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Background: Triglyceride glucose (TyG) index has been proposed as a credible 
and simple surrogate indicator for insulin resistance. The primary aim of this 
study was to novelly examine the associations between dietary patterns 
reflecting variations in circulating TyG index and the risk of type 2 diabetes 
mellitus (T2DM).

Methods: This study included 120,988 participants from the UK Biobank, all of 
whom completed multiple 24-h dietary assessments. Dietary pattern scores 
were derived using reduced-rank regression (RRR) and Least Absolute Shrinkage 
and Selection Operator (LASSO) regression, based on the TyG index and 
approximately 80 food groups. The associations between the TyG index, related 
dietary pattern scores, and T2DM risk were evaluated using Cox regression 
models.

Results: During a median follow-up period of 11.2 years, 3,585 participants 
developed T2DM. A higher TyG index was significantly associated with an 
increased risk of T2DM. The two dietary patterns derived from RRR and 
LASSO showed a strong correlation (ρ = 0.88, p < 0.001) and shared similar 
characteristics at higher scores, including greater intakes of margarine, meat, 
fruit juice, and potatoes, alongside lower intakes of green vegetables, oily 
fish, yogurt, nuts and seeds, and dried fruits. Corresponding blood profiles, 
including elevated levels of C-reactive protein and HbA1c, along with reduced 
levels of HDL-C and docosahexaenoic acid, substantiated the dietary pattern 
assessments. The adjusted hazard ratios (HRs) for T2DM risk were 1.52 (95% 
CI: 1.33–1.73, p trend <0.001) and 1.48 (95% CI: 1.30–1.69, p trend <0.001) for 
dietary patterns derived using RRR and LASSO, respectively, comparing the 
highest to the lowest quintiles.

Conclusion: The findings suggest that a higher TyG index and specific dietary 
patterns, characterized by higher intakes of margarine, meat, fruit juice, and 
potatoes, and lower intakes of green vegetables, oily fish, yogurt, nuts and 
seeds, and dried fruits, are associated with an increased risk of developing 
T2DM. These results underscore the potential of dietary modifications targeting 
these patterns to mitigate T2DM risk.
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Introduction

Type 2 diabetes mellitus (T2DM) is a common metabolic disorder 
that results in significant morbidity, mortality, and economic burden. 
Addressing the modifiable risk factors, particularly dietary patterns, 
is crucial for developing effective prevention strategies (1). Insulin 
resistance-associated dietary patterns derived from existing dietary 
index methods have been associated with the risk of T2DM (2, 3).

Dietary patterns have been widely studied for their impact on 
metabolic health. Recent research, such as that by Gao et  al., has 
examined how high-fat, high-glycemic index, and low-fiber diets are 
associated with increased T2DM risk by reduced rank regression (RRR) 
approach (4). RRR is a statistical method used to identify dietary 
patterns based on biomarkers or nutrient intakes that are known to 
mediate the relationship between food consumption and the outcome 
of interest (5). Similarly, Brayner et al. used RRR method to investigate 
the impacts of different types of dietary fats on obesity and T2DM, 
highlighting the complex relationships between fat intake and metabolic 
outcomes (6). The extracted dietary patterns may vary depending on 
the response variables used by RRR method. Previous studies have used 
some specific nutrients intake (such as fatty acids and free sugars) as 
response variables in the RRR model (4, 6). However, nutrient intake 
assessments are subjective and susceptible to recall bias, which may 
introduce inaccuracies. Therefore, utilizing objective biomarkers that 
are closely linked to insulin resistance and reflect overall physiological 
levels as response variables would be advantageous.

The triglyceride glucose (TyG) index, an indicator derived from the 
fasting blood glucose and triglyceride levels, has been proposed as a 
promising and convincing indicator of insulin resistance and suitable 
for large-scale cohort studies (7, 8). Given the close relationships 
between dietary factors and blood lipid profiles or glucose levels, it is of 
high interest to identify dietary patterns associated with the TyG index. 
Moreover, the TyG index offers several advantages, including simplicity, 
ease of use, and a strong correlation with hyperinsulinemic-euglycemic 
clamp measures of insulin sensitivity (9). Despite its potential, the direct 
influence of dietary components on the TyG index has not been 
thoroughly explored. This study aims to fill this gap by investigating how 
different food groups affect the TyG index, thereby providing a more 
nuanced understanding of dietary patterns on T2DM.

Although the RRR method has been instrumental in deriving 
dietary patterns (10–15), the Least Absolute Shrinkage and Selection 
Operator (LASSO) model has recently been proposed for dietary 
pattern extraction due to its high computational efficiency in 
improving the prediction of disease-related risk factors (16). However, 
there exists a notable dearth of studies investigating the relationship 
between dietary patterns derived from LASSO or in combination with 
RRR, and the risk of developing T2DM.

In summary, this study focuses on using the TyG index as a 
response variable and advanced statistical models such as LASSO 
combined with RRR to identify dietary patterns related to T2DM. The 
goal is to deepen our understanding of how dietary patterns influence 
T2DM and provide targeted recommendations for reducing insulin 
resistance and T2DM risk.

Materials and methods

Study subjects

The UK Biobank population-based cohort was recruited between 
2006 and 2010 across England, Wales, and Scotland. Extensive 
phenotypic and genotypic details from 502,493 participants (aged 
40–69 years) have been collected (17). Individuals were excluded if they 
had: (1) a history of diabetes at baseline (N = 26,267); (2) only a single 
or no 24-h dietary record (N = 354,238), as multiple dietary records 
were necessary to capture habitual intake; or (3) implausible energy 
intake (N = 1,000), defined as <500 kcal/day or >3,500 kcal/day for 
females and <800 kcal/day or >4,200 kcal/day for males, based on 
established dietary plausibility thresholds (18). After applying these 
criteria, a total of 120,988 participants were included in the final analysis 
(Figure  1). A written informed consent was obtained from each 
participant. All protocols were conducted according to the Declaration 
of Helsinki.

Follow-up and outcome definition

The outcome of this study was the incidence of T2DM. Participant 
follow-up period was defined as from the data of recruitment to the 
data of first occurrence of outcome death, or 31 September 2020, 
whichever came first. The date of the first incident diabetes after 
baseline was ascertained through record linkage with hospital episode 
statistics in England, Scotland, and Wales and national death registers. 
The outcome of T2DM was defined using the Tenth Revision of the 
International Classification of Diseases (ICD-10), with the relevant 
codes being E11–E14.

Measurements of biomarkers

Serum biochemical measurements, including glucose, triglycerides 
(TG), total cholesterol (TC), high-density lipoprotein cholesterol 
(HDL-C), low-density lipoprotein cholesterol (LDL-C), C-reactive 
protein (CRP), creatinine, and uric acid, were conducted on a Beckman 
Coulter AU5800 clinical chemistry analyzer at the central laboratory. 
HbA1c levels were determined through high-performance liquid 
chromatography analysis using a Bio-Rad VARIANT II Turbo system. 
Other biomarker detection used high-throughput NMR-based metabolic 
biomarker profiling platform developed by Nightingale Health Ltd.

Covariates

The following covariates were collected at baseline: age, sex, 
ethnicity, physical activity, Townsend deprivation index, smoking 
status, drinking status, family history of diabetes, and medication use 
at baseline. Townsend deprivation index was assigned to negatively 
represent socioeconomic status (19). Physical activity was derived by 
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Metabolic Equivalent Task (MET-minutes/week) scores (20). 
Educational attainment was categorized into three groups (high: 
college or university degree; middle: A/AS levels or equivalent & O 
levels/GCSEs or equivalent; low: none of the aforementioned). Marital 
status was defined based on whether the participant was living with a 
husband, wife, or partner. Body mass index (BMI) was calculated as 
body weight divided by square of height (kg/m2). The calculation of 

estimated glomerular filtration rate (eGFR, ml/min/1.73 m2) was 
determined by the equation from Chronic Kidney Disease 
Epidemiology Collaboration (21). Furthermore, cardiovascular 
disease (CVD) was defined according to the defined stroke and 
myocardial infarction in the UK Biobank. Hypertension was identified 
as with ICD-10 records: I10 to 13 and I15, or with recorded SBP/DBP 
more than 140/90 mm Hg or use of blood pressure-lowering 

FIGURE 1

Flowchart of the present study design based on the UK Biobank.
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medications. Dyslipidemia was defined as with ICD-10 records: E78, 
TC > 6.20 mmol/L, TG > 2.30 mmol/L, HDL-C < 1.00 mmol/L, or 
LDL-C > 4.10 mmol/L or use of cholesterol lowering medication (22).

Diet assessment

The online self-administered 24-h dietary assessment (Oxford 
WebQ) for large population studies was used (23). Total energy and 
nutrient intake data were generated via built-in algorithms and food 
composition data. Food intakes were categorized into approximately 
80 groups based on similarities in their nutritional content or culinary 
usage. All intakes of food groups and nutrients were adjusted for total 
energy intake using the residual method (24).

Calculation of TyG index and identification 
of dietary patterns

The TyG index was computed utilizing the formula: ln [TG (mg/
dL) × glucose (mg/dL)/2] (25). Dietary pattern analyses were 
conducted using data from participants with blood assays 
(N = 28,578). The “PROC PLS” procedure with the RRR option in SAS 
was used to calculate factor loadings. The RRR method identified 
linear combinations of predictor variables, specifically food group 
intake levels, which explained the variance in TyG index values.

The “glmnet” R package provides access to the LASSO method. In 
our study, we utilized LASSO on standardized food group intakes to 
predict TyG index. The dataset was randomly divided into a training 
set (comprising 75% of the data) and test set. We employed 10-fold 
cross-validation to determine optimal λ for the LASSO construction, 
aiming to minimize Mean − Squared Error. In the testing set, 
we employed linear regression model to estimate the adjusted R2 and 
correlation coefficient for model comparison (16). The LASSO model 
assigned six predictors with zero coefficients at optimal 
“log(λ) = −6.14” while yielded a correlation coefficient of 0.65 
(p < 0.001) and adjusted R2 of 0.57 for the independent test set.

The correlations of the food groups and derived dietary patterns 
were quantified by factor loadings for RRR and regression coefficients 
for LASSO. Subsequently, the derived factor loadings or regression 
coefficients were projected onto the space of the food groups in the 
entire cohort (N = 120,988) to produce Z-scores, namely, dietary 
pattern scores (RRR and LASSO).

Statistical analyses

The normality of continuous data was assessed using the 
Kolmogorov–Smirnov test. Continuous variables following a normal 
distribution were presented as means (standard errors), while those 
not following a normal distribution were presented as medians 
(interquartile ranges). Categorical variables were expressed as counts 
(percentages). The Jonckheere-Terpstra test was utilized to assess the 
p trend of continuous variables across quartiles of dietary pattern 
scores. The Cochran–Mantel–Haenszel test was used for categorical 
variables. The correlations between dietary pattern scores, TyG index, 
and other clinical indexes were assessed using Spearman’s correlation 
coefficients (ρ). Cox proportional hazards models with person-year as 

the time scale were employed to evaluate the risk of T2DM. Hazard 
ratios (HRs) and corresponding 95% confidence intervals (CIs) were 
calculated across the quintiles of dietary pattern scores and TyG index 
(with the first quintile as the reference), and per 1 unit increment of 
dietary pattern scores. The intakes of food groups were categorized as 
<1 g or ml per day and quartiles for >1 g or ml per day. p for trend was 
calculated by modeling the categorized number as a continuous 
variable in the corresponding regression models.

Kaplan–Meier plots with the log-rank test were generated to 
illustrate cumulative T2DM incidence based on quintiles of dietary 
pattern scores. Three models were employed to assess the risk 
associations. Model 1 was adjusted for age, sex, and White race. 
Model 2 included additional adjustments for physical activity, 
Townsend deprivation index, educational attainment, marital status, 
current smoking status, current drinking status, and total energy 
intake. Model 3 further adjusted for BMI, hyperlipidemia, 
hypertension, CVD, and family history of diabetes. Restricted cubic 
spline models with 4 knots were utilized to investigate the potential 
dose relationships between dietary pattern scores and 
T2DM. Stratified analyses were conducted to explore potential effect 
modifications; interaction was evaluated at the multiplicative scale. 
We conducted several sensitivity analyses to confirm the robustness 
of our main findings. First, we excluded participants who developed 
T2DM within the first 3 years of follow-up to mitigate potential 
reverse causation bias. Second, based on the multivariable-adjusted 
model, we further adjusted for additional factors including usage of 
fish oil or vitamin D as supplement (Model A), antihypertensive, 
antidiabetic, or lipid-modifying agents (yes/no) in the pooled 
participants (Model B), and biomarkers of eGFR, CRP (Model C), 
HbA1c, TC, and vitamin D (Model D) as continuous in participants 
with blood assays. Vitamin D supplement and circulating level were 
also taken in consideration because of the potential confounding 
effects (26).

The enhancements in model discrimination and reclassification 
were additionally assessed with and without each dietary pattern score 
using integrated discrimination improvement (IDI) and net 
reclassification improvement (NRI). Discrimination was also assessed 
using the area under the receiver operating characteristic (ROC) curve 
(AUC). All statistical tests were two-sided, and significance was 
determined at a p-value of <0.05. Statistical analyses were performed 
using SAS (version 9.4), and figures were generated using R (version 
4.3.1 for Windows).

Results

Characterization of dietary patterns 
derived from RRR and LASSO

As depicted in Figure 2 and Supplementary Figure S1, the dietary 
pattern score derived from RRR was characterized by elevated intakes 
of margarine (factor loading = 0.24, ρ = 0.22), processed meat (0.22, 
0.27), and red meat (0.22, 0.28), while exhibiting reduced intakes of 
unsalted nuts and seeds (−0.23, −0.41) and oily fish (−0.21, −0.32). 
Similarly, the dietary pattern score-derived prominent food from 
LASSO was characterized by heighten more intakes, such as margarine 
(coefficients×10 = 0.56, ρ = 0.35), processed meat (0.33, 0.32), fruit 
juice (0.32, 0.16), red meat (0.30, 0.31), mashed potatoes (0.28, 0.24), 
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milk-dairy desserts (0.27, 0.23), and skimmed milk (0.23, 0.12) while 
displaying decreased intakes of green leafy/cabbages (−0.31, −0.20), 
vegetable side dishes (−0.28, −0.29), oily fish (−0.27, −0.29), and 
full-fat yogurt (−0.23, −0.23).

Furthermore, as shown in Supplementary Figure S2, the extracted 
dietary factor scores were significantly correlated with the TyG index 
(ρ for RRR = 0.15; ρ for LASSO = 0.17) and other clinical indicators, 
such as CRP (ρ for RRR = 0.17; ρ for LASSO = 0.16), monounsaturated 
fatty acids (MUFAs, ρ for RRR = 0.14; ρ for LASSO = 0.15), and 
saturated fatty acids (SFAs, ρ for RRR = 0.09; ρ for LASSO = 0.11; all 
p < 0.001). In contrast, the scores were negatively correlated with 
docosahexaenoic acid (DHA, ρ for RRR = −0.22; ρ for LASSO = −0.14; 
both p < 0.001).

Characteristics of the study population

The characteristics of the pooled population by quintiles of the 
dietary pattern scores are shown in Table 1. Higher dietary pattern 
scores were associated with male gender, white race, current 
smoking, and lower educational level (p trend <0.001). Moreover, 
dietary pattern scores were both positively associated with BMI 
level, prevalence of CVD, hyperlipidemia and hypertension, as well 
as total energy intake, fat intake, especially saturated fat intake, 
while they were negatively associated with nutrient intakes, such as 
polyunsaturated fat acids (PUFAs) and total carotene (p trend 

<0.001). Specifically, participants with higher dietary pattern score 
derived from LASSO were more likely to be generally older and 
have higher total protein intake and less physical activity (p trend 
<0.001).

In addition, clinical characteristics across the quintiles of the 
dietary factor scores among participants also having blood assays 
(N = 28,578) are presented in Supplementary Table S1. Participants 
who had higher dietary pattern scores were more likely to have 
elevated levels of CRP, HbA1c, total fatty acids, MUFAs, SFAs, TG, and 
TyG index and lower levels of HDL-C, total choline, 
phosphatidylcholines, omega-3 fatty acids (omega-3s), PUFAs, 
linoleic acid, and DHA (all p trend <0.001). In contrast, there were no 
significant correlations between LDL-C and these two derived 
dietary patterns.

Association of dietary patterns and TyG 
index with the risk of T2DM

During the median of 11.2-year follow-up, 3,585 incidents of T2DM 
were recorded. Supplementary Figure S3 demonstrates the cumulative 
event of T2DM across quintiles of dietary pattern scores. The T2DM 
risk exhibited a significant increase in higher quintiles for each dietary 
pattern score (log-rank test: p < 0.001). Specifically, the cumulative event 
of T2DM escalated notably over follow-up time in the fifth quintiles 
(Q5) of both dietary pattern scores compared to the first quintiles (Q1).

FIGURE 2

Factor loadings with explainable variation of food groups derived by RRR and regression coefficients with the smallest mean-squared error by LASSO 
regression.
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TABLE 1 Demographic, clinical, and nutritional characteristics by quintiles of dietary pattern scores in the participants with 24-h dietary recording from 
the UK Biobank (N = 120,988).

Dietary pattern score (RRR) Dietary pattern score (LASSO)

Q1 
(N = 24,118)

Q3 
(N = 24,243)

Q5 
(N = 24,192)

p trendc Q1 
(N = 24,120)

Q3 
(N = 24,234)

Q5 
(N = 24,217)

p trendc

Case (%) 379 (1.57) 657 (2.71) 1,129 (4.67) 381 (1.58) 674 (2.78) 1,129 (4.66)

Age (years) 57 (50, 62) 57 (50, 62) 56 (49, 62) <0.001 56 (49, 62) 57 (50, 62) 58 (51, 63) <0.001

White race (%) 23,099 (95.8) 23,414 (96.6) 23,582 (97.5) <0.001 22,920 (95.1) 23,492 (97.0) 23,718 (98.0) <0.001

Male (%) 6,816 (28.3) 10,250 (42.3) 14,951 (61.8) <0.001 7,446 (30.9) 10,394 (42.9) 13,882 (57.4) <0.001

BMI (kg/m2) 24.5 (22.4, 27.1) 26.0 (23.6, 28.9) 27.1 (24.6, 30.2) <0.001 24.6 (22.4, 27.2) 26.0 (23.6, 28.8) 30.1 (27.1, 24.6) <0.001

Current smoking (%) 535 (2.22) 965 (3.98) 2,090 (8.65) <0.001 656 (2.72) 1,109 (4.58) 1,573 (4.61) <0.001

Current drinking (%) 22,783 (94.6) 22,942 (94.7) 22,585 (93.5) <0.001 22,734 (94.4) 22,870 (94.5) 22,736 (94.0) <0.001

Physical activity (MET-

minutes/week)
1,671 (813, 3,159) 1,455 (636, 3,066) 1,704 (817, 3,213) <0.001 1,899 (993, 3,348) 1,666 (794, 3,146) 1,546 (693, 3,116) <0.001

Townsend index (%) <0.001 <0.001

Low 7,250 (30.1) 8,386 (34.6) 7,990 (33.1) 7,179 (29.8) 8,255 (34.1) 8,368 (34.6)

Moderate 7,696 (32.0) 8,209 (33.9) 8,194 (33.9) 7,563 (31.4) 8,169 (33.8) 8,344 (34.5)

High 9,145 (38.0) 7,625 (31.5) 7,972 (33.0) 9,349 (38.8) 7,784 (32.2) 7,469 (30.9)

Educational level (%)a <0.001 <0.001

Low 2,830 (11.7) 4,559 (18.8) 7,131 (29.5) 2,930 (12.2) 4,655 (19.2) 6,842 (28.3)

Moderate 6,255 (26.0) 8,097 (33.4) 9,413 (38.9) 6,415 (26.6) 8,097 (33.4) 9,144 (37.8)

High 15,016 (62.3) 11,574 (47.8) 7,632 (31.6) 14,758 (61.2) 11,465 (47.3) 8,216 (34.0)

Family history of 

diabetes (%)
4,393 (18.2) 4,760 (19.7) 4,940 (20.4) <0.001 4,386 (18.2) 4,702 (19.4) 4,985 (20.6) <0.001

Cardiovascular 

disease (%)
308 (1.28) 521 (2.15) 828 (3.42) <0.001 303 (1.26) 501 (2.07) 855 (3.53) <0.001

Hyperlipidemia (%) 19,869 (82.4) 20,544 (84.8) 21,236 (87.8) <0.001 19,915 (82.6) 20,573 (85.0) 21,221 (87.7) <0.001

Hypertension (%) 3,423 (14.2) 4,567 (18.9) 5,646 (23.4) <0.001 3,144 (13.0) 4,558 (18.8) 6,035 (24.9) <0.001

Total energy intake 

(kcal/day)

2,057 (1,760, 

2,399)

2,028 (1,727, 

2,375)

2,092 (1,770, 

2,459)
<0.001

2,045 (1,741, 

2,398)

2,039 (1,735, 

2,385)

2,082 (1,771, 

2,432)
<0.001

Total protein intake (g/

day)b
79.1 (70.3, 88.5) 80.9 (72.2, 89.9) 78.8 (70.2, 87.9) <0.001 78.4 (69.5, 87.8) 80.2 (71.6, 89.3) 80.7 (72.3, 89.7) <0.001

Total carbohydrate 

intake (g/day)b
253 (229, 278) 246 (221, 270) 244 (220, 268) <0.001 250 (225, 275) 246 (221, 270) 247 (224, 270) <0.001

Total fat intake (g/

day)b
73.6 (64.6, 82.6) 74.9 (66.2, 83.5) 76.7 (68.4, 84.0) <0.001 74.9 (65.7, 84.0) 75.2 (66.4, 83.9) 75.0 (66.8, 83.2) 0.06

Saturated fat intake (g/

day)b
26.3 (22.1, 30.8) 28.7 (24.5, 33.2) 30.0 (25.8, 34.4) <0.001 27.1 (22.7, 31.7) 28.8 (24.5, 33.3) 29.2 (25.1, 33.5) <0.001

Polyunsaturated fat (g/

day)b
13.7 (11.0, 16.8) 13.2 (10.5, 16.3) 13.6 (10.8, 16.7) 0.16 13.7 (11.0, 16.9) 13.3 (10.6, 16.4) 13.4 (10.7, 16.4) <0.001

Total carotene (ug/

day)b

3,612 (2,401, 

5,234)

2,634 (1,658, 

3,958)
1,802 (903, 2,974) <0.001

3,226 (2,056, 

4,792)

2,581 (1,548, 

3,952)

2,265 (1,262, 

3,548)
<0.001

Englyst dietary fiber 

(g/day)b
18.7 (15.6, 22.3)

15.7 (13.0, 18.8) 13.1 (10.6, 15.8) <0.001 17.6 (14.4, 21.2) 15.6 (12.8, 18.9) 14.2 (11.6, 17.1) <0.001

Vitamin E intake (mg/

day)b

10.6 (8.93, 12.6) 8.73 (7.22, 10.5) 7.23 (5.86, 8.84) <0.001 10.2 (8.40, 12.2) 8.68 (7.07, 10.6) 7.70 (6.26, 9.40) <0.001

Vitamin D intake (μg/

day)b

2.85 (1.32, 4.87) 2.16 (1.33, 3.72) 2.00 (1.41, 2.85) <0.001 2.81 (1.30, 4.89) 2.11 (1.31, 3.61) 2.04 (1.44, 2.92) <0.001

aLow: none of the aforementioned; Intermediate: A/AS levels or equivalent, O levels/GCSEs or equivalent; High: college or university degree. bThese nutrient intakes were adjusted for total 
energy intake using the residual method. cp trend across quintiles of dietary pattern score and characteristics of baseline were examined by Jonckheere-Terpstra test for continuous variables, 
Cochran-Armitage trend test for binary categorical variables, and Cochran–Mantel–Haenszel test for other categorical variables. BMI, body mass index; MET, metabolic equivalent.
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TABLE 2 Hazard ratio (HR) and 95% confidence interval (CI) for risk of T2DM.

Cases/N Model 1 Model 2 Model 3

Crude model plus 
demographic 

characteristics

Model 1 plus 
sociodemographic and 

behavior factors

Model 2 plus 
disease history and 
health conditions

Participants with 24-h dietary recording (N = 120,988)

Derived by RRR

Q1 386/24,118 Ref (1.00) Ref (1.00) Ref (1.00)

Q3 667/24,243 1.65 (1.45, 1.87) 1.53 (1.35, 1.74) 1.23 (1.07, 1.41)

Q5 1,147/24,192 2.77 (2.46, 3.11) 2.22 (1.96, 2.50) 1.52 (1.33, 1.73)

p trend <0.001 <0.001 <0.001

Dietary pattern score 3,585/120,988 1.46 (1.41, 1.51) 1.33 (1.29, 1.38) 1.17 (1.13, 1.22)

P-value <0.001 <0.001 <0.001

Derived by LASSO

Q1 391/24,120 Ref (1.00) Ref (1.00) Ref (1.00)

Q3 689/24,234 1.67 (1.48, 1.89) 1.55 (1.37, 1.76) 1.24 (1.08, 1.42)

Q5 1,155/24,217 2.62 (2.33, 2.94) 2.22 (1.97, 2.50) 1.48 (1.30, 1.69)

p trend <0.001 <0.001 <0.001

Dietary pattern score 3,585/120,988 1.43 (1.38, 1.48) 1.34 (1.30, 1.39) 1.17 (1.13, 1.22)

p-value <0.001 <0.001 <0.001

Participants with 24-h dietary recording but without blood assays (N = 92,410)

Derived by RRR

Q1 293/18,383 Ref (1.00) Ref (1.00) Ref (1.00)

Q3 528/18,487 1.71 1.48 1.98 1.58 (1.37, 1.83) 1.26 (1.09, 1.45)

Q5 868/18,365 2.75 2.40 3.15 2.18 (1.86, 2.50) 1.47 (1.28, 1.69)

p trend <0.001 <0.001 <0.001

Dietary pattern score 2,754/92,410 1.46 (1.40, 1.52) 1.33 (1.28, 1.39) 1.16 (1.11, 1.21)

p-value <0.001 <0.001 <0.001

Derived by LASSO

Q1 299/18,481 Ref (1.00) Ref (1.00) Ref (1.00)

Q3 531/18,518 1.68 (1.45, 1.93) 1.56 (1.35, 1.80) 1.21 (1.05, 1.40)

Q5 870/18,354 2.58 (2.26, 2.95) 2.17 (1.90, 2.49) 1.43 (1.25, 1.65)

p trend <0.001 <0.001 <0.001

Dietary pattern score 2,754/92,410 1.42 (1.37, 1.48) 1.33 (1.28, 1.39) 1.16 (1.11, 1.21)

p-value <0.001 <0.001 <0.001

Participants with 24-h dietary recording and blood assays (N = 28,578)

Derived by RRR

Q1 93/5,735 Ref (1.00) Ref (1.00) Ref (1.00)

Q3 139/5,756 1.45 (1.11, 1.88) 1.36 (1.04, 1.77) 1.20 (0.89, 1.61)

Q5 279/5,827 2.83 (2.23, 3.60) 2.34 (1.83, 3.00) 1.67 (1.26, 2.22)

p trend <0.001 <0.001 <0.001

Dietary pattern score 831/28,578 1.45 (1.35, 1.57) 1.35 (1.25, 1.45) 1.22 (1.12, 1.33)

p-value <0.001 <0.001 <0.001

Derived by LASSO

Q1 92/5,639 Ref (1.00) Ref (1.00) Ref (1.00)

Q3 158/5,716 1.66 (1.28, 2.14) 1.55 (1.20, 2.01) 1.32 (0.98, 1.76)

Q5 285/5,863 2.73 (2.15, 3.46) 2.38 (1.87, 3.04) 1.56 (1.19, 2.06)

(Continued)

https://doi.org/10.3389/fnut.2024.1510926
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Liu et al. 10.3389/fnut.2024.1510926

Frontiers in Nutrition 08 frontiersin.org

As shown in Table  2, when compared to the Q1 of dietary 
pattern scores in pooled participants, the adjusted HR for the risk 
of T2DM in the Q5 was 1.52 (95% CI: 1.33–1.73) for RRR and 1.48 
(95% CI: 1.30–1.69) for LASSO. Notably, the corresponding 
adjusted HR for two independent populations (with and without 
blood assays) showed similar trends for both RRR and 
LASSO. Significant results were also observed when using the 
dietary pattern scores in continuous. The T2DM risk in pooled 
participants increased significantly per 1 unit increment of dietary 
pattern scores (HR: 1.17, 95% CI: 1.13–1.22) for RRR and (HR: 
1.17, 95% CI: 1.13–1.22) for LASSO.

As shown in Figure 3, multivariable-adjusted restricted cubic 
spline models both showed positive dose–response relationships 
between two dietary pattern scores and the risk of T2DM (p for 
linearity <0.001). Moreover, when compared to Q1, the adjusted 
HR for the risk of T2DM in the Q5 of TyG index was 3.93 (95% CI: 
2.80–5.51) as shown in Table  2 for participants with complete 
blood assays (N = 28,578). Consistently, a higher risk of T2DM was 
observed with an increased continuous level of TyG index (adjusted 
HR: 2.13, 95% CI: 1.94–2.33).

Dietary components and their association 
with T2DM

We further examined individual food groups with factor loadings 
or regression coefficients (×10) > |0.2| in Supplementary Table S2. 
Compared to participants with low consumption, those with a full-fat 
yogurt intake >84.1 mL/day had a significantly reduced risk of 
T2DM. In contrast, higher intake levels of margarine (>78.1 g/day), 
red meat (>107 g/day), or processed meat (>46.3 g/day) were 
associated with an elevated risk of T2DM.

Model discrimination and reclassification

In reclassification analysis, adding dietary pattern scores derived 
from RRR or LASSO to the “Model Base 3” (as mentioned in 
Supplementary Figure S4) significantly improved the category-free 
NRI by 13.7% (95% CI: 10.0–17.3%) and 13.5% (95% CI: 9.90–17.2%, 
both p < 0.001). Compared to the “Model Base 3,” the discriminative 
ability of the “Model LASSO” had slight but significant elevation by 
0.15% (95% CI: 0.03–0.26%, p = 0.016), whereas the difference for the 
“Model RRR” was at statistical margin (0.11, 95% CI: 0.00–0.23%, 
p = 0.056). In addition, the corresponding IDI for “Model RRR” was 
0.11% (95% CI: 0.06–0.15%), and the corresponding index for “Model 
LASSO” was 0.11% (95% CI: 0.07–0.16%, both p < 0.001).

Stratified and modified analyses

As shown in Supplementary Figure S5, the association between 
dietary pattern score derived by RRR and T2DM was more pronounced 
in those participants with younger age, previous smoking, lower physical 
activity, and without family history of diabetes. In addition, there were 
significant interactions between dietary pattern score derived by LASSO 
and T2DM risk modified by race, age, and family history of diabetes.

Sensitivity analyses

Our primary results remained robust even after excluding 
participants who developed incident T2DM within the first 3 years 
(N = 596). Compared to the Q1 of the dietary pattern scores derived 
by RRR and LASSO, the adjusted HRs were 1.56 (95% CI: 1.34–1.80) 
and 1.57 (95% CI: 1.36–1.81) for Q5, respectively. Moreover, the 

Cases/N Model 1 Model 2 Model 3

Crude model plus 
demographic 

characteristics

Model 1 plus 
sociodemographic and 

behavior factors

Model 2 plus 
disease history and 
health conditions

p trend <0.001 <0.001 <0.001

Dietary pattern score 831/28,578 1.44 (1.34, 1.55) 1.37 (1.27, 1.47) 1.20 (1.11, 1.30)

p-value <0.001 <0.001 <0.001

TyG index

Q1 52/5,702 Ref (1.00) Ref (1.00) Ref (1.00)

Q3 129/5,703 2.24 (1.62, 3.10) 2.174 1.516 3.117 1.83 (1.27, 2.63)

Q5 408/5,702 6.82 (5.10, 9.13) 6.36 (4.60, 8.80) 3.93 (2.80, 5.51)

p trend <0.001 <0.001 <0.001

Continuous 831/28,578 2.30 (2.15, 2.46) 2.20 (2.04, 2.37) 2.13 (1.94, 2.33)

p-value <0.001 <0.001 <0.001

Model 1 was adjusted for age (continuous), sex (male or female), and white race (yes or no). Model 2 was further adjusted for physical activity (quartiles, missing data), Townsend deprivation 
index (quartiles), educational attainment (high: college or university degree; middle: A/AS levels or equivalent & O levels/GCSEs or equivalent; low: none of the aforementioned), marital 
status: living with husband, wife or partner (yes or no), current smoking (never, previous, current, or missing data), current drinking (never, previous, current, or missing data), and total 
energy intake (quartiles). Model 3 was further adjusted for BMI (continuous), hyperlipidemia (yes or no), hypertension (yes or no), CVD (yes or no), and family history of diabetes (yes or no). 
BMI, body mass index; eGFR, estimated glomerular filtration rate. P trend was calculated by modeling the quintile numbers as a continuous variable in Cox proportional hazards models, 
while continuous p-value was obtained from the corresponding dietary pattern scores or the TyG index.

TABLE 2 (Continued)
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corresponding risk in such participants increased significantly per 1 
unit increment of dietary pattern score for RRR (HR: 1.20, 95% CI: 
1.14–1.25) and LASSO (HR: 1.17, 95% CI: 1.12–1.22). As shown in 
Supplementary Table S3, the robustness of the association between 
dietary pattern scores and T2DM risk was confirmed in Models A and 
B. Furthermore, among participants with 24-h dietary records and 
blood assays, including eGFR, CRP (Model C), TC, HbA1c, and 
vitamin D (Model D) based on Model 3, the risk associations 
remained significant, with only minor attenuation.

Discussion

The dietary patterns associated with TyG index in our study were 
characterized by higher intakes of margarine, meat, fruit juice, and 
potatoes and lower intakes of green vegetables, oily fish, yogurt, nuts 
and seeds, and dried fruits. The TyG index and the dietary patterns 
derived from it were independently associated with an increased risk 
of developing T2DM.

Studies have indicated that elevated TyG index was associated 
with risk of T2DM in Chinese and Brazilian population (27, 28). 
However, evidence for this relationship in large-scale European 
populations is still limited, making it essential to study the 
association between the TyG index and the risk of T2DM. In recent 
years, there has been a shift toward using subjective metabolite 
profiles as complementary tools for traditional assessment methods 
such as 24-h dietary recalls (29). HOMA-IR and HbA1c for insulin 
resistance have been used as the response variable in RRR (14, 15), 

but both of whose measurement remains expensive and technically 
difficult for large-scale cohort (7). Therefore, the TyG index, an 
easily measured and calculated marker, was used to derive dietary 
patterns in the present study as it has been proposed as a promising 
and reliable indicator of insulin resistance (7, 8). We utilized the 
TyG index as the response variable and identified a dietary pattern 
characterized by high consumption of margarine, butter, processed 
meat and red meat, and fruit juice, alongside low intake of oily fish, 
vegetables, and nuts and seeds. This dietary pattern was found to 
be significantly associated with T2DM risk. Brayner et al. used fatty 
acid intake as the response variable and identified two distinct 
dietary patterns. The first pattern was characterized by higher 
intake of nuts, seeds, and butter and lower intake of fruit and 
low-fat yogurt. The second pattern was marked by higher intake of 
butter and high-fat cheese and lower intake of nuts and seeds (6). 
However, neither of the dietary patterns was associated with T2DM 
incidence. The reason for the inconsistency may be that the selected 
response variable, fatty acid intake, did not fully reflect insulin 
resistance. Gao et  al. further selected energy density, SFA, free 
sugars, and fiber density intake as response variables. They found 
that high intakes of chocolate and confectionery, butter, low-fiber 
bread, sugars, and preserves, as well as low intakes of fruits and 
vegetables, were associated with higher risk of T2DM (4). Some of 
features of dietary patterns in our study were generally consistent 
with previous studies (4, 30, 31). The food groups identified in 
previous studies are generally consistent with those derived from 
the TyG index in our study. For example, excessive consumption of 
red and processed meat (32), added sugars and preserves, mashed 

FIGURE 3

Multivariable-adjusted associations of dietary pattern scores with T2DM incidence by restricted cubic regression. The shaded area illustrates the 
distributions of dietary pattern scores. The solid lines represent adjusted HRs, while the dotted lines indicate 95% CI. The reference point is the 25th 
percentile of the reference group from categorical analysis with four knots. Estimates were adjusted for age, sex and white race, physical activity, 
Townsend deprivation index, educational attainment, living with husband/wife or partner, current smoking, current drinking, total energy intake, BMI, 
hyperlipidemia, hypertension, CVD, and family history of diabetes.
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potatoes, and low intake of oily fish (33), vegetables, fresh fruit, and 
nuts (34, 35) have been associated with an increased risk of 
T2DM. Recent findings from the Atherosclerosis Risk in 
Communities Study indicated that a dietary pattern minimizing 
animal-derived foods and emphasizing plant foods may reduce 
diabetes risk (30). Mozaffarian commented insightfully that when 
red meat was the only excluded animal-source food (ignoring the 
consumption of dairy, eggs, fish, poultry, and animal fat), the 
protective association remained similar. There was a 14% lower 
diabetes risk across quintiles of the healthy Plant-based Diet Index, 
compared to the original 15%. This suggests that the lower diabetes 
risk associated with a healthy plant-based diet is not significantly 
influenced by the avoidance of these other animal foods (36). This 
clarification significantly enhances our understanding that not all 
animal-based foods contribute equally to diabetes risk and 
underscores the specific impact of red meat. Our current study also 
supported that higher red and processed meat consumption was 
associated with higher risk of T2DM, while oily fish consumption 
was associated with lower risk of T2DM. Therefore, to address 
hyperglycemia or hyperlipidemia in the context of our findings, 
dietary interventions should prioritize reducing the intake of 
margarine, red and processed meat, fruit juice, and potatoes and 
promoting higher consumption of green vegetables, oily fish, 
yogurt, nuts, seeds, and dried fruits. Specifically, trans fats in 
margarine and saturated fats in red and processed meats, identified 
as key contributors to adverse metabolic profiles, should be replaced 
with healthier fat sources, such as omega-3-rich fish and unsaturated 
fats from nuts and seeds. Furthermore, given the significant 
association between elevated TyG index and T2DM risk, routine 
monitoring of TyG index in clinical settings could serve as an early 
marker to guide personalized dietary and lifestyle interventions.

To explore the potential mechanisms, we  delved into the 
metabolic fatty acid profiles, inflammatory marker CRP, and dietary 
pattern scores. Higher dietary pattern scores, as determined by RRR 
or LASSO methods, were associated with red and processed meat, 
added sugars and preserves, and mashed potatoes. Conversely, oily 
fish, vegetables, fresh fruit, and nuts were associated with lower 
dietary pattern scores. Our results suggested that both the dietary 
pattern scores were positively associated with elevated levels of total 
fatty acids, notably SFAs and MUFAs and CRP. SFAs and MUFAs are 
predominantly sourced from fatty foods such as red meats, processed 
meat, butter, and cheese, as well as from margarine (37, 38). SFAs 
have been widely recognized as a significant factor in the development 
of T2DM (39). Some studies suggest that high-fat dairy products, 
particularly butter, could increase the risk due to their saturated fat 
content (40, 41). Differing from previous studies, both RRR and 
LASSO analyses in our study found that margarine intake may be the 
most dangerous food for developing T2DM, as demonstrated in both 
the dietary pattern analyses and individual food group assessments. 
During the manufacturing process of hydrogenated vegetable oils, 
particularly in margarine production, trans fatty acids, specifically 
trans MUFAs, are generated (42). Artificial trans fatty acid 
consumption has been shown to decrease HDL-C levels (43), which 
aligns with our findings of significantly lower HDL-C levels among 
participants with higher dietary pattern scores. Our results 
underscored the impact on T2DM risk of dietary composition of fats 
coupled with commercial prepared processes and other additives.

It is worth noting that our derived dietary pattern by RRR 
exhibited a moderately negative correlation (ρ = −0.13, p < 0.001) 

with the consumption of oily fish, known for its richness in omega-3s 
(44). Interestingly, the correlation between PUFAs and the derived 
dietary scores was somewhat attenuated, likely due to the widespread 
distribution of PUFAs in various food sources (38). However, it is 
noteworthy that DHA emerged as a notable biomarker indicative of 
our derived dietary patterns, emphasizing its potential role in 
modulating metabolic health outcomes. Savolainen et al. have used 
biomarkers of EPA for fish and linoleic acid for seeds and nuts 
intakes to identify the potential associations with glucose tolerance 
status (29). We also noted a stronger correlation between linoleic 
acid and the dietary pattern score derived from RRR (ρ = −0.05, 
p < 0.001) compared to LASSO (ρ = −0.02, p < 0.001). This 
discrepancy may be attributed to the stronger influence of nut and 
seed consumption on the dietary pattern score of RRR. Moreover, 
increased consumption of nuts pairing dried fruits, providing 
dietary fibers, and a variety of bioactive compounds could further 
improve glycemic control (45). Furthermore, the potential effects of 
these bioactive nutrients were pronounced. For instance, the intake 
of omega-3s-rich foods may have effects in lowering plasma TC, 
LDL-C, or CRP (46). Therefore, our results highlight the role of 
omega-3s, particularly the DHA mainly found in oily fish, in 
protecting against T2DM.

In our current study, we  also found foods controversially 
associated with T2DM risk, such as skimmed milk. Several studies 
reported that low-fat dairy products may improve insulin resistance 
(41) or associate with the decreased T2DM risk (47). However, the 
evidence regarding these associations is still inconsistent because of 
the complexes of dairy types and variation in these studies. A recent 
report suggested that low-fat milk was associated with a higher risk 
of prediabetes (40). Our findings of dietary pattern derived by LASSO 
found that individuals who consumed higher skimmed milk may 
experience an elevation of the T2DM risk. However, when we further 
examined the relationship between skimmed milk and T2DM, 
we  found no significant association. Slurink et  al. further used 
network estimation found that low-fat milk was usually clustered 
with energy-dense foods such as bread, meat, and high-fat cheese 
(40). Therefore, the association between skimmed milk and T2DM 
may be affected by its clustering with energy-dense foods. Further 
investigation through long-term, well-designed clinical trials is 
warranted to explore the causal effects.

The observed associations in our study were stronger among 
younger adults and individuals without a family history of diabetes, 
suggesting that dietary interventions tailored to early life stages and 
specific genetic backgrounds may play a crucial role in preventing 
T2DM. In addition, as the majority of participants in this study were 
of White race, the generalizability of our findings to other populations 
requires further investigation through multicenter cohort studies that 
include a balanced sample from diverse racial and ethnic groups. 
Moreover, variations in dietary habits, food availability, and genetic 
predispositions among different populations may influence the 
generalizability of these results. In addition, the following limitations 
should be  acknowledged. First, only 23.6% of participants had 
biomarker test records, which limited the further interpretation of 
our results. Second, despite efforts to control for confounding 
variables, residual and unmeasured confounders may still impact the 
study outcomes due to its observational nature. Meanwhile, several 
strengths of this study should be highlighted. First, the concurrent 
use of RRR and LASSO enhances the robustness of the findings, 
particularly by utilizing the TyG index as a response variable in the 
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causal pathway between food intake and T2DM. Second, the use of 
repeated dietary assessments helps mitigate recall bias, providing 
more reliable data. Third, the inclusion of biomarkers allows for 
objective evaluations of dietary factors, further supporting the 
validity of the findings.

Conclusion

In the present study, dietary patterns associated with the TyG 
index were characterized by higher consumption of margarine, meat, 
fruit juice, and potatoes, and lower consumption of green vegetables, 
oily fish, yogurt, nuts, seeds, and dried fruits. These dietary patterns 
were linked to a higher risk of T2DM, especially among younger 
adults and individuals without a family history of diabetes.
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