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Diabetic cognitive dysfunction is one of the important comorbidities and complications 
of diabetes, which is mainly manifested by loss of learning ability and memory, 
behavioural disorders, and may even develop into dementia. While traditional 
anti-diabetic medications are effective in improving cognition and memory, 
long-term use of these medications can be accompanied by undesirable side 
effects. Therefore, there is an urgent need to find safe and effective alternative 
therapies. Accumulating evidence suggests that phytogenic bioactive peptides 
play an important role in the regulation of cognitive dysfunction in diabetes. In 
this review, we explored the relationship between diabetes mellitus and cognitive 
dysfunction, and the potential and underlying mechanisms of plant-derived bioactive 
peptides to improve diabetic cognitive dysfunction. We found that plant-derived 
active peptides alleviate diabetic cognitive impairment by inhibiting key enzymes 
(e.g., α-glucosidase, α-amylase) to improve blood glucose levels and increase 
antioxidant activity, modulate inflammatory mediators, and address intestinal 
dysbiosis. In conclusion, plant-derived active peptides show strong potential to 
improve diabetic cognitive impairment.
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1 Introduction

Diabetes mellitus is a metabolic disease characterised by insulin resistance and pancreatic 
β-cell dysfunction leading to disorders in glucose glucose metabolism, which can lead to 
chronic complications in the body such as cardiovascular disease, nephropathy, retinopathy 
and others (1). As the impact of diabetes pathogenesis has been intensively studied, there is 
growing evidence that people with impaired glucose tolerance and diabetes have an increased 
risk of developing cognitive dysfunction compared to healthy individuals, and a 50% increased 
risk of dementia in type 2 diabetes (T2DM) (2). The severity of cognitive impairment can 
significantly affect a patient’s daily life, and the global prevalence of diabetes is increasing year 
by year with an ageing population, changing dietary patterns, and the accelerated pace of 
modern life. The World Health organisation (WHO) estimates that approximately 552 million 
adults are expected to have diabetes by 2030, and diabetes-related cognitive dysfunction is 
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likely to be  a major challenge in terms of future health resource 
requirements (3, 4) (Figure 1).

T2DM is the most common type of diabetes mellitus, and it is 
widely recognised that insulin resistance (IR) plays a key role in the 
development of T2DM and its organ-related complications, but the 
pathogenesis of cognitive dysfunction in diabetes mellitus is not yet 
fully understood (5). It is known that insulin is involved in neuronal 
survival, synaptic plasticity, memory, and cognitive function in the 
central nervous system (CNS), and existing hypotheses suggest that 
similar to diabetic neuropathy, impaired insulin signalling pathways 
due to elevated blood glucose and lipids may be the main metabolic 
mechanism that induces the occurrence of diabetic cognitive 
dysfunction (6). IR induced metabolic disturbances lead to 

degradation of brain function, and prolonged uncontrolled high blood 
glucose levels adversely affect a variety of metabolic pathways such as 
oxidative stress, formation of advanced glycosylation end products 
(AGEs), and protein kinase C activation, while metabolic disturbances 
inducing cerebral microvascular damage affect the extent of cognitive 
impairment (1, 7). The onset of cognitive dysfunction in diabetes is 
multifactorial. In addition to genetic factors, lifestyle habits (e.g., diet, 
sedentariness, and stress), and environmental factors (pesticides, 
heavy metals, and industrial by-products) have been linked to the 
progression of cognitive impairment, and these factors may further 
influence the signalling exchanges between the gut and the brain by 
affecting the abundance and diversity of gut flora. Traditionally, drugs 
used for the treatment of neurodegenerative diseases have mainly 

FIGURE 1

Regulatory mechanism of phytogenic bioactive peptides on diabetic cognitive dysfunction. Created in BioRender.com.
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consisted of acetylcholinesterase inhibitors (ChEIs) and NMDA 
receptor antagonists (8). Although these drugs are effective in 
improving cognitive function and daily living abilities, they have 
limited efficacy in diabetic cognitive dysfunction, and available data 
suggest that antidiabetic drugs have the potential to improve cognitive 
dysfunction and dementia (9). The main antidiabetic drugs used 
clinically are thiazolidinediones (e.g., troglitazone, rosiglitazone), 
metformin, sulphonylureas and glinides (10). Although these drugs 
may slow the rate of cognitive decline by lowering blood glucose and 
enhancing central insulin signalling in the brain, patients can 
experience adverse effects such as decreased appetite, nausea, 
abdominal discomfort and diarrhoea while taking them (11). 
Currently, due to the need for health and safety, dietary control to 
prevent or influence the development of pathological conditions 
rather than treatment with drugs after onset may be more consistent 
with the idea of pursuing a healthy lifestyle. Therefore, it has become 
a research hotspot to develop foodborne active substances to improve 
diabetes mellitus and prevent cognitive function decline (12).

A growing body of evidence suggests that dietary nutrients from 
natural foods have great potential to positively modulate diabetes and 
its cognitive dysfunction, providing opportunities for safe and cost-
effective nutritional modifiers (13). Nutrients such as polyphenols, 
flavonoids, glycosides, phosphatidylserine, proteins and peptides have 
been reported to exhibit positive effects in the management of 
cognitive deficits (14, 15). Among them, several studies have found 
that bioactive peptides of plant origin not only have the potential to 
regulate diabetes, but importantly also have neuroprotective and 
cognitive improvement functions (16, 17). Bioactive peptides isolated 
from plant proteins, generally consisting of 2–20 amino acids, have 
attracted widespread attention in the academic and health care 
communities for their good tissue affinity, specificity, and bioactivities 
such as antioxidant, anti-inflammatory, and hypoglycemic properties 
(17, 18). In this paper, we  summarise the research progress of 
phytogenic bioactive peptides in improving diabetes and cognitive 
dysfunction, and focus on the role of phytogenic peptides in 
improving diabetes and cognitive dysfunction and its molecular 
mechanism, aiming to provide systematic theoretical support for the 
effective implementation of phytogenic bioactive peptides in the 
intervention of diabetes and cognitive dysfunction.

2 Factors influencing diabetes and its 
associated cognitive impairment

2.1 Cerebral microvascular disorder and 
diabetic cognitive dysfunction

Cerebral microvascular damage may be one of the mechanisms 
associated with cognitive dysfunction in diabetes (19). The brain 
performs cognition and modulates cardiovascular homeostasis. As an 
important channel of essential oxygen and energy sources for the 
brain, cerebral microvessels are an important component of the 
blood–brain barrier (BBB), and its disruption is an early 
pathophysiological mechanism in neurodegenerative diseases (20). 
BBB is a biological and physical barrier consisting of astrocytes, 
pericytes, and brain microvascular endothelial cells (BMECs) that 
maintains the dynamic between the peripheral circulation and the 
central nervous system (21). The persistent hyperglycaemic state of 

diabetes leads to the deposition of advanced glycosylation 
end-products (AEGs) in the vascular wall of diabetic patients. The 
accumulation of AEGs and their binding to the receptor for 
glycosylation end-products (RAGE) promotes oxidative stress, which 
activates the NF-κB signalling pathway, upregulates the expression of 
target genes and triggers inflammation (22). Excessive production of 
RAGE on brain microvascular endothelial cells increases Aβ transport 
into the brain tissue and decreases its removal, leading to the 
accumulation of Aβ in the brain tissue, which in turn triggers a series 
of neurodegenerative pathological changes, such as the formation of 
amyloid plaques, the formation of neurofibrillary tangles, and the loss 
of neurons (23). Insulin resistance as well as the hypertensive response 
can cause damage to the structural integrity and transport function of 
the blood–brain barrier, increase the permeability of the blood–brain 
barrier (24), and the entry of free fatty acids (FFA) and other plasma 
components into the brain tissue to disrupt the homeostatic balance 
of the brain, as well as the entry of immune cells and inflammatory 
factors in the peripheral circulation into the CNS, which can cause 
further neuronal damage, thus leading to cognitive dysfunction (19). 
On this basis, the presence of microvascular alterations in a 
pre-diabetic mouse model also suggests that early hyperinsulinaemia 
and insulin resistance are sufficient to induce vascular damage and 
that blood–brain barrier dysfunction precedes cognitive decline (25). 
Delaying the onset of diabetes by altering the chronic hyperglycaemic 
state through plant-derived bioactive peptides may be an effective way 
to improve the associated cognitive dysfunction.

2.2 Neuroinflammation in the brain and 
cognitive dysfunction in diabetes

Neuroinflammation itself is a defence mechanism against acute 
the CNS damage and ameliorates the effects of toxic substances 
produced in brain nerve cells, but persistent neuroinflammation 
inhibits nerve regeneration, leading to neurodegeneration making the 
patient cognitively impaired. Neurodegeneration has been observed 
in animal models of diabetes. Epidemiology suggests that mild 
cognitive impairment in diabetes is present in all age groups, but 
predominantly occurs in older adults (> 65 years) (26). Rohden et al. 
(27) found that the cellular and molecular mechanisms of 
neuroinflammation in Alzheimer’s disease and diabetic cognitive 
dysfunction may have relevance, and that the cell types involved in the 
inflammatory response in CNS are predominantly astrocytes and 
microglia, and that glia and neurons interact with each other via 
synapses, neurotransmitters, and chemicals. In the brain, 
hyperglycaemia activates microglia, and microglia activation and 
polarisation can mediate central inflammatory responses, neuronal 
apoptosis and exacerbate central neuropathy leading to dementia (28). 
Moreover, persistent hyperglycaemia triggers activation of the 
(NF-κB) pathway and release of pro-inflammatory factors, leading to 
an imbalance between the pro- and anti-inflammatory networks, 
resulting in an increase in reactive oxygen species and the production 
of a large number of inflammatory mediators, which affects the 
functioning of the mitochondria and leads to neuronal damage and 
degeneration (29).

Neuroinflammation can damage neuron-associated axons and 
myelin fractions, Paul et al. (30) suggesting that insulin resistance and 
glucose toxicity within the CNS of patients with T2D damages axon 
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integrity, inhibits nerve impulses, and degrades myelin in 
oligodendrocytes, leading to cognitive dysfunction. These 
inflammatory responses may be an important etiological factor in the 
development of memory impairment and behavioural changes in the 
nervous system. Meng et al. (31) showed that neurons in the brains of 
patients with T2DM secrete the regulatory factor angiopoietin-like 
protein 8 (ANGPTL8) into the hippocampus, which activates 
microglia to up-regulate pro-inflammatory factors and axonal 
damage, leading to cognitive impairment. Co-localisation of amyloid 
plaques and neuroprogenitor fibre tangles with activated glial cells in 
animal models and human brain tissue. Several studies have reported 
pathological astrogliosis and associated neuronal hypotrophic glucose 
metabolism in patients with neurodegenerative disease and diabetic 
model animals, showing increased glial fibrillary acidic protein 
(GFAP) and significant cellular hypertrophy (32), which has been 
correlated to some extent with the severity of cognitive impairment in 
patients with Alzheimer’s disease (AD). Under diabetic conditions, 
disruption of the regulation of microglia activity by hyperglycaemia 
occurs through a number of mechanisms, including overproduction 
of reactive oxygen species (ROS) and glycosylation end products 
(AGEs), and reduced elimination of Aβ. Y. Li et al. (33) demonstrated 
that activation of microglial NLRP3 inflammatory vesicles by diabetic 
mice and BV2 cells via the ROS/JNK MAPKs/NF-κB pathway leads 
to neuroinflammation. It follows that diabetes-related 
neuroinflammation exacerbates neurodegenerative disease and is an 
important regulatory mechanism for cognitive dysfunction.

The development of neuroinflammatory processes in the brain 
involves the activation of microglia and astrocytes, which is usually 
triggered by tissue damage and Aβ plaque deposition (34). Aβ attracts 
and activates microglia and astrocytes, leading to the release of 
pro-inflammatory mediators such as TNFα, IL-6, IL-2, and IL-1β, as 
well as reactive oxygen and nitrogen species produced by oxidative 
stress, which ultimately leads to neuronal cell death (35). In turn, these 
mediators have the ability to damage neurons while promoting Aβ 
synthesis and further enhancing microglia activation. In addition, it 
is known that Aβ induces the expression of enzymes such as nitric 
oxide synthase (NOS) and reactive oxygen species (ROS), which may 
lead to neighbouring neuronal damage. These pro-inflammatory 
mediators, along the lines of ROS, also stimulate γ-secretase activity 
and enhance the expression of amyloid precursor protein (APP), 
which promotes the processing of APP into the amyloid form (36). 
When neurons are damaged or die, they release immune signalling 
molecules that can exacerbate the inflammatory response, thereby 
increasing the neurotoxic effects of inflammation. These neurons also 
release the glutamate produced into the surrounding area, which may 
have a detrimental effect on the health of nearby neurons (37). 
Notably, there is evidence that the pro-inflammatory cytokine IL-1β 
plays a role in exacerbating tau pathology by accelerating tau 
phosphorylation (38).

2.3 Neurooxidative stress and cognitive 
dysfunction in diabetes

The brain is the most oxygen-consuming organ in the human 
body, with the normal human brain accounting for more than 20 to 
30 percent of the body’s total oxygen consumption, but the brain is low 
in antioxidants, making it more susceptible to the effects of oxidative 

stress (39). When oxidative stress is excessive or prolonged, the free 
radicals produced can cause lipid peroxidation, protein denaturation, 
and nucleic acid base damage, and different biomarkers can reflect 
oxidative damage to various biomolecules. For example, the levels of 
4-hydroxy-2-nonenal (4-HNE) and malondialdehyde (MDA) in the 
brain reflect the extent of lipid peroxidation (40). Similarly, in 
microglia mitochondria, levels of 8-hydroxy-2-deoxyguanosine 
(8-OHdG) have been shown to be regarded as a marker of DNA/ RNA 
oxidation due to the lack of protection of mitochondrial DNA 
(mtDNA) by histone proteins and its own limited repair capacity (41). 
Using targeted proteomics, ENPP-2 was increased in cerebrospinal 
fluid (CSF) of AD patients with amnestic mild cognitive impairment 
(aMCI), and ENPP-2 directly reflects the brain glucose steady state 
(42, 43). Hyperglycemia, hyperinsulinemia, or hypoinsulinemia can 
cause oxidative stress, and reactive oxygen species (ROS) and reactive 
nitrogen species (RNS) produced by excessive oxidative stress can 
disrupt the BBB and further affect central nervous system (CNS) 
function. Studies have shown that oxidative stress promotes brain 
insulin resistance, and central nervous system (CNS) insulin resistance 
can affect neuronal development and increase the risk of 
neurodegenerative diseases (44).

Oxidative stress has a common role and key link in multiple 
mechanisms of diabetic cognitive dysfunction and neurodegenerative 
diseases, and is a bridge between different pathogenic mechanisms of 
diabetes and cognitive dysfunction, as well as an important link in the 
pathogenesis of diabetic cognitive impairment. Excessive oxidative 
stress produces ROS and RON, which mainly include superoxide 
anion (O2

−), hydroxyl radical (.OH), H2O2, nitrogen dioxide (NO₂) 
and peroxynitrite (ONOO−), these deriving mainly from the 
mitochondrial electron transport chain, changes in metal valence 
states and enzymatic processes (e.g., MAO-B, NADPH oxidase) (45). 
Blood glucose levels affecting antioxidant levels of superoxide 
dismutase and antioxidants such as catalase or glutathione peroxidase 
for antioxidant defence, Cardoso et al. (46) analysed cerebral cortex 
and hippocampal mitochondria from hyperglycaemic and recurrently 
hypoglycaemic animals and found that cerebral cortical mitochondria 
exhibited high levels of MDA and α-tocopherol and increased 
glutathione disulphide reductase activity. Reduced manganese 
superoxide dismutase (MnSOD) activity, reduced glutathione to 
glutathione disulphide (GSH/GSSG) ratios, and an impaired oxidative 
phosphorylation system were accompanied by an increase in caspase 
9 activity in hippocampal homogenates. Numerous studies have 
shown that neurogenic fibre tangles (NFTs), which are observed in the 
brains of patients with AD and diabetic encephalopathy, consist of 
hyperphosphorylated tau (pTau) (47). In the brain, in order to induce 
tau phosphorylation, oxidative stress can directly interact with protein 
kinases, particularly glycogen synthase kinase-3 (GSK 3), increasing 
GSK-3β activity, which subsequently further disrupts its ability to bind 
to microtubules, accelerating their depolymerisation and interrupting 
neural signalling (48).

2.4 Gut dysbiosis and cognitive impairment 
in diabetes mellitus

Human gut microbial communities promote host health through 
reciprocal relationships between them, and gut ecological dysbiosis is 
characterised by a reduction in microbially dominant strains and 
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inadequate exposure to beneficial substances leading to poor gut 
microbial colonisation (49). Whereas the microbe-gut-brain axis 
connects the gut to the brain, and the enteric nervous system (ENS) 
exists at the interface between the microbiota and the host, the ENS is 
structurally and neurochemically similar to the CNS, and thus the 
pathogenic mechanisms that give rise to ENS disorders may also lead 
to CNS dysfunction and the nerves connecting the ENS to the CNS 
may act as a conduit for disease transmission (50). Thus, the ENS is 
regarded as a second brain that can directly or indirectly respond to 
the microbiota and its metabolites influencing cognitive functions 
through gut bacteria (51). The study found that the intestinal 
microbial imbalance in T2D was characterised by a decrease in the 
abundance of Bifidobacteria, Bacteroides, Faecalis, Akkermansia and 
Byrysia ross, while an increase in Rumen coccus, Fusobacterium and 
Blautella (52). One of the significant changes was a decrease in the 
number of Gram-positive organisms (53). Increased abundance of 
Gram-negative microorganisms leads to increased release of 
lipopolysaccharide (LPS), which disrupts the integrity of the intestinal 
mucosal barrier and triggers neuroinflammation and neuronal death 
through a series of steps (54). In addition to this, the brain receives 
information from the gut through a continuous flow of microbial, 
endocrine, metabolic and immune factors. This is also considered one 
of the main factors that promote obesity, diabetes and neuropsychiatric 
disorders (55).

Studies have shown a complex interaction between the gut and 
the brain, and that gut ecological dysregulation disrupts nervous 
system homeostasis in two main ways. On the one hand are 
microflora-associated metabolites such as short-chain fatty acids, 
tryptophan metabolites, immunostimulants and endogenous 
cannabinoids that may play a mediating role. On the other hand 
signalling molecules that operate mainly in the brain, in particular 
neuropeptide Y, brain-derived neurotrophic factor and 
γ-aminobutyric acid, which are disturbed by microbiological, obesity 
and diabetes, and are associated with psychiatric disorders (56, 57). 
The enteric nervous system transmits information from the gut to 
the brain via information carriers such as vagal afferent neurons, 
spinal afferent neurons, immune mediators and gut hormones. The 
influence of the gut microbiota is attributed to the host during 
disease, ageing, and lifestyle habits. High-sugar, high-fat (HSHF) 
diets significantly lead to an imbalance in the ratio of bacteria in the 
phylum Acidobacteria, Firmicutes and Thick-walled bacteria to 
those in the phylum Anaplasma, Aspergillus, Cyanobacteria, and 
Actinobacteria, which impairs the gut barrier function, and activates 
microglial cells in the brain, generating inflammation and affecting 
the cholinergic system to increase the risk of cognitive dysfunction 
(58, 59). Transplantation of faecal microorganisms (FMT) from 
healthy mice into male mice placed on a high-fat diet (HFD) can 
restore bacterial diversity, improves metabolism associated with 
poor dietary patterns and reduces hippocampal astrocyte 
hyperplasia, supporting the role of ecological dysregulation in 
mediating obesity-induced cognitive impairment (60). Moreover, 
microbial changes affect gastrointestinal (GIT) dysbiosis, which 
contributes to the gut-brain axis by increasing systemic LPS, reactive 
oxygen species, and inflammation. It has been reported that 
inflammation induced by direct injection of LPS can disrupt BBB 
and increase vascular permeability, increasing the infiltration of 
inflammatory mediators, leading to neuroinflammatory response 
and cognitive dysfunction (61) (Figure 2).

3 The role and regulatory mechanism 
of plant-derived bioactive peptides in 
the regulation of diabetic cognitive 
impairment

3.1 As a carbohydrate-digesting enzyme 
inhibitor to regulate diabetic cognitive 
impairment

A key aspect of diabetes management is the inhibition of enzymes 
involved in carbohydrate digestion, particularly α-glucosidase and 
α-amylase, which play a key role in blood glucose regulation, and 
inhibition of these enzymes delays the hydrolysis of dietary starch in 
the digestive system, lowering blood glucose levels, slowing glucose 
metabolism, and delaying glucose absorption (62, 63). Structural 
analyses indicate that α-amylase activity requires calcium ions to 
maintain structural integrity and is activated by chloride ions, and 
similarly, α-glucosidase operates via a Koshland double displacement 
reaction mechanism (64). At present, plant-active peptides with 
α-glucosidase inhibitory activity in legumes, cereals and nuts have 
been studied, and the inhibition effect of different enzymatically 
hydrolysed protein peptides α-glucosidase has been found to 
be significantly different. Compared with commonly used enzymes 
including pepsin, trypsin, neutral protease, acid protease, bromelain, 
and flavour protease etc., alkaline protease, as an endonuclease with 
broad specificity, the enzymatically digested plant protein peptides 
have the strongest inhibitory effect on α-glucosidase, therefore, 
alkaline proteases are widely used to hydrolyze a variety of plant 
proteins (65, 66).

Soy protein peptide peptides prepared with alkaline protease (AP) 
exhibited the highest α-glucosidase inhibitory activity compared to 
peptides prepared by papain and trypsin digestion. Three novel 
α-glucosidase inhibitory peptides identified in soy protein peptides, 
LLPLPVLK, SWLRL and WLRL, had IC 50 s of 237.43 ± 0.52, 
182.05 ± 0.74 and 162.29 ± 0.74 μmol/L, respectively (67).Two novel 
peptides (WH and WS) with strong α-glucosidase inhibitory activity 
were isolated from hydrolysate of almond oil processing residues. 
Peptide WH was relatively stable in simulated gastrointestinal 
digestion and was able to maintain the IC 50 value for α-glucosidase 
inhibition (17.03 ± 0.05 μmol/L), whereas WS significantly increased 
the IC 50 value after simulated digestion (24.71 ± 0.02 μmol/L to 
44.63 ± 0.03 μmol/L) (68). The walnut protein product-derived 
peptide LPLLR, hydrolysed by alkaline protease, exhibited in vitro 
inhibitory activity against alpha-amylase and attenuated insulin 
resistance in HepG2 cells. Currently, it has become increasingly 
common to screen potentially active peptides by predicting the 
binding mode and affinity of peptides and α-glucosidase through 
molecular modelling techniques. Deng et al. (69) identified three new 
potentially active peptides, RWPFFAFM (1101.32 Da), AAGRLPGY 
(803.91 Da) and VVRDFHNA (957.04 Da), from mulberry leaves by 
molecular docking and molecular dynamics simulation. In vitro 
validation of RWPFFAFM and AAGRLPGY showed good IC50 values 
of α-glucosidase inhibition (1.299 mM and 1.319 mM). In addition, 
studies have shown that low molecular weight peptides have better 
stability and higher bioavailability, resulting in better biological 
functions in  vivo. Kiwi enzymes hydrolyse wheat gluten proteins, 
where the smallest Mw fraction (< 1 kDa) of wheat alcohol soluble 
protein peptides showed the highest inhibitory capacity against 
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α-glucosidase (18.4 ± 0.7%) and α-amylase (53.3 ± 1.9%) (70). 
According to previous studies, peptides with strong α-glucosidase 
inhibitory activity are short peptides with a relative molecular weight 
of less than 1 kDa, this is because lower molecular weight peptides can 
access and bind to the active site of α-glucosidase (71). Currently, 
acarbose is used as a glucosidase inhibitor, but long-term use of this 
drug can cause gastrointestinal side effects. Therefore, it is important 
to develop healthy, safe and efficient natural glucokinase inhibitors.

3.2 As an insulin secretion promoter and 
blood glucose regulator inhibitor inhibitor 
to regulate diabetic cognitive impairment

Biopeptides play a crucial role in enhancing insulin secretion, which 
is a central component of glucose regulation mediated by the pancreas 
through insulin and glucagon release. Enteric proinsulin hormones such 
as glucagon-like peptide-1 (GLP-1) and glucose-dependent 
insulinotropic polypeptide (GIP), GLP-1 promotes insulin production, 
reduces appetite, and maintains pancreatic β-cell health; whereas GIP 
enhances insulin secretion and affects fat metabolism and β-cell 
proliferation (72, 73). Rapid degradation of GLP-1 and GIP (DPP-IV) 
enzymes by dipeptidyl peptidase-IV emphasises the importance of 
DPP-IV inhibition. This inhibition extends the activity of these 
hormones, improves glucose control, maintains β-cell function, and 
ensures sustained postprandial insulin release for effective blood glucose 

reduction (74). Soymorphin-Soymorphin-5 (YPFVV), a β-opioid 
agonist peptide derived from the soybean β-glycin β-subunit, inhibits 
hyperglycemia in KKAy mice without increasing plasma insulin levels 
while decreasing plasma and hepatic triglyceride (TG) levels and liver 
weight, and promotes plasma adiponectin concentration and adiponectin 
receptor subtype AdipoR2 mRNA expression in the liver, PPAR in the 
liver after oral administration of soymorphin-5 The mRNA expression 
of γ and its target genes was also increased, effectively improving glucose 
and lipid metabolism in KKAy mice, a type 2 diabetes model animal (75). 
In vitro studies have shown that intraduodenal instillation of soy protein 
hydrolysate (SPH) in weaned piglets promotes the release of anorexigenic 
hormones such as peptide YY (PYY) and glucose-dependent 
insulinotropic polypeptide (GIP), stimulates insulin production in 
pancreatic islet cells by elevating the level of GLP-1 to inhibit short-term 
feed intake and triggers the secretion of cholecystokinin (CCK) in the 
liver through activation of the CaSR and the intracellular Ca2+/TRPM 5 
pathway to reduce the appetite of pigs (76). Peptides RRDY and RL 
identified from yam diosgenin were used in oral glucose tolerance test 
(OGTT) on normal ICR mice, and peptide RRDY reduced DPP-IV 
activity controlling blood glucose levels in normal mice (77). The use of 
a mixture of corn and wheat peptides can weaken the autoimmune 
process of pancreatic inflammation, reduce the degree of infiltration of 
β cells, improve the function of pancreatic β cells, treat and prevent the 
development of type 1 diabetes, reduce the incidence of diabetes (78). In 
most studies, in vivo or in vitro experiments are often used to investigate 
the physiological effects of peptides. However, in order to screen 

FIGURE 2

Metabolic mechanisms associated with cognitive dysfunction in diabetes. Created in BioRender.com.
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potential bioactive peptides more conveniently in the face of large and 
complex protein resources, researchers usually perform active peptide 
screening based on computer-analyzed molecular docking or 
quantitative conformational-activity relationship (QSAR) modelling 
indicative of the relationship between identified or known peptides and 
target proteins (79). R. Han et al. (80) reported that the application of 
Peptide Ranker web server and Pepsite 2 software confirmed that oilseed 
protein is a potentially important source of DPP-IV inhibitory peptides. 
Mudgil et al. (81) hydrolysed quinoa protein using food-grade enzymes, 
identified 136 peptides, 35 of which were predicted as potentially 
bioactive peptides (BAPs) based on the Peptide Ranker score, and have 
high potential for inhibition of DPP-IV, AG, and ACE, DPP-IV inhibition 
is a key target in the treatment of T2DM, and DPP-IV inhibitors were 
among the first oral hypoglycaemic agents prospectively designed as 
glucose-lowering agents. To date, more than a dozen DPP-IV inhibiting 
drugs have been developed and marketed around the world, which are 
classified as gliptins (82). However, these synthetic DPP-IV inhibitors 
have been reported to have a number of adverse effects, such as 
gastrointestinal adverse reactions, allergic reactions, skin-related side 
effects, and musculoskeletal disorders.

3.3 Promote glucose uptake and cellular 
metabolism to regulate diabetic cognitive 
impairment

A key aspect of diabetes management is enhancing glucose uptake 
and regulating cellular metabolism. Glucose is the only source of 
energy in the brain because the brain cannot use fat or protein as 
alternative energy sources. In the brain, neurons have the highest 
energy requirements, but they cannot produce and store glucose, and 
therefore require a continuous supply of glucose to neurons via 
sodium-dependent glucose cotransporter family proteins (SGLT1 and 
SGLT2) and sodium-independent glucose transporter proteins 
(GLUT) across the BBB (83–85). In addition, glucose plays an 
important role in hippocampus-dependent learning and memory by 
upregulating the neurotrophic factors fibroblast growth factor-1 
(FGF-1) and brain-derived neurotrophic factor (BDNF) through 
activation of the Akt signalling pathway (86). Neurons provide ATP 
mainly through mitochondrial oxidative phosphorylation (OXPHOS), 
glycolysis, and patients with cognitive impairment are associated with 
abnormalities in cerebral glucose utilisation as well as glycolysis and 
OXPHOS metabolism. Autopsy studies in patients with 
neurodegenerative diseases have shown significant reductions in 
GLUT1 and GLUT3 in brain regions that are closely associated with 
the pathology of cognitive impairment (87). Clinical studies using 
fluorodeoxyglucose FDG and positron emission tomography (FDG-
PET) imaging studies in subjects with AD have shown reduced 
glucose transport and glucose metabolism in the areas most affected 
by AD (88). Meanwhile, reduced expression and translocation of the 
high-volume insulin-sensitive glucose transporter protein GLUT4 has 
been found in hippocampal neurons of patients with T2DM, leading 
to reduced neuronal glucose and ultimately cognitive dysfunction (89).

Biopeptides derived from medicinal plants have been shown to 
activate specific signalling pathways, in particular the AMPK pathway, 
a serine/threonine kinase that is activated when cellular energy levels are 
low, and which signals to stimulate glucose uptake, fatty acid oxidation 
in adipose (and other) tissues (90), glucose transporter protein (GLUT)4 

translocation and mitochondrial biosynthesis, while inhibiting protein 
and glycogen synthesis and improving insulin sensitivity and glucose 
homeostasis. GLUTs are proteins that aid in the transport of glucose to 
various tissues where it is efficiently used as an energy source (91). 
Among the GLUTs, GLUT4 is considered the major insulin-regulated 
glucose transporter protein and is essential for glucose uptake. Soya 
globulin peptides (IAVPGEVA, IAVPTGVA and LPYP) from soybean 
activate GLUT1 and GLUT4 by stimulating the Akt and AMPK 
pathways in HepG2 cells and consequently promote energy metabolism 
(92). Pea oligopeptides have also been found to have great potential to 
reverse the metabolic abnormalities associated with type 2 diabetes, 
Y. Zhu et al. (93) demonstrated that four polypeptides, VLP, LLP, LL and 
LL, derived from pea significantly regulated glucose metabolism and 
exerted an antioxidant effect in IR-HepG2 cells. Among them, LLP, VA 
and LL promote the expression of GLUT2 genes and proteins, while 
VLP and LL inhibit p38 MAPK phosphorylation, improve glucose 
tolerance, restore pancreatic function and enhance insulin signalling. 
The lupine seed protein congly-g stimulates the specific pathway PKC/
Flotillin-2/caveolin-3/Cbl to activate glucose homeostasis and increase 
glucose transport (94). The active peptides HTL, FLSSTEAQQSY and 
TLVNPDGRDSY were isolated and characterised from mung bean, and 
these peptides promote translocation of (GLUT4) to the plasma 
membrane. The tripeptide HTL promotes glucose uptake through 
activation of adenosine monophosphate-activated protein kinase, 
whereas the oligopeptides FLSSTEAQQSY and TLVNPDGRDSY 
promote glucose uptake through activation of the PI3K/Akt pathway, 
which is facilitated in L6 myotubes (95). Black bean-derived peptides 
(AKSPLF, ATNPLF, FEELN and LSVSVL) effectively reduced glucose 
uptake in Caco-2 cells, and molecular docking studies showed that these 
peptides strongly interacted with the glucose transport proteins SGLT-1 
and GLUT-2. In a hyperglycaemic rat model, black bean hydrolysed 
protein isolate (HPI) reduced postprandial blood glucose in a dose-
dependent manner in rats (Luis (96)). Taken together, these findings 
highlight the role of dietary biopeptides in regulating glucose 
metabolism, enhancing insulin sensitivity, and providing promising 
avenues for the regulation of diabetes.

3.4 Regulation-related inflammation 
affects cognitive dysfunction in diabetes

Phyto-derived bioactive peptides play a potential therapeutic role 
as anti-inflammatory and neuroprotective agents, addressing 
excitotoxicity, which contributes to improved neuronal viability (97, 
98). These approaches can be combined with improving targets related 
to glucose metabolism to collectively improve cognitive dysfunction 
in diabetes. Currently, the use of rational in vivo animal models and 
in vitro experimental assays is important in evaluating the effects of 
bioactive peptide use (99), however, it is difficult to take into account 
bioavailability-related factors such as gastrointestinal digestibility and 
peptide utilisation for the assessment of learning memory capacity 
using neuronal cells alone. The Morris water maze test and passive 
avoidance test are usually adopted to evaluate the bioavailability of 
peptides at the animal level (100), while in vitro experiments are used 
to explore the molecular mechanisms associated with the action of 
active peptides (101). Multiple implant-derived bioactive peptides 
were found to significantly improve neuroinflammation and effectively 
delay the development of cognitive dysfunction in the diet.
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Walnut proteolytic digests are a potential source of bioactive 
peptides with improved cognitive function. S. Wang et  al. (102) 
demonstrated that walnut protein hydrolysate (WPH) and its low 
molecular weight grades (WPHL) could attenuate LPS-induced 
memory deficits by normalising inflammatory responses and oxidative 
stress in the brain. Recent studies have shown that soy protein 
hydrolysates and their active peptides have an ameliorative effect on 
memory disorders. Oral administration of soy peptide (SP) has been 
reported to attenuate age-related cognitive decline in learning and 
memory in a mouse model of accelerated ageing (SAM), with increased 
expression of neurotrophic factors, such as BDNF and NT-3, observed 
in the brains of SP-fed mice at both the mRNA and protein levels (103). 
Improvement in cognitive function may be attributed to upregulation 
of brain-derived neurotrophic factor (BDNF) and neurotrophic 
factor-3 (NT-3) levels by cAMP response element binding protein 
(CREB) activation in the brain. BDNF and NT-3 are members of a 
family of neurotrophic factors that support neuronal development and 
survival and are involved in memory formation and neurogenesis. 
BDNF deficiency leads to age-related cognitive impairment (104, 105).
Montserrat-de la Paz et al. (106) showed that the blue lupin peptide 
GPETAFLR can exhibit anti-inflammatory properties by reducing 
TNF-α expression and inhibiting inflammatory cytokines (e.g., IL-1β, 
IL-6 and IL-10). In addition, it effectively inhibited nitric oxide 
production in microglia (BV-2 cells) and hindered the expression of 
pro-inflammatory genes in microglial cells of mice on a high-fat diet, 
attributes that suggest that blue lupin has the ability to attenuate 
inflammation (107, 108), process that is at the core of neurodegenerative 
diseases, and also demonstrated to have an enhanced potential for 
cognitive function. Wattanathorn et al. (109) found that cashew protein 
hydrolysate inhibited the production of pro-inflammatory cytokines 
in the brain of rats with arterial occlusion-induced cerebral is chaemia, 
and by modulating the function of lipid metabolism, its modulation of 
serum cholesterol, TG, and LDL, and elevation of HDL, greatly 
improved spatial memory in rats. Oat peptides (DF-10), (HL-8) and 
(RW-9) have been shown to improve behavioural performance, reduce 
AChE activity, attenuate oxidative stress, and decrease the levels of 
inflammatory cytokines including TNF-α, IL-6, and IL-1β in the brain 
of zebrafish exposed to scopolamine (110). Another study showed that 
the amino acid sequence and composition of peptides have a significant 
effect on neuroprotection and that the antioxidant and anti-
inflammatory effects of peptides are attributed to the presence of 
hydrophobic aromatic amino acids and essential amino acids 
implicated in neuroprotection, which can be involved in a number of 
cellular processes, transported via the BBB, and modulation of 
neuronal memory (111). The lipolysis-stimulating peptide VHVV 
obtained from flavoured enzyme-soy protein (SPI) hydrolysate 
(F-SPIH) is composed of two essential amino acids, valine and 
histidine, where valine is involved in many cellular processes, such as 
lipolysis, lipogenesis, glucose transport, and intestinal barrier glucose 
metabolism, and histidine regulates neurogenesis, astrocytes, and BBB 
integrity (112).

3.5 Regulating oxidative stress affects 
diabetic cognitive impairment

Most of the plant antioxidant peptides consist of 2–20 amino 
acids. It can effectively scavenge excessive reactive oxygen free 

radicals in the body, protect the normal structure and function of 
cells and mitochondria, and prevent the occurrence of lipid 
peroxidation, thus playing a role in preventing cognitive 
dysfunction in diabetes (113). In recent years, plant-derived 
antioxidant peptides have attracted much attention due to their 
significant neuroprotective potential and their ability to cross the 
gastrointestinal barrier or the BBB to reach their target sites 
associated with their molecular mode of action (114). N. Li et al. 
(115) found that wheat germ peptides have an important role in 
the endogenous antioxidant system by enhancing the activities of 
antioxidant enzymes, such as GSHPx, superoxide dismutase 
(SOD), and catalase (CAT), while decreasing the production of 
malondialdehyde (MDA), in order to protect the PC12 cells from 
H2O2-induced oxidative stress. AREGETVVPG reduces 
intracellular reactive oxygen species (ROS) production, inhibits 
phosphorylation of PKCζ, AKT, and Erk 1/2, and inhibits Nox 4 
protein expression to protect hyperglucose-induced vascular 
smooth muscle cells (VSMC) oxidative stress (116). Walnut 
peptides have similar antioxidant properties. In a previous study, 
walnut peptides demonstrated a protective effect against H2O2 and 
Aβ-induced cellular damage, which was accompanied by a 
decrease in lipid peroxidation and an increase in antioxidant 
enzyme activity in rat PC12 and SH-SY5Y cell lines, as well as in 
primary cultured cortical neurons (117). Notably, compounding 
walnut peptide with ginseng saponin to feed senescence-
accelerated mice (SAM) revealed that walnut peptide significantly 
increased the serum levels of antioxidant enzymes and reduced Aβ 
and p-tau in the hippocampus through activation of the brain-
derived neurotrophic factor (BDNF)/TrkB-dependent PI3K/Akt 
signalling pathway, significantly improving the memory of rats 
with neurodegenerative disease capacity (118). H. Chen et  al. 
(119) identified 77 peptides from the antioxidant fraction of 
defatted walnut meal hydrolysate (DWMH) that exhibited 
relatively strong hydroxyl scavenging and oxygen radical uptake. 
In an animal model of D-galactose-induced neurodegeneration, 
DWMH eliminates spatial learning memory deficits in the Morris 
water maze experiment and the dark/light avoidance experiment 
in mice. Among them, WSREEQEREE and ADIYTEEAGR 
significantly ameliorated H2O2-induced oxidative damage in PC12 
cells. Feng et al. (120) smulated gastrointestinal digestion of SGGY 
tetrapeptide obtained from DWMH and exhibited high radical 
scavenging activity in both 2,2′-azino-bis (3-ethylbenzothiazolino-
6-sulfonic acid; ABTS) and oxygen radical absorbance capacity 
(ORAC) assays, which protects neuroblastoma (SH-SY5Y) cells 
from H2O2-induced oxidative damage. In addition, Zheng et al. 
(121) found that tripeptides from defatted peanut (Arachis 
hypogaea) meal hydrolysate (DPMH) with Tyr-Gly-Ser (YGS) 
structure had a strong free radical absorbance capacity (ORAC), 
preventing linoleic acid peroxidation, and H2O2 induced oxidative 
damage to PC12 cells had a protective effect. Its antioxidant 
activity may be mediated through the mechanism of transferring 
hydrogen atoms and the presence of Tyr at the N-terminus, which 
constitutes a hydrogen donor. Notably, the isolation of PGCPST 
from peanut protein hydrolysate not only exhibited desirable 
antioxidant capacity, effectively increased cell viability and 
reduced apoptosis in 6-OHDA-induced PC12, but also exerted 
neuroprotective effects through sphingolipid metabolism-related 
pathways (122).
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3.6 Regulation of intestinal dysbiosis 
affects diabetic cognitive impairment

The intestinal flora, a complex community of microorganisms 
present in our gastrointestinal ecosystem, is an important protective 
barrier that maintains the integrity and structure of the intestinal 
layer, fights against harmful pathogens, and modulates host immunity, 
and imbalances in the intestinal flora can lead to impaired intestinal 
barrier function (123). Gut microbe-derived metabolites such as ROS 
and lipopolysaccharides can leak into the body circulation via a 
bidirectional microbe-gut-brain axis communication system, and 
these neurotoxin releases from the gut microbiota can elicit an 
inflammatory response and cross the blood–brain barrier to modulate 
neuronal activity, and neuroinflammation has been implicated in the 
pathogenesis of diabetes mellitus and its associated cognitive 
dysfunction (124). Y. Zhang et  al. (125) used 16S rRNA gene 
sequencing to examine the composition of the intestinal flora in 154 
patients with type 2 diabetes mellitus, 73 of whom had normal 
cognitive function and 81 of whom had impaired cognitive function. 
Tenericutes abundance is lower in patients with cognitive impairment. 
Comparisons at the genus level showed decreased abundance of 
Bifidobacterium and unranked-RF 39 and increased abundance of 
Digestive Cocci and unranked Leuconostocaceae in cognitively 
impaired patients with T2DM. In addition, the relative abundance of 
Veronococcus and Katococcus was reduced in cognitively impaired 
subjects, and the relative abundance of each of the seven subfunctions 
was significantly altered in the cognitively impaired group. Alterations 
in the gut microbiome have also been demonstrated in preclinical 
studies. H. Gao et al. (126) conducted a study on advanced type 1 
diabetic (AST1D) rats with cognitive deficits and age-matched 
controls (AMC) to investigate the diversity of microbial populations. 
Microbiome alterations were found to be significant in ASTID rats. 
Relatively high abundance of Mycobacterium anisopliae and lower 
abundance of Mycobacterium anisopliae were observed in AST1D 
rats. Energy metabolism, which is critical for each organism, was 
significantly reduced in AST1D rats, especially in serum and 
hippocampus. Numerous findings have demonstrated that peptides 
can alleviate neuroinflammation and thereby ameliorate cognitive 
impairment by modulating the levels of reactive oxygen species in the 
gut and the composition of the intestinal flora, and that peptides with 
small molecular weights have higher antioxidant capacity compared 
to natural proteins and can be absorbed directly in the gut (126). Soy 
protein hydrolysates with molecular weight < 3 kDa not only attenuate 
the accumulation of reactive oxygen species ROS in H2O2-damaged 
human intestinal Caco-2 cells, but also inhibit lipid peroxidation and 
activate the cellular antioxidant defence system to protect the Caco-2 
cells from oxidative stress, thereby maintaining the integrity of human 
intestinal mucosa (127). In addition, peptides can improve the 
composition of microbial communities by reducing the abundance of 
pathogenic organisms and protect the intestinal and mucosal immune 
systems, thereby exerting functional properties in neurodegenerative 
diseases. T2DM mice treated with ginseng polypeptide (GP) on a 
high-sugar and high-fat diet (including streptozotocin (STZ)) showed 
that GP could play a hypoglycemic role by restoring the SCFA-
producing microbiota in the intestine, and enriched the microflora 
closely related to lipid metabolism, oxidative stress and inflammatory 
response, such as desalted bacilli, Bifidobacterium spp., and 
bacteroides (128). Targeting the insulin signalling pathway may 

provide new strategies for the prevention and treatment of cognitive 
impairment. Probiotic fermentation technology (PFT) has been 
reported to improve insulin signalling by modulating the gut 
microbiota, upregulating insulin receptor expression and activating 
PI3K/Akt signalling, followed by inhibition of GSK-3β and mTOR 
signalling, which leads to the downregulation of over-phosphorylated 
tau proteins in order to halt the development of memory and cognitive 
impairment (129). M. Wang et  al. (130) reported that oral 
administration of PKNW enhanced learning and memory in APP/
PS1 transgenic mice by reducing hippocampal Aβ plaque 
accumulation, and furthermore, PKNW treatment increased the 
relative abundance of the thick-walled phylum, whereas it decreased 
the relative abundance of the anamorphic phylum and the warty 
microphytobacterial phylum. Improved bidirectional communication 
between the gut-brain axis including the central and enteric nervous 
systems links the cognitive centres of the brain to peripheral gut 
function. Alterations in the gut microbiome are strongly associated 
with cognitive function. Further studies on interactions, metabolism 
and mechanisms of action are needed to develop effective 
neuroprotective agents (131). Given that peptides play an effective role 
in improving the composition of the gut microbiota, maintaining 
homeostasis of the gut microbiota prevents or delays the onset of 
neurodegenerative diseases. Thus, peptides may serve as a new 
research direction for future prevention and treatment of 
neurodegenerative diseases through microbial targeting to reduce the 
dependence on synthetic drugs with severe side effects (Table 1).

4 Conclusion

Over the years, diabetic cognitive dysfunction has been 
extensively studied as a complication and comorbidity of diabetes, 
and although the specific pathogenesis is still unclear, a large 
number of studies have found that diabetic cognitive dysfunction 
and neurodegenerative diseases (e.g., Alzheimer’s disease) share 
common pathophysiological characteristics. With the progress of 
research, it has been found that chemical synthetic drugs that 
regulate diabetes may improve cognitive dysfunction and prevent 
the occurrence of dementia to a certain extent, however, these 
synthetic drugs have certain side effects that may bring 
inconvenience to patients’ lives. In contrast, phytogenic bioactive 
peptides have a wide range of sources, low molecular weight, high 
activity and specificity, easy absorption, high safety and low toxicity, 
and have broad application prospects in the prevention and 
treatment of various diseases. This article reviews the relevant 
mechanisms affecting the onset of cognitive dysfunction in diabetic 
patients, including oxidative stress, neuroinflammation, tau 
hyperphosphorylation, and amyloid precipitation. The development 
of these symptoms involves dysfunction of insulin signalling or 
synthesis, impaired glucose transporters. Here, we  discuss 
potentially active peptides with antidiabetic properties that inhibit 
α-amylase, α-glucosidase, DPP-IV, and have inhibitory oxidative 
stress, apoptosis, and inflammatory and neuroprotective peptides 
isolated from plant sources. At present, additional work is needed 
to verify the efficacy and safety of phytogenic bioactive peptides in 
anti-diabetic and neuroprotective, so as to escort the further 
development of foods and drugs with the ability to prevent diabetic 
cognitive dysfunction.
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TABLE 1 Antidiabetic effects of peptides and protein hydrolysates identified from plants and their cognitive dysfunction.

Source Protein 
hydrolysate

Peptide(s) 
identified

Mechanism of action Reference

Soybean seeds

Soy protein 

hydrolysate
WSREEQEREE

Alleviate age-related cognitive decline in learning and memory in accelerated ageing 

mouse (SAM) models, upregulate increased expression of neurotrophic factors such as 

BDNF and NT-3 at the mRNA and protein levels.

(132)

Soybean 

hydrolysate

Inhibition of lipid peroxidation and stimulation of antioxidant enzyme activity protect 

Caco-2 cells from H2O2-induced oxidative stress and maintain human intestinal 

mucosal integrity

(127)

soy protein 

hydrolysates

LLPLPVLK

α-glucosidase inhibitors in vitro (67)SWLRL

WLRL

Almond 

(Armeniaca 

sibirica) oil

WH

α-glucosidase inhibitors in vitro (68)
WS

Mulberry Leaves
RWPFFAFM

α-glucosidase inhibitors in vitro (69)
AAGRLPGY

Wheat gliadin 

peptide
WGLYH

α-Amylase inhibitors in vitro
(70)

α-glucosidase inhibitors in vitro

Yam Dioscorin
RRDY

DPP-IV inhibitors in vitro (77)
RL

Soy β - Glycin YPFVV

Inhibits hyperglycemia in KKAy mice, decreases plasma and hepatic triglyceride (TG) 

levels, increases plasma adiponectin concentrations, participates in the stimulation of 

peroxisome proliferator-activated receptor (PPAR) β pathways and fatty acid β-

oxidation in vivo.

(75)

Oilseeds
Oilseed protein 

hydrolysate
DPP-IV inhibitors in vitro (80)

Quinoa
Quinoa protein 

hydrolysate
DPP-IV inhibitors in vitro (81)

Pea seeds

VLP

Highly effective in stimulating glucose metabolism and alleviating oxidative stress in 

IR-HepG 2 cells via IRS-1/PI3K/AKT and p38 MAPK signalling pathways.
(93)

LLP

VA

LL

Lupin seed 

Protein 

conglutin-γ

Stimulation of specific pathways PKC/Flotillin-2/caveolin-3/CBL activates glucose 

homeostasis and increases glucose transport.
(94)

Mung bean 

seeds

HTL
Activation of Jak 2- and PI 3 K/Akt- pathways induces glucose uptake, activates leptin 

receptor/Jak 2/AMPK and PHT-1/AMPK signalling pathways.
(95)FLSSTEAQQSY

TLVNPDGRDSY

Black bean seeds

AKSPLF

Blocks glucose transporters GLUT 2 and SGLT 1, thereby decreasing glucose uptake in 

Caco-2 cells.
(133)

ATNPLF、

FEELN

LSVSVL

Walnut

PPKNW

To ameliorate the intestinal dysbiosis of APP/PS1 transgenic mice by increasing the 

relative abundance of Firmicutes and decreasing the phylum Proteobacteria and 

verrucous microbacteria

(130)

Walnut protease 

hydrolysate

Normalises the inflammatory response and oxidative stress in the brain, thereby 

alleviating LPS-induced memory impairment
(102)

Defatted walnut 

hydrolysate

SGGY Activates intracellular antioxidant defences to protect PC 12 cells from glutamate-

induced apoptosis (superoxide dismutase (SOD) and glutathione peroxidase (GSH-

Px)), inhibits ROS production, Ca ~ (2+) influx, and reduction of mitochondrial 

membrane potential (MMP) and apoptosis-related proteins Bax and Bcl-2 by Kelch-

like ECH-associated protein 1 (Keap 1) inhibition.

(117)

WSREEQEREE

(132)
ADIYTEEAGR

(Continued)
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