (percentages). 
The chi-square test was used for categorical variables, and independent 
samples t-tests or non-parametric tests were employed for continuous 
variables to assess differences between groups. The entire study was 
conducted using the software packages such as“CBCgrps,”“corrplot,”“

glmnet,”“XGBoost,”“caret,” and“shapviz” for data management 
and visualization.

3 Results

3.1 Basic characteristics of patients

In the study, 758 patients with T2DM were analyzed. Out of these, 
477 patients had their HbA1clevels reduced to less than 6.5% after 
receiving inulin intervention, indicating effective treatment. The 
remaining 281 patients showed insignificant treatment effects. The 
basic data of the 758 patients were categorized based on the outcome 
of inulin intervention, as presented in Table 1. The analysis revealed 
significant differences between the groups with positive and negative 
treatment effects in terms of age (p = 0.03), BMI (p = 0.009), FBG 
(p = 0.018), 2 h-PG (p < 0.001), DeltaPG (p < 0.001), AUC (p < 0.001), 
HbA1c (p < 0.001), and TG (p = 0.008).However, there were no 
significant variations in sex, TC, LDL, or HDL levels between the two 
groups (p > 0.05). The categorical variables in the table represent the 
number of cases (percentage), while the statistical methods utilized 
include the chi-square test, exact probability method, non-parametric 
test, and t-test for describing continuous variables such as median 
(percentile) or mean ± standard deviation.

3.2 One-way analysis of variance and 
LASSO regression for feature selection

The results of the case-by-case analysis for the included variables 
are depicted in Figures 1A,B. Additionally, the correlation heatmap 
revealed correlations among these variables (Figure 1C). To prevent 
covariance issues from affecting the construction of the prediction 
model later on, Lasso regression was used to select features from the 

TABLE 1 Basic information of the groups with poor and good effects of inulin intervention.

Variables Total (n = 758) Poor effect (n = 281) Good effect (n = 477) p

Sex, n (%) 0.535

Female 460 (61) 166 (59) 294 (62)

Male 298 (39) 115 (41) 183 (38)

Age (years) 60 (53, 67) 62 (55, 67) 60 (52, 66) 0.03

BMI (kg/m2) 23.3(21.9, 25.03) 23.63(22,25.76) 23.1(21.9,24.8) 0.009

FBG (mmol/L) 7.86 (6.8, 9.81) 8 (6.9, 10.3) 7.81 (6.8, 9.5) 0.018

2 h-PG (mmol/L) 13.2(10.5, 16.58) 14.9(11.8, 17.8) 12.3(10.1, 15.8) < 0.001

ΔPG (mmol/L) 4.7(2.6, 7.8) 6.2 (3.35, 8.8) 4.3(2.3, 6.98) < 0.001

AUC (mmol/L.min) 1,284(1068.5, 1529.5) 1,362(1,176, 1,620) 1,230(1,038, 1,470) < 0.001

HbA1c (%) 7.2 (6.6, 8.3) 8 (7.2, 9.2) 6.8 (6.27, 7.7) < 0.001

TC (mmol/L) 4.82 (3.97, 5.6) 4.84(3.96, 5.79) 4.8(3.98, 5.55) 0.297

TG (mmol/L) 1.32 (0.99, 1.9) 1.48(1.04, 2.12) 1.26(0.95, 1.84) 0.008

LDL (mmol/L) 2.72(2.14, 3.31) 2.81(2.16, 3.35) 2.68(2.12, 3.24) 0.14

HDL (mmol/L) 1.26 (1.07, 1.51) 1.26(1.05, 1.62) 1.26(1.08, 1.45) 0.594

aBolding in the table indicates statistical significance of p < 0.05. bIndicators in the table are all recorded pre-intervention indicators. AUC, area under the curve, BMI, body mass index; FBG; 
FBG, fasting blood glucose; DeltaPG, difference value between 2 h-PG and; HbA1c, glycated hemoglobin, HDL, high density lipoprotein; LDL, low density lipoprotein; TC, total cholesterol; 
TG, total glucose.
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included variables (Figure 1D). To ensure a good fit for the model, the 
λ corresponding to the minimum mean square error (lambda.min) 
was chosen after cross-validation (Figure 1E). Ultimately, we identified 
the four most predictive characteristic variables, which include “age,” 
“BMI,” “FBG,” “DeltaPG,”"HbA1c,” and “HDL.”

3.3 Construction of XGBoost prediction 
model and performance evaluation

The performance evaluation metrics of the model are presented 
in Table 2. The XGBoost prediction model shows an accuracy of 0.819, 
specificity of 0.913, positive predictive value of 0.8181, and negative 
predictive value of 0.820  in the training set. The testing set 
demonstrates an accuracy of 0.709, specificity of 0.909, positive 
predictive value of 0.705, and negative predictive value of 0.710.Both 
accuracy and specificity indicate how well the predicted results align 

with the true values. Positive predictive value (PPV) signifies the 
likelihood that a person with a positive diagnostic test result is indeed 
a patient. Conversely, negative predictive value (NPV) indicates the 
probability that a person with a negative diagnostic test result is not a 
patient. The XGBoost model displays higher accuracy, specificity, 
positive predictive value, and negative predictive value in the training 
set. Although the accuracy, specificity, positive predictive value and 
negative predictive value of the testing set are also high, they are lower 
than those of the training set. This demonstrates that our XGBoost 
prediction model can to some extent reflect the therapeutic effect of 
the inulin intervention. Furthermore, we analyzed the ROC curves of 
the training and testing sets, with the area under the ROC curve 
reaching 0.892 for the training set (Figure  2A) and 0.771 for the 
testing set (Figure 2B). The higher area under the curve in both sets 
indicates strong model fidelity. The results of the calibration curves 
(Figures 2C,D) reveal that the predicted and actual value curves of the 
training and testing sets align relatively well, suggesting that the 

FIGURE 1

Analysis of individual variables and LASSO regression outcomes. (A) Plot of individual variables. (B) Plot of AUC values of individual variables. 
(C) Correlation heat map of continuous variables, where color depth represents correlation coefficient (r value), *p < 0.05; **p < 0.01; ***p < 0.001. 
(D) Plot of LASSO coefficient paths. (E) LASSO regression analysis of crossover curves.

TABLE 2 Performance evaluation of XGBoost model in training and test sets.

Training set Testing set

Accuracy 0.819 (0.783–0.851) 0.709 (0.623–0.747)

Specificity 0.913 (0.883–0.943) 0.909 (0.862–0.956)

PPV 0.818 (0.758–0.878) 0.705 (0.570–0.839)

NPV 0.820 (0.781–0.859) 0.710 (0.645–0.776)

The contents of the table in parentheses indicate 95 per cent confidence intervals in parentheses. NPV, negative predictive value; PPV, positive predictive value.

https://doi.org/10.3389/fnut.2024.1520779
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Yang et al. 10.3389/fnut.2024.1520779

Frontiers in Nutrition 05 frontiersin.org

XGBoost model holds predictive significance. The decision curves for 
the training set (Figure 2E) outperform those of the validation set 
(Figure 2F), indicating that the model offers a favorable net benefit for 
clinical decision-making across most threshold probabilities.

3.4 SHAP values to explain the feature 
factors in the XGBoost model

The SHAP value allows for a random inspection of the predictive 
value of any single sample in the model and the influence of its 
characteristics on the predictive value. Therefore, we randomly selected 
two patients and used the SHAP force diagram to explain the contribution 

of their characteristic factors in the model. From left to right, the values 
of each characteristic factor are shown in order. The red bar demonstrates 
the positive potential value of the patient, while the blue bar indicates the 
negative potential value. E[f(x)] denotes the output mean of the XGBoost 
model, and f(x) represents the SHAP value of a single sample. The SHAP 
force diagram of the 1st patient is shown in Figure 3A. We found that the 
effective mean value of the XGBoost model for the inulin intervention 
treatment is 0.333. The 1st patient’s SHAP value reaches −0.150, which is 
less than the effective value, indicating that inulin intervention treatment 
was not effective for this patient. Similarly, the SHAP value of the 2nd 
patient was 0.668, as shown in Figure  3B, which is higher than the 
predicted mean value of 0.331, indicating an improvement in the patient’s 
T2DM with the inulin intervention treatment. In addition to visualizing 

FIGURE 2

Evaluation of model performance. (A) ROC curve on the training set. (B) ROC curve on the testing set. (C) Calibration curve on the training set. 
(D) Calibration curve on the testing set. (E) Decision making curve on the training set. (F) Decision making curve on the testing set.
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the SHAP values of individual samples, it is also possible to visualize the 
characteristic factors (Figure 3C), where the horizontal coordinate is the 
SHAP value. The more yellow the color, the larger the value of the feature 
and its contribution to the model. Conversely, the more purple the color, 
the smaller the value. Therefore, we determined that the features affecting 
inulin intervention for the treatment of patients with T2DMare, in 
descending order, “HbA1c,” “FBG,” “DeltaPG,” “HDL,” “age,” and “BMI.” 
The SHAP values also reflect the degree of dependence of these features 
on the XGBoost model separately (Figure 3D). Each point in the figure 
represents a sample, with the horizontal axis being the eigenvalue of each 
feature, and the corresponding vertical axis being its SHAP value.

4 Discussion

Nutritional therapy has been widely used in the intervention of 
T2DM, and the supplementation of dietary fiber has been identified 
as an efficient way to improve T2DM nutritional therapy (4, 22). High 
intake of soluble dietary fiber has shown benefits for individuals with 
T2DM, not only in improving glycemic control but also in 

ameliorating hypercholesterolemia in these patients (23). The effects 
of different dietary fibers on diabetes vary, and while inulin may not 
be  the most effective fiber, it is one of the most widely used and 
researched fibers that offers benefits for both glycemic and lipid 
control (24). In addition, inulin supplementation during pregnancy 
has been shown to improve glucose tolerance in offspring through 
SCFA fermentation (25, 26). Previous clinical trials have also 
demonstrated that inulin supplementation can reduce fasting and 
postprandial blood glucose levels, as well as improve 
hypertriglyceridemia and hypercholesterolemia in patients with 
T2DM or prediabetes (20, 21, 27). However, recent studies have 
suggested that high doses of inulin consumption may disrupt bile 
acid metabolism, leading to type 2 inflammation or even cholestatic 
liver cancer if dysbiosis of the gut microbiome exists (28–31). This 
indicates that the application of inulin should be approached with 
caution and precision. Identifying T2DM patients who would benefit 
from inulin intervention is crucial for precise nutritional therapy in 
the treatment of T2DM.

In the present study, we used our previous clinical data to create a 
machine-learning algorithm based on XGBoost. XGBoost is a modified 

FIGURE 3

SHAP force diagrams and variable importance analysis for individual patients. (A,B) SHAP force diagrams for two random patients: the colors indicate 
the contribution of each feature, with blue indicating a negative impact on the prediction (left arrow, decrease in SHAP value) and red indicating a 
positive impact on the prediction (right arrow, increase in SHAP value). The length of the color bar indicates the strength of the contribution, and E[f (x)] 
denotes the SHAP reference value, which is the average of the model’s predictions. f(x) denotes the individual’s SHAP value. (C) Importance plot of 
SHAP variables, with included features sorted from highest to lowest mean absolute value of SHAP. (D) SHAP variable dependency plot.
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tree boosting machine learning technique commonly used in predicting 
disease outcomes with clinical bigdata (32). Our algorithm shows that age, 
FBG, ΔPG, HbA1c, BMI, and HDL cholesterol levels are the most 
significant indicators for predicting the effects of inulin intervention 
(Figure 3), while 2 h-PG, AUC of blood glucose changes, TC, TG and 
LDL are not.

Three blood glucose-related factors, FBG, HbA1c, and ΔPG, were 
identified as predictive indicators (Figure 3). A clinical study analyzed the 
relationship between ΔPG and the characteristics of insulin resistance and 
insulin secretion in Chinese T2DM patients. It revealed that ΔPG was 
closely related to glucose effectiveness and insulin secretion phase change, 
suggesting that ΔPG is an important index to assess the severity of T2DM 
development (33).

Aging is an important risk factor for T2DM, and it is more 
challenging for elderly patients to recover from insulin resistance (34, 35). 
Moreover, an animal study has shown that the capacity for SCFAs 
fermentation was reduced in old mice compared to middle-aged mice, 
which may explain why patient age was identified as an effective indicator 
for inulin intervention (36). However, clinical studies have found that 
inulin-type fructans provide some benefits in the elderly. Although the 
effects may not be as strong as in younger individuals, elderly patients 
should still consume inulin for nutritional therapy (37).

In most cases, obesity is correlated with T2DM and dyslipidemia. 
This is because chronic inflammation and insulin resistance can lead 
to both obesity and T2DM, with obese T2DM patients benefiting 
more from nutritional therapy (5, 38). The effects of inulin 
administration on bodyweight have been inconsistent, with initial gut 
microbiota possibly playing a role in the feedback of inulin against 
obesity. However, the effects of inulin on insulin sensitivity are clear, 
as inulin supplements can significantly improve insulin resistance in 
individuals who are obese or overweight (17, 39, 40). BMI was 
identified as a predictive indicator in the model (Figure 3). HDL was 
another indicator (Figure 3), and the relationship between HDL and 
inulin intervention is more complex, T2DM patients may have 
abnormal HDL levels, both in terms of HDL-cholesterol level changes 
and the composition of HDL particles (41). Our previous study and 
other clinical studies have found that inulin can help elevate 
HDL-cholesterol levels in T2DM patients (18, 20).

The limitations of the current study include the small sample size and 
the fact that only blood glucose and lipid levels of patients were used for 
the prediction model. Critical information about the patients was also 
missing, such as the analysis of their gut microbiome before and after 
inulin supplementation, their medication status, and inflammatory 
indicators like C-reactive protein and TNF-α levels. Including this 
information could help further explore the personalized effects of inulin 
intervention against T2DM and minimize uncertainties in the usage of 
inulin supplements.

In conclusion, we constructed an algorithm based on XGBoost and 
found that the features affecting inulin intervention for T2DM were FBG, 
ΔPG, HbA1c, BMI index and HDL-c level. We hope our algorithm can 
help promote precise nutritional therapy for T2DM patients.
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