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Introduction: Accurate measurement of dietary intake without interfering in 
natural eating habits is a long-standing problem in nutritional epidemiology. We 
explored the applicability of hyperspectral imaging and machine learning for 
dietary assessment of home-prepared meals, by building a proof-of-concept, 
which automatically detects food ingredients inside closed sandwiches.

Methods: Individual spectra were selected from 24 hyperspectral images of 
assembled closed sandwiches, measured in a spectral range of 1116.14 nm 
to 1670.62 nm over 108 bands, pre-processed with Standard Normal Variate 
filtering, derivatives, and subsampling, and fed into multiple algorithms, among 
which PLS-DA, multiple classifiers, and a simple neural network.

Results: The resulting best performing models had an accuracy score of ~80% for 
predicting type of bread, ~60% for butter, and ~ 28% for filling type. We see that 
the main struggle in predicting the fillings lies with the spreadable fillings, meaning 
the model may be focusing on structural aspects and not nutritional composition.

Discussion: Further analysis on non-homogeneous mixed food items, using 
computer vision techniques, will contribute toward a generalizable system. While 
there are still significant technical challenges to overcome before such a system 
can be routinely implemented in studies of free-living subjects, we believe it holds 
promise as a future tool for nutrition research and population intake monitoring.
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1 Introduction

Currently most dietary assessment is performed using self-report methods. These consist 
of recall methods, such as 24-h recalls, the dietary history method, and food frequency 
questionnaires (1, 2). Yet, also comprise real time monitoring methods, such as food records 
and duplicate meals. The advantage of self-report methods is that they can give a very detailed 
overview of a person’s dietary choices. However, the disadvantage of these methods is that they 
are time-consuming, prone to measurement error and expensive. Furthermore, to a certain 
extent, recall methods suffer from recall bias, underestimation of intake quantity (1, 2).
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Innovations on self-report methods have been made toward 
web-based and smartphone-based versions of these dietary assessment 
tools (3). In addition, further automation steps have been developed 
to reduce measurement errors introduced by manual data entry (4, 5). 
For instance, machine learning may aid the objective observation of 
food on a plate by automatic detection of food intake, based on 
portion size estimation and food identification from images (6–10).

Machine learning applied to color imaging has been highly 
successful in the automatic detection of the shape, size, color and 
texture of the world around us (11). Although often limited by the 
quality of the input data, and the lack of a generalized input dataset, 
as described by Tahir et  al., color images can be  used to train 
algorithms, which can identify food items with increasing reliability 
(8, 12). The main limitation of using red, blue, green (RGB) color 
images for the automatic identification of foods comes from some 
foods being difficult to distinguish visually, because they are similar in 
color and shape, e.g., black coffee versus cola soda. It is also difficult 
to see differences in nutritional content of food items within the same 
category, e.g., full fat cheese versus low fat cheese, just based on the 
food’s external characteristics such as shape, size, color and texture 
(8, 12).

Aside from single food items being hard to distinguish, there is an 
added complexity when the foods are assembled into a home-prepared 
meal. The most accurate method to determine the nutritional content 
of a meal is to send it to a lab for testing, which is a common practice 
in duplicate meal studies (13). Unfortunately, analysis of these 
duplicates is expensive and does not yield immediate insights due to 
the processing time of the samples in the lab. Traditional color images 
often consist of three channels, which represent the reflection of red, 
green and blue light, in a similar way the human eye sees light. It 
captures information about an object’s color, shape, size, and texture. 
The main limitation of using RGB images for intake estimation, is that 
the nutritional content of the food item cannot be  estimated by 
identifying the type of food alone. RGB image data can be enriched 
with, for example, the number of calories (14), but caloric information 
cannot be captured in the shape, size, color and texture of those RGB 
images. So, while RGB images are good at identifying food items 
based on those aspects, these types of studies often need additional 
information, such as recipe and preparation methods, to reliably 
predict the number of calories in the food item.

In contrast, near infra-red (NIR) spectroscopy can provide 
information on the chemical composition of food samples, 
derived from the spectrum of light wavelength reflection, 
absorption or transmittance. NIR spectroscopy does not provide 
any spatial information because it is a single point measurement 
(15). To overcome the limitations of RGB imagery and NIR 
spectrometry in detecting a combination of chemical composition 
and spatial characteristics, hyperspectral imaging (HSI) is 
emerging as a relevant addition to the automatic detection of 
nutritional intake. Where RGB images capture information on 
three channels within the visible light range (380–750 nm), 
hyperspectral images capture a multitude of channels outside the 
visible light range, giving information about chemical composition 
using (bio)molecular light reflection, as well as spatial 
characteristics (shape, size and texture) (16). Thus, when both 
spatial characteristics and chemical composition need to 
be considered, HSI is a very suitable method for acquiring data. 
Within the field of food sciences, HSI in combination with deep 

learning has successfully been applied to research food quality and 
safety (17, 18), in clinical settings (19), for food packaging (20), 
and for monitoring crop health (21–28).

Hyperspectral wavelengths can penetrate deeper into a food 
product than visible light, depending on the wavelength used and the 
product analyzed (29, 30). For instance, Lammertyn et al. show in 
their work a depth of 2-4 mm for apples (29), whereas Arink et al. use 
tomatoes and conclude a depth of 20 mm (30).The extent to which 
hyperspectral wavelengths penetrate a product depends on factors 
such as the product’s properties, thickness, and, as aforementioned, 
the specific wavelengths used. This unique feature may allow us to 
capture information beyond surface level, e.g., the content of “closed” 
foods such as wraps or sandwiches. This advantage is necessary for the 
improvement of dietary assessment. Currently, for example, open 
sandwiches can partially be analyzed using traditional color images, 
which can identify the filling in a similar fashion to other food 
classification methods (8, 12). However, this is not possible for a 
closed sandwich. Obtaining an accurate measurement of a closed food 
would require an individual to “open” the item, so it can be imaged. 
Since accurate dietary assessment depends on measuring eating habits 
in free living conditions, eliminating the need to deconstruct “closed” 
foods just for measuring purposes would increase the accuracy of 
natural eating behavior measurements.

We aimed to use HSI to determine the fillings in closed 
sandwiches. A closed sandwich (“double breaded sandwich”) is a 
staple of the Dutch lunchtime meal, with a high variety of types of 
bread and fillings to put in between the slices of bread, with or without 
a layer of butter.

The dataset used in this study consists of hyperspectral images 
captured from closed sandwiches. Using closed sandwiches as a proof-
of-concept for a home-prepared complex meal, this paper analyzes 
whether machine learning, applied to hyperspectral images, can be a 
useful methodology to determine the composition of complex meals, 
and therefore add to the objectiveness of dietary assessment by 
automatic detection of nutritional intake.

2 Materials and methods

2.1 Hyperspectral imaging

A hyperspectral image is captured in a so-called hypercube, a 3D 
structure that represents spatial aspects in 2D (shape, size and texture), 
e.g., the object it imaged, and per-pixel spectral information in 1D, 
measuring the interaction (reflectance, transmittance, or absorbance) 
of NIR light within a sample, to obtain its spectral information (31).

This study used an IMEC SWIR Snapscan HSI system 
(Interuniversity Microelectronics Centre, Leuven, Belgium) with an 
Optec 16 mm F1.7 SWIR lens (Optec S.p.A., Parabiago, Italy). The full 
setup can be seen in Figure 1. This is a camera that combines spectral 
and spatial scanning, and snapshot methods. It captures a spectral 
range from 1116.14 to 1670.62 nm over 108 bands.

Spatial scanning can be seen as the scanning part of the hypercube 
over the total spectral range (λ), either by capturing a point (ni,mj) or 
a line (ni, mj…k) of the spatial dimensions (n, m) of the hypercube. 
Spectral scanning captures the total spatial range (n, m) per slice of 
the spectral wavelengths, e.g., per band (λi). The total dimensions of 
the hypercube are (n, m, λ). Figure 2 shows a visualization of these 
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dimensions. This notation is used as a reference throughout the article 
when referring to the dimensions of the data.

2.2 Data acquisition

Due to the lack of publicly available hyperspectral datasets of 
sandwiches, the choice was made to capture hyperspectral images of 
sandwiches assembled in-house. The sandwiches were assembled using 
two types of bread that varied in nutritional content (whole wheat 
versus white bread). Only one type of butter was used (Albert Heijn 
brand, 50% full fat butter, with plant-based oils to increase 
spreadability), which was either added or not (butter/no butter). Six 
common Dutch types of spreads were selected; jelly (Hero, strawberry 
flavor), low sugar jelly (Hero, strawberry flavor, reduced sugar), mature 
cheese (Albert Heijn, Goudse 48+), low fat mature cheese (Albert Heijn, 
Goudse 30+), peanut butter (Albert Heijn Bio), and chocolate sprinkles 
(De Ruijter, Milk Chocolate). Figure 3 shows a schematic representation 
of the layers of an assembled sandwich in the correct order.

All the products were bought from Albert Heijn Zaandam, the 
largest Dutch supermarket chain, on the day prior to the assembly and 
data capture. The bread came from the supermarkets’ in-house bakery 
and was stored in its original plastic packaging. Likewise, the butter, as 
well as the fillings, were stored in their original packaging, being plastic 
in the case of the butter and the cheeses, a glass jar in the case of the 
jelly and the peanut butter, and a cardboard box in the case of the 
chocolate sprinkles. All products were stored as recommended by the 
manufacturer. To specify, the butter was stored chilled, all others at 
room temperature. Additional product details are specified in 
Supplementary Table S1.

The sandwiches used in this study were assembled based on a 
study grid with common sandwich characteristics, e.g., a combination 

of bread, butter and filling. The combination of different breads, butter 
and filling yielded the grid described in Table 1.

The sandwiches were assembled in order of filling. All 
components were weighted during assembly. Each sandwich 
consisted of one slice of bread (35 g) cut in half to become the top 
and bottom part of the double sandwich. If applicable, butter 
(5 g) was added to the top slice of bread, in accordance with the 
grid, and then the filling was added. The amount of filling that 
was added depended on the type of filling; 15 g jelly, 10 g peanut 
butter, 10 g chocolate sprinkles or 15 g of cheese. After assembly 
each sandwich was immediately individually wrapped in plastic 
foil, to prevent dehydration since moisture is important for 
accurate NIR measurements (31), and stored at room temperature.

When assembly of all the sandwiches was complete, the 
sandwiches were moved to the lab where the hyperspectral capturing 
equipment was set up. The sandwiches were individually unwrapped 
at the moment of scanning, again to prevent dehydration of the 
remaining sandwiches, and placed on a plate underneath the camera.

Before scanning the sandwiches, the camera was calibrated with 
black (98% absorption) and white (95% reflection) reference 
correction (32). Sandwiches were scanned using the IMEC HSI 
Snapscan 1.3.8 C100u camera under incandescent lighting conditions, 
with a black box surrounding the lab setup to limit light scattering 
outside the study field. The incandescent light brings a near infra-red 
component to the light, improving the measurements (33). The 
software used to capture and store the hyperspectral images is the 
IMEC Snapscan software (version 1.3.0.8, IMEC). The total number 
of captured hypercubes was 24, as indicated by the number of 
sandwiches described in Table 1.

2.3 Data pre-processing

The data pre-processing pipeline’s main purpose is to reduce noise 
from the hyperspectral measurements, to select the region of interest 
(ROI), and to generate features out of this ROI.

FIGURE 1

Lab setup; with spectral camera on top, incandescent lighting from 
four directions, and black cardboard base to minimize light 
scattering.

FIGURE 2

(A) Visualized hypercube of a sandwich. Acquired spectral hypercube 
data is an (n, m, λ) hypercube, with n width, m length, λ spectral 
bands, where each band in the λ dimensions can be visualized as a 
(B) pseudo color image (which band?), and (C) mean spectra of 
selected region.
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Each hypercube consisted of the dimensions (640, 512, 108). The 
hypercubes were first automatically resized to the dimensions (350, 512, 
108), since each of the captured hypercubes contained some artifacts on 
the discarded part of the image, introduced by the camera. After the first 
resize, the ROI was automatically selected as a chunk from the middle of 
the image, resulting in a (100, 200, 108) sized hypercube per capture.

To suppress scattering effects in individual hyperspectral images, 
the spectral responses were filtered using Standard Normal Variate 
(SNV) transformation (34, 35). In Figure 4A the average wavelength 
per sandwich after SNV transformation is shown. Figure 4B shows the 
individual spectral samples for an example sandwich (sandwich A1), 
to highlight the range of absorbance per sandwich. Each sample in 
Figure 4B corresponds to a selected pixel from that sandwich using 
the subsampling strategy.

Subsampling was performed to reduce data interdependency. 
Adjacent pixels in a hyperspectral image potentially contain 
information about their neighbor, which will lead to a more optimistic 
training outcome, if not mitigated. Subsampling was performed by 
splitting the ROI into partitions, and each partition was assigned to 
be included as part of the model training, i.e., the train set, or model 
evaluation, i.e., the test set which was included as a split label. Figure 5 
shows a schematic representation of the process. Each ROI (100, 200, 
108) was split into 10 partitions (see Figure 5A) of dimensions (50, 40, 
108), after which each partition was randomly assigned as part of the 
train or test set based on a 70–30 split ratio. The subsampling strategy 
therefore causes 70% of each hyperspectral image to be  used for 
training, and 30% for testing. This also means that the bread, butter, 
and filling characteristics, i.e., the ground truths about each sandwich, 
were equally represented in both the train and test set.

Samples were then extracted based on a five-by-five grid 
subdivision of the partition (see Figures 5B,C), where the center of 

each grid was included as the final selected sample (see Figure 5D). 
This yielded 800 samples per image, with a total of 19,200 spectral 
samples of 108 bands, of which 13,440 were assigned to the train set, 
and 5,760 to the test set. Thus, effectively unfolding the 24 hypercubes 
into a data frame with 19,200 rows and 108 columns.

For each sample additional features were generated from first, 
second and third derivatives. The total dimensions of the dataset were 
increased to 426 variables and 19,200 samples. Each of these samples 
was automatically labeled based on the sandwich grid (Table 1), which 
was done by string parsing the filenames of the scanned hypercubes 
and matching those to the encoded sandwich names in the grid.

The final ground truth labeling resulted in a multi-class multi-
output classification problem, which was reduced to a multi-class 
single label problem by training three separate models to predict bread 
type (white/wheat), presence of butter (yes/no), and filling type 
(mature cheese/low fat cheese/jelly/low sugar jelly/peanut butter/
chocolate sprinkles).

2.4 Model training

Using the Python programming language (version 3.9) multiple 
algorithms were trained on the data. Partial Least Squares 
Discriminant Analysis (PLS-DA) was chosen as a baseline algorithm, 

FIGURE 3

Dutch staple sandwich scheme. (A) Top bread slice, (B) visualization 
of evenly spread layer of butter, (C) a filling of choice, for example 
cheese and, (D) bottom bread slice.

TABLE 1 Sandwich assembly grid to make sandwiches for each of the 
combinations of conditions.

Sandwich Filling Bread type Butter

A1 Mature cheese White No

A2 Yes

A3 Whole wheat No

A4 Yes

B1 Low fat mature 

cheese

White No

B2 Yes

B3 Whole wheat No

B4 Yes

C1 Jelly White No

C2 Yes

C3 Whole wheat No

C4 Yes

D1 Low sugar jelly White No

D2 Yes

D3 Whole wheat No

D4 Yes

E1 Peanut butter White No

E2 Yes

E3 Whole wheat No

E4 Yes

F1 Chocolate 

sprinkles

White No

F2 Yes

F3 Whole wheat No

F4 Yes
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since it is well established in the field of HSI and NIR spectroscopy 
analysis (31) The implementation from the pychemauth library (36) 
was used. Additional classical machine learning algorithms were 
trained using the pycaret library (37), and a Multi-Layer Perceptron 
(MLP) was trained using the Scikit-learn library (38). Since the 
dataset contains three target characteristics that we would like to 
predict, i.e., bread, butter and filling, an model was trained for each 
of these targets. The choice for three models was made deliberately, 
since a transparent evaluation was needed. If a model were to 
be trained on all three targets simultaneously, a so-called multi-class 
multi-output classification, it would be  less straightforward to 
generate insights on where an eventual misprediction occurred. On 
multi-class multi-output classifications, traditional confusion matrix-
based evaluation metrics cannot be applied. Therefore, the decision 
was made to create a single model for each target, so the evaluation 
can give insight into what parts of the sandwich were poorly predicted 
by the algorithm.

PLS-DA was initialized based on the number of components, 
being 150 components for the “bread” model, 150 components for the 
“butter” model, and 300 components for the “filling” model, which 
were optimized based on the accuracy score.

Five-fold cross validation (CV) was used to determine the best 
performing classical machine learning model using pycaret.

The MLP model was initialized with parameters for four hidden 
layers, with decreasing sizes of 322, 218, 108, and 54 nodes. Based on 
current practices in the field we chose an adam solver and a relu 
activator as additional parameters for the hidden layers of the model 
(39, 40). The learning rate, e.g., how fast the model adapts to the 
problem at hand, was set to 0.001. The model was trained over a 
maximum of 1,000 epochs, meaning the full training data passes 
through the network at maximum 1,000 times, and minimized the log 
loss score. Models stopped training if the accuracy on the interval 
validation set did not improve over 50 epochs with a tolerance of 
0.000010.

FIGURE 4

(A) Average absorbance pattern per sandwich after SNV transformation, and (B) absorbance for an example sandwich (A1), where each sample 
corresponds with a selected pixel from that hypercube.

FIGURE 5

The sampling strategy. (A) A given ROI. It is split into 10 equal sized partitions and each partition is randomly assigned to either the train or the test set. 
(B) The single partition is further split into five-by-five sub-grids. (C) Center of each sub-grid is selected as the final representation of the spectra of that 
grid. (D) An example spectra.
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CV using grid search was used to establish the best topology for 
the MLP. The parameters that were optimized were hidden layer sizes, 
solver, activator, and learning rate. The grid from Table 2 shows the 
different options for each of these parameters. The CV grid search 
yielded a total of 88 combinations of parameters for each target 
variable. CV was performed in 5-fold, so each target variable was 
trained for 440 models in total during the cross-validation phase. The 
three models were then asked to predict the sandwich characteristics 
using the test set. For each model the output was evaluated using a 
confusion matrix for the test set predictions, as well as a per model 
plot of the accuracy and log loss score per epoch during training.

The confusion matrix gives insight into the trade-off between 
predicted classes compared to the actual classes. This trade-off is 
captured as the number of true positives (TP), true negatives (TN), 
false positives (FP), and false negatives (FN). Multiple performance 
metrics can be calculated using these numbers. Accuracy is defined in 
Equation 1 as:

 1

1 N
i i

i i i ii

TP TNAccuracy
N TP TN FP FN=

+
=

+ + +∑
 

(1)

Where N  is the total number of classes, and iTP  is the number of 
true positives for class i, similarly for true negatives, false positives and 
false negatives. In other words, the total number of correct predictions 
is divided by the total number of predictions in the test set (41).

The accuracy over epochs plot during training is not calculated by 
the test set, but by the internal validation set, which is a subset of the 
training set, randomly selected by the algorithm itself. While this 
dataset is used during training, the idea is that the plot gives insight 
into how well the model is learning over time, and whether the 
learning has plateaued.

The log loss score is calculated to assess the certainty of the 
classification decision made by the model. Log loss offers a more 
nuanced performance metric than accuracy. Using both accuracy and 
log loss allows for an evaluation of performance through the number 
of correct predictions and the model’s confidence in these predictions. 
Log loss can be defined in Equation 2 as:

 
( )

1 1

1log log ˆ
N C

ij ij
i j

Loss y y
N = =

= − ∑∑
 

(2)

Where N is the number of samples, C is the number of classes, ijy  
is the indicator whether class j  has been correctly classified for sample 
i, and ˆijy  is the predicted probability that sample i belongs to class j . 
In other words, the log loss score is the average negative log-likelihood 
of the observed classes given the predicted probabilities. Predictions 
that are confident but incorrect get a higher penalty in this score, and 
the aim of the MLP is to minimize this score as close to 0 as possible.

3 Results

To assess whether machine learning applied on HSI could predict 
the components of a closed sandwich, multiple models were trained 
on a set of 24 sandwich HSI’s. A baseline PLS-DA model was trained, 
several classical machine learning models and an MLP. Three targets 
were learned in individual models; to predict type of bread, presence 
of butter, and type of filling.

The training of the PLS-DA resulted in overall accuracy scores 
of ~73% for the bread model, ~58% for the butter model, 
and ~ 17% for the fillings model. The results are shown in 
Supplementary Table S2.

The training of the pycaret models, using CV, yielded different 
predictors for the bread, butter and filling targets. The bread target 
resulted in a linear regression model with an accuracy of ~73% on the 
test set. Similarly, the butter target training resulted in a linear 
regression model, yet with a ~ 57% accuracy on the test set. The filling 
target resulted in a ridge classifier, with an accuracy of ~28%. The total 
confusion matrix results can be found in Supplementary Table S3.

The hyperparameter tuning of the MLP resulted in a topology of 
four hidden layers (322, 218, 108, 54), an adam solver, relu activator 
and 0.001 learning rate, with an average accuracy score for the bread 
model of ~80%, an accuracy of the butter model of ~60%, and for the 
filling model ~24%. The total confusion matrix with the MLP results 
can be found in Supplementary Table S4.

During training, over the course of the epochs, the model generated 
training accuracy and loss data. These data are visualized in Figure 6. 
Figure 6A shows that the accuracy of the bread model does not improve 
overall after 88 epochs, triggering the training auto stop after epoch 138. 
A similar pattern can be  seen in Figure 6B, where the butter model 
training did not improve after 79 epochs, so at epoch 129 training was 
stopped. Finally, Figure 6C shows that training of the fillings model did 
not improve after epoch 113, triggering the auto stop after epoch 163.

To provide additional insight into the performance of the 
individual classes, the confusion matrix, showing the frequency of 
each prediction, can be found in Table 3. This is a combination of each 
of the best performing models for each target. The results in this table 
show that the MLP performs best in predicting the classification 
outcomes for bread and butter targets, where the ridge classifier 
performs best in predicting the outcome for the filling target. The 
evaluation on unseen test data show that relevant information in the 
spectra of the HSI allow for prediction of bread type, butter presence 
and filling type.

Table  3 shows that most of the mispredictions fall within the 
fillings category. Mispredictions occurred more frequently between 

TABLE 2 Grid search CV parameters for the MLP. Each parameter 
combination yields a separate model to be cross validated.

Learning 
rate

Solver Activation Hidden layer sizes

0.001 Adam Relu (218)

0.01 Sigmoid Tanh (427)

(218, 108)

(256, 128)

(512,256)

(218, 108, 54)

(512, 256, 128)

(640, 427, 213)

(322, 218, 108, 54)

(512, 256, 128, 64)

(640, 427, 213, 107)
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the different sugary fillings (jelly, low sugar jelly, chocolate sprinkles), 
and between the different fatty fillings (mature cheese, low-fat mature 
cheese, peanut butter). Some mispredictions seem to also stem from 
texture morphology of the filling.

4 Discussion

The focus of this work was a proof-of-concept test to assess 
whether machine learning, applied to hyperspectral images, could 
add to the current dietary assessment toolkit. Using sandwiches as 
a test food, we hypothesized that the addition of HSI could improve 
dietary assessment, because both NIR and SWIR wavelengths could 
be  used to look further than the top layer of the sandwich and 
detect what filling(s) were in between the slices of bread. The 

algorithms that were trained in this work performed well in the 
classification of the bread type, with an average accuracy score of 
~80%, which was expected given that the bread is the first layer of 
the sandwich the light interacts with. The model predicted the 
presence of butter with a ~60% accuracy, which is above random 
assignment of labels, but leaves substantial room for improvement. 
The average accuracy score of the prediction of a filling was ~28%, 
which is somewhat higher than a random chance for this six class 
multi-class classification. This also implies that the model can find 
relevant information in the spectra to predict the filling. CV with 5 
folds drove the selection of best performing model, selected based 
on accuracy of the validation set, both for the classical machine 
learning models and the MLP. Overall, while there is still 
considerable room for improvement, the combination of 
technologies seems promising.

While a generalized input dataset should consist of more than 
sandwiches, the sandwiches used in the current study consisted of a 
combination of multiple food products and serve as a starting point 
for this proof-of-concept. The fillings in between the bread were of 
similar thickness creating layers from the top of the sandwich all the 
way down to the plate, meaning that the profile of the layers looks 
similar, except for the chocolate sprinkles. This homogeneity yields 
similar wavelength profiles for each of the pixels in the ROI, especially 
when looking at the spectra for a single sandwich (see Figure  2). 
Similar data could be  captured using a single point measuring 
technique such as NIR. While a NIR sensor has a single point 
measurement, which generates a single spectrum, an advantage of 
using HSI is that it captures multiple measurements in a matter of 
seconds, generating a significantly larger body of measurements to 
train an algorithm on. However, HSI is most useful when applied to 
non-homogeneous samples consisting of multiple food items where 
spatial aspects need to be considered, such as a salad or a plate of 
breakfast items, or when it is looking at the composition of a food item 
it its entirety, rather than a single sample (42, 43).

Spatial aspects become important when we want to use this 
technology for full dietary assessment, because the nutritional 
content of the plate alone is not sufficient to estimate nutritional 
intake. For full dietary assessment, the weight or volume of the food 
is needed (44). A setup that would combine volumetric information 
with the data of the HSI to determine composition, should be able 
to help achieve this. There is already evidence showing HSI 
combined with machine learning can be  used to detect the 
difference in similar looking food items (45). Boosted by 
segmentation, the individual food items in combined foods can 
be  detected (42). However, these types of systems are based on 
classification of the food item itself, e.g., each food item is assigned 
a label in the target set. Since the cardinality of the set of food items 
to be classified is potentially infinite, the required dataset to train 
such an algorithm becomes infinitely large as well. Therefore, the 
spatial component of the HSI will also be  interesting for 
segmentation of the image into similar areas, and estimation of 
macronutritional content of these separate items that comprise the 
combined foods, such as tomatoes and croutons in salads. HSI, and 
similar NIR and SWIR sensors related techniques, are often used in 
the field of nutrition to help analyze food quality and safety in 
specific tasks, such as described by Feng and Sun and Park et al. (16, 
17). Limited literature is available on the analyzes of food 

FIGURE 6

Training and validation loss scores over epochs for (A) the “bread” 
model, (B) the “butter” model, and (C) the “filling” model.
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composition from a generalized input dataset, only for specific 
target problems and food groups (17, 40–42).

We acquired data from 24 sandwiches in a grid-based composition 
to ensure a balance of the target variable (see Table 1), but prepared 
only one sandwich sample per composition. Therefore, we captured 
only one hyperspectral image per sandwich composition. The model 
was trained and tested on subsamples from the ROI of the image. 
Since we did not prepare a second set of sandwiches to test the model, 
there is an interdependency within the spectra samples. We partially 
mitigated this by selecting subsamples with a range of pixels 
surrounding the sample, so there is no direct interdependency based 
on neighboring pixels, but the effect could still be present and partially 
explain the results of the test model. In future studies additional 
sandwiches should be assembled per type, so that the spectra samples 
in the test data would be independent from those in the training data, 
and therefore be a better representation of the true performance of 
the model.

In addition, the data acquisition of multiple sandwiches per 
type, while minimizing data interdependency, implies a larger 
storage volume. The images captured in this study required 
around 138 MB of storage per image. This adds up quickly for the 
storage of raw data. This also includes datapoints we do not need, 
i.e., the pixels of the image that contain the plate the food is 
resting on. Future research should study the relevant wavelengths 
in each image, so that these wavelengths can be the determining 
factors for the camera used to capture the data, and reduce the 
storage required.

SNV filtering, as well as derivative analysis, is a common way to 
pre-process the data from hyperspectral images. It corrects lighting 
related issues that are caused by the morphology of the food item (46). 
These filtering steps possibly have transformed the data in such a way 
that the detection of butter and fillings below the surface were 
impacted, considering other research in the same field does not apply 
these filtering steps in the same order (47). The camera used for data 
acquisition captures a spectral range from 1116.14 nm to 1670.62 nm, 
which should be sufficient to detect the composition of the separate 
sandwich elements based on descriptions from previous work (47). 
The wavelengths measured by the camera may not be  enough to 
reliably penetrate the lower layers of the bread, therefore no data of 
light being reflected by the filling is captured. A camera with additional 
detection range (e.g., outside the range of 1116.14–1670.62 nm used 
in this study) may yield different measured wavelengths and could 
provide additional information.

The topology of the MLP which performed best in the 
classification of the bread and butter targets contained four layers of 
reducing size. The number of layers and their sizes was manually 
decided upon. While selected by the CV phase, their inclusion in the 
CV grid was a manual process, with variation to the depth and width 
added to allow for classification based on more complex features. The 
selection of a four hidden layer based topology during CV suggests 
that the shallow networks fail to capture an underlying non-linear 
relationship in the data. The width of the layers was based on a 
reducing size, common in convolutional architectures, to reduce 
computational efforts (48).

TABLE 3 Confusion matrix containing the prediction results of the best performing models from each target. The bread and butter results from the 
MLP, the filling results from the ridge classifier.

Predicted

Bread Butter Filling

White Whole 
Wheat

No Yes Mature 
cheese

Low fat 
mature 
cheese

Jelly Low 
sugar 
jelly

Peanut 
butter

Chocolate 
sprinkles

Ground 
truth

Bread White 0.81 0.19

Whole 
wheat

0.21 0.79

Butter No 0.60 0.40

Yes 0.41 0.59

Filling Mature 
cheese

0.28 0.13 0.17 0.07 0.15 0.21

Low fat 
mature 
cheese

0.27 0.15 0.09 0.06 0.21 0.23

Jelly 0.18 0.10 0.24 0.09 0.11 0.28

Low sugar 
jelly

0.19 0.14 0.17 0.11 0.13 0.26

Peanut 
butter

0.15 0.12 0.09 0.07 0.33 0.24

Chocolate 
sprinkles

0.11 0.08 0.12 0.04 0.10 0.56

Highlighted in bold are the correct predictions.
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There are different approaches to finding the optimal number of 
hidden layers and nodes, such as a model based approach instead of a 
grid search. The aim of this study was not to find an optimal topology, 
but to evaluate if the combination of HSI and ML could work to detect 
sandwich fillings. However, continuing the work with a different 
methods to determine the number of hidden layers and the width of 
the hidden layers would help establish a more structured approach to 
finding an optimal topology (49).

Looking at the results in Table 3, we see that one of the problem 
areas in the fillings is the prediction of low sugar jelly versus regular 
jelly. Similarly, we  see a problem area in the prediction of low-fat 
mature cheese versus mature cheese and peanut butter. Not all the 
fillings have a higher than random prediction rate, meaning that the 
model can find relevant information in the spectra to predict some of 
the fillings, but it is possible that the model has trouble distinguishing 
them based on nutritional content, or based on the texture morphology 
of the filling. If the incandescent light does not interact reliably with the 
lower layers at all, due to limitations from the spectral range or physical 
aspects of the food, we need to consider that the model is learning 
based on some aspects in the noise or scattering effects, since we have 
an interdependency in our data. To test whether the model is predicting 
based on morphology, a future experiment could measure sandwiches 
with fillings that have similar nutritional content, but different textures, 
versus sandwiches with similar textured filling but different 
macronutrient composition. This experiment should also include 
double sampling, to make sure there is no interdependency in the data.

The current setup of classifying the types of bread, butter, and 
fillings has the limitation that, while each element has a distinct 
composition that is detectable in the spectra, the true composition of 
food can only be  detected using a duplicate meal approach (2). 
Including multiple samples per distinct plate of food, as well as 
measuring the exact composition of the meal using duplicate meals, 
would help create a finite multilabel regression task for future 
prediction of composition instead of classification of individual food 
items, which is an open set classification problem. By training an 
algorithm to estimate the macronutrient composition of the food, the 
output of the algorithm is reduced to a regression on a small number 
of target labels. This would also help to narrow down the required 
wavelengths, because it can be  analyzed which set of wavelengths 
corresponds to which macronutrient.

Lastly, there are multiple potential methods to narrow down the 
required wavelengths, for example using k-nearest neighbors (50), 
derivative based analysis (43), or partial least square regression 
(42). Some of the works mentioned describe the relationship 
between a certain macronutrient and the corresponding absorption 
band, e.g., 1,215 nm is described as the absorption band of fat by 
ElMasry et al. (42). Similarly, Benes et al. describes very extensively 
the wavelength at which a certain macronutrient can be measured, 
but in a specific set of food items, namely powdered snack products 
(47). Reducing the number of wavelengths that need to be acquired 
will reduce the complexity of the required training data set, and the 
outcome, as well as create possibilities for additional pre-processing 
and filtering methodologies, such as PCA assisted segmentation 
(42, 43). Many food items “in the wild” ought to be tested before a 
comprehensive conclusion can be  made regarding the set of 
wavelengths applicable for the measurement of a certain 
macronutrient, and thus which features are needed as input to the 
model. In the end, the goal is to improve dietary assessment in such 

a way that we can link the food composition on the plate detected 
by HSI to our food diaries based on the Dutch Food Composition 
Database (NEVO) (51).

5 Conclusion

This work describes a prototype to demonstrate and assess HSI 
and machine learning as a candidate future tool for dietary assessment. 
The initial results of prediction accuracy of ~80% for the bread target, 
~60% for the butter target, and ~ 28% for the fillings target, combined 
with a clear potential for improvements in the methodology with 
regards to model topology and parameters indicate this warrants 
further exploration for prediction of meal composition of home-made 
complex meals.

When reliably built, a machine learning based system that utilizes 
hyperspectral images to detect composition of combined foods, 
together with a system that can reliably estimate weight and volume of 
the food, could be used to improve and support dietary assessment. 
This way, we can have more accurate measures of dietary intake in a 
free living population, improving the quality of dietary exposure 
assessment and monitoring of intakes for research of public health.
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