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The prevalence of obesity is increasing worldwide, affecting both children and 
adults. This obesity epidemic is mostly driven by an increase in energy intake 
(abundance of highly palatable energy-dense food and drinks) and to a lesser 
degree a decrease in energy expenditure (sedentary lifestyle). A small proportion 
of individuals with obesity are affected by genetic forms of obesity, which often 
relate to mutations in the leptin-melanocortin pathway or are part of syndromes 
such as the Bardet-Biedl syndrome. These rare forms of obesity have provided 
valuable insights into the genetic architecture of obesity. Recent advances in 
understanding the molecular mechanisms that control appetite, hunger, and 
satiety have led to the development of drugs that can override genetic defects, 
enabling precision treatment. Leptin deficiency is uniquely treated with recombinant 
human metreleptin, while those with LEPR, PCSK1, or POMC deficiency can now 
be treated with the MC4R agonist setmelanotide. This review highlights the most 
frequent monogenic and syndromic forms of obesity, and the future outlook of 
precision treatment for these conditions.
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Introduction

As global obesity prevalence continues to climb, rare forms of obesity remain 
underdiagnosed and insufficiently recognized, despite their classification as orphan diseases. 
This review delves into the epidemiology of common and rare obesity, highlighting the 
underlying mechanisms. It also explores recent advances in targeted therapies, such as the 
melanocortin 4 receptor (MC4R) agonist setmelanotide, underscoring the critical need for 
personalized approaches to address these unique and often overlooked conditions effectively.

Epidemiology

One in eight people is affected by obesity worldwide, translating into over 1 billion people 
globally, including approximately 890 million adults, 160 million children and adolescents 
(aged 5–19 years) (1). When adding those who are overweight, the numbers are far greater 
with an estimated 43% of adults and 18% children with overweight in 2022.
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Hundreds of genes have been associated with obesity-related 
traits, while fewer genes are recognized as causally implicated in 
obesity (2–5). In terms of causal genes, around 20–30 genes have been 
identified as having a clear role in the development of monogenic 
forms of obesity. A small proportion of individuals are affected by 
genetic forms of obesity (3.9–9.3%) (6), as first highlighted by twin 
studies among adults (7, 8) and in childhood (9) showing a high 
heritability of body mass index (BMI). Monogenic forms of obesity 
are rare disorders, some of which are registered as orphan diseases. 
While being rare taken individually, collectively they can affect up to 
5–7% of children with severe obesity (10, 11). In this review, 
we explore forms of monogenic obesity for which precision treatments 
are now available.

Monogenic and syndromic forms of 
obesity

Monogenic obesity

The most common monogenic form of obesity is associated with 
mutations in the MC4R gene (12), followed by mutations in the LEPR, 
POMC, PCSK1, and LEP genes. The prevalence of loss of function 
MC4R variants in the UK population is estimated at 1 in 340 (13). This 
prevalence rises to 0.5–1.7% among obese adults (BMI > 30 kg/m2) 
and around 5% in those with severe obesity (12–15). In cases of severe 
childhood-onset obesity, the prevalence can be even higher, varying 
by ethnic group (16, 17). The specific variant is also significant; highly 
pathogenic variants typically result in early childhood obesity, while 
variants with milder effects may contribute to common polygenic 
obesity. In addition to monogenic obesity, certain syndromes are 
linked to obesity. Bardet-Biedl Syndrome (BBS) has an estimated 
prevalence of 1 in 160,000 in northern Europe, 1 in 100,000 in the 
U.S., and 1  in 13,500  in some Middle Eastern populations (18). 
Although epidemiological data is limited in Europe, Denmark has an 
estimated prevalence of 1 in 59,000, while Reunion Island, France, 
reports rates of 1 in 45,000 to 66,000, likely due to a founder effect. 
Alström Syndrome (ALMS), caused by homozygous or compound 
heterozygous mutations in the ALMS1 gene, has a prevalence of 
approximately 1 in 1,000,000.1 However, higher frequencies have been 
reported in populations with high consanguinity or geographic 
isolation, with over 950 cases identified worldwide.

Genes involved in the leptin-melanocortin 
pathway

Leptin, produced by adipocytes, correlates with body fat and 
serves as a key signal for the hypothalamic arcuate nucleus. Here, it 
stimulates pro-opio-melanocortin (POMC) expression, which is 
cleaved into α- and β-melanocyte-stimulating hormones (MSH) (19). 
These hormones act on neurons in the paraventricular nuclei to 
reduce appetite and increase fat oxidation via the sympathetic nervous 

1 https://www.orpha.net/en/disease/detail/64?name=Alstrom%20

syndrome%20&mode=name

system. The leptin-melanocortin pathway is central to energy 
metabolism and body weight regulation. Mutations in MC4R or 
upstream genes, discussed below, can disrupt α- and β-MSH functions, 
leading to increased energy intake and early-onset obesity (12) 
(Figure 1).

Leptin and leptin receptor
The human leptin gene (LEP) is located on chromosome 7q32.1 

and encodes the 16 kDa hormone leptin, which has a four-helix 
bundle structure typical of cytokines. Leptin binding to its receptor 
triggers dimerization and activates the JAK–STAT signaling pathway, 
influencing metabolism, appetite, and energy expenditure (20). 
Mutations in LEP can lead to congenital leptin deficiency, resulting in 
severe obesity (21). The leptin receptor is encoded by the LEPR gene 
on chromosome 1p31.3 and exists in multiple isoforms, with the long 
form (Ob-Rb) being crucial for leptin signaling in the hypothalamus 
(22). Mutations in LEPR can cause receptor deficiency, leading to 
severe obesity and hyperphagia due to improper leptin signaling 
(23, 24).

Pro-opiomelanocortin
The POMC gene, located on chromosome 2p23.3, encodes a 

precursor, pro-opiomelanocortin, that is processed into several 
peptides involved in energy homeostasis, adrenal function, and 
pigmentation. POMC is mainly expressed in the anterior pituitary, 
hypothalamus, and skin, and is cleaved into active peptides such as 
adrenocorticotropic hormone (ACTH), α−/β-MSH, and β-endorphin 
by specific prohormone convertases (such as PCSK1 and PCSK2). 
α-MSH is crucial for appetite suppression, while β-endorphin 
modulates pain and reward pathways. Mutations in POMC can lead 
to early-onset obesity, adrenal insufficiency, and pigmentation 
disorders (25).

Proprotein convertase subtilisin/kexin-type 1
The PCSK1 gene on chromosome 5q15-q21 encodes an enzyme 

vital for converting prohormones into active forms. Primarily 
expressed in neuroendocrine cells of the pancreas, intestines, and 
brain, PCSK1 processes key hormones like insulin, glucagon, and 
POMC, which are crucial for glucose metabolism, energy balance, 
and appetite regulation. Mutations can result in enzyme deficiency, 
leading to obesity, hyperphagia, and endocrine dysfunction 
(26, 27).

Melanocortin 4 receptor
The MC4R gene, located on chromosome 18q21.32, encodes a 

G protein-coupled receptor essential for energy homeostasis and 
appetite regulation, primarily in the hypothalamus (28). MC4R 
mediates the effects of neuropeptides from POMC, and when 
α-MSH binds, it activates G proteins that reduce food intake and 
increase energy expenditure (29, 30). MC4R variants also affect 
endocytosis, trafficking and dimerization highlighting various 
cellular mechanisms in weight regulation. Conversely, the agouti-
related peptide acts as an antagonist, blocking α-MSH binding and 
promoting increased appetite and reduced energy expenditure. 
Mutations in MC4R or upstream signaling, can prevent α- and 
β-MSH from exerting their effects, leading to increased energy 
intake and weight gain from early childhood and into 
adulthood (12).
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Syndromic forms of obesity

Bardet-Biedl syndrome (BBS)
BBS is a heterogeneous disorder caused by mutations in over 25 

different genes (31). While the mechanism underlying hyperphagia in BBS 
remains unclear, reduced ciliary length impairs leptin signaling (32). Cilia 
are essential sensory organelles on the surface of POMC neurons, and 
studies show that ciliary defects in specific hypothalamic neurons can 
induce obesity and hyperphagia in mice (33). BBS is characterized by six 
primary features: retinal degeneration, truncal obesity, postaxial polydactyly, 
hypogonadism, intellectual disability, and renal abnormalities (34). Obesity 
is a prominent feature, affecting 72–92% of patients, with significant weight 
gain typically observed early in life. By age 2, 33% of children are overweight 
and 23% are obese; by age 5, 90% are either overweight or obese (31). 
Additionally, the prevalence of type 2 diabetes among adolescents with BBS 
is 6% (35), along with hypertension and hypertriglyceridemia, which 
increase the risk of cardiovascular disease (36, 37).

Alström syndrome (ALMS)
ALMS is caused by mutations in the ALMS1 gene, located on 

chromosome 2p13.1. This gene is essential for cilia function—hair-like 
structures on cell surfaces that play critical roles in signaling and sensory 
functions. Mutations in ALMS1 lead to a rare genetic disorder characterized 
by progressive vision and hearing loss, obesity, type 2 diabetes, heart 
disease, and kidney dysfunction, among other symptoms (38).

Hyperphagia, hunger and satiety

Hyperphagia is a common feature of all monogenic and syndromic 
forms of obesity (39). It is characterized by an abnormally intense and 
persistent sensation of hunger or urge to eat, often leading to overeating. 

Unlike typical hunger, this condition does not diminish after eating, 
frequently resulting in the rapid consumption of excessive amounts of 
food. Hyperphagia is not a disorder in itself but a symptom of an 
underlying medical issue, such as a genetic disruption in the leptin-
melanocortin signaling pathway (40). This pathway plays a key role in the 
homeostatic regulation of eating, as opposed to the hedonic pathway, 
which is associated with the more common polygenic form of obesity.

Often confused with hyperphagia but distinct from it, hunger is a 
sensation that drives the consumption of food. Hunger typically arises 
a few hours after eating and is generally considered unpleasant.

Satiety, which usually occurs 15–20 min after eating, is a state of 
fullness that extends beyond mere satisfaction, representing the 
opposite of hunger. After satiation (the point at which a meal ends), 
satiety persists as a feeling of fullness until the next meal (41). When 
food is still present in the gastrointestinal tract after a meal, satiety 
signals suppress hunger signals, but as time passes, satiety gradually 
fades while hunger increases.

How to measure hunger: different hunger 
scales

Like other patient-reported outcomes such as pain and fatigue, 
hunger can only be assessed through self-report rather than clinical or 
laboratory evaluations. A widely used tool for this purpose is the visual 
analog scale (VAS), which features a horizontal line, usually 100 mm long, 
with endpoints labeled “Not at all hungry” and “Extremely hungry” (42). 
Patients mark or slide along this line to indicate their hunger level, 
providing a quantifiable score that is easy to administer, reproducible, and 
sensitive to short-term changes, much like VAS tools for other symptoms. 
Another popular tool is the Likert scale, where participants rate statements 
on hunger or satiety using a graded scale (e.g., 1–5 or 1–7) (41, 43).

FIGURE 1

The central role of the leptin-melanocortin pathway. Leptin and ghrelin have opposing effects on appetite regulation. Leptin inhibits appetite by 
activating POMC neurons, which stimulate MC4R. In contrast, ghrelin, secreted by the stomach during fasting, activates AgRP neurons, inhibiting 
MC4R signaling and increasing appetite. Treatment with either a GLP1R or a MC4R agonists can help decrease appetite. POMC, Pro-opio-melanocortin 
expressing neurons; AgRP, Agouti related-protein expressing neurons; MC4R, Melanocortin receptor expressing neurons; GLP1R, Glucagon-like 
peptide 1 receptors. Created in BioRender. Schwitzgebel, V. (2024) https://BioRender.com/y38z865
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Burden on families and patients

Numerous studies highlight the substantial burden of genetically 
related hyperphagia on patients and caregivers, particularly in cases 
involving POMC, PCSK1, and LEPR deficiencies, as well as ALMS and 
BBS (44). Patients often experience intense emotional distress, 
including sadness, frustration, anxiety, and guilt, driven by a relentless 
preoccupation with food and an inability to control their hunger (45). 
Caregivers, especially parents, share this emotional strain, facing 
feelings of guilt, helplessness, and frustration as they navigate their 
child’s behaviors, such as food sneaking and hoarding (46). The 
persistent focus on food intrudes on daily life, affecting patients’ 
school and work performance while limiting social engagement. This 
ongoing challenge severely diminishes their quality of life, as 
highlighted in a multi-country survey (47). These findings underscore 
the multifaceted burden that hyperphagia places on patients, siblings 
and caregivers, highlighting the urgent need for precision therapies to 
address this debilitating condition.

Need of early detection and 
management: screening program, 
genetic confirmation, to decrease 
complications

In patients with early-onset obesity, especially when it begins before 
the age of 5, physicians should strongly consider the possibility of a 
genetic cause (48). Pediatricians play a key role in identifying cases of 
monogenic obesity, using characteristic BMI trajectories as a diagnostic 
aid, since these patterns differ from those seen in polygenic obesity (49). 
For confirmation and expert evaluation, referral to tertiary obesity clinics 
is recommended, where specialists have the expertise to conduct and 
interpret the necessary genetic tests, such as dedicated obesity gene 
panels or whole exome/genome sequencing. The French INSERM 
NutriOmics group has developed an online diagnostic support tool 
called ObsGen to help practitioners diagnose monogenic obesity more 
effectively (50).2 Early treatment of patients with genetic obesity is 
crucial, as it helps to limit the condition’s progression during adolescence, 
prevents related complications (51), and reduces the stigmatization and 
suffering these individuals often experience (52).

Lack of response to conventional 
therapies—failure of diet and lifestyle 
interventions, no sustained response to 
bariatric surgery

Patients with mutations in the leptin-melanocortin pathway and 
BBS often receive dietary and exercise counseling similar to those with 
polygenic obesity, yet they show limited response to these lifestyle 
changes, as seen in MC4R deficiency (53). While bariatric surgery is 
effective for common obesity (54), its success relies on a functional 
leptin-melanocortin pathway (55, 56). Thus, alternative treatments are 
necessary for this genetic population, as bariatric surgery is typically 
ineffective unless carefully considered for select adults (57, 58).

2 https://redc.integromics.fr/surveys/index.php?s=XEFPD474YT

Glucagon-like peptide-1 (GLP-1) receptor agonists (RAs) show 
promise in monogenic and syndromic obesity, with real-world 
evidence of effectiveness in ALMS and BBS patients (59, 60). A study 
of liraglutide (3.0 mg for 16 weeks) reported weight loss in patients 
with MC4R deficiency (6.8 kg ± 1.8 kg) compared to controls 
(6.1 kg ± 1.2 kg) (61), suggesting that GLP-1 RAs may work 
independently of a fully functional leptin-melanocortin pathway. 
Ongoing trials of newer GLP-1 RAs and dual/triple agonists are 
awaited for further insights.

Precision treatment approach

Metreleptin

Leptin deficiency due to LEP mutations is uniquely treated with 
recombinant human leptin (metreleptin). This synthetic analog is 
administered subcutaneously at 0.03 mg/kg of lean body mass daily, 
leading to significant weight loss and reduced hyperphagia (62, 63). In one 
case, a 9-year-old patient lost 16.4 kg in the first year and achieved BMI 
reduction over 4 years, despite weight remaining above the 98th percentile 
by age 14 (62, 63). The development of metreleptin-neutralizing 
antibodies can lead to hyperphagia recurrence and weight regain. This 
therapy is ineffective for patients with downstream leptin-melanocortin 
pathway mutations.

Setmelanotide

Setmelanotide, a synthetic cyclic peptide, binds with high affinity 
to human MC4R (64). Given the central role of the leptin-
melanocortin pathway, this MC4R agonist can effectively “rescue” 
downstream signaling, even without upstream LEPR, PCSK1, or 
POMC activity. However, treatment is appropriate only for cases with 
validated loss-of-function mutations — either homozygous or specific 
heterozygous autosomal dominant mutations of LEPR, PCSK1 or 
POMC. Missense mutations with neutral or partial deleterious effects 
are unlikely to benefit (29, 30, 65, 66). This approach heralds a future 
of precision medicine, where treatment is tailored to variant-specific 
responses based on genotype.

What are the therapeutic goals of 
setmelanotide?

The therapeutic goals of setmelanotide for treating obesity linked 
to POMC, PCSK1, or LEPR deficiencies and BBS include weight 
stabilization, hyperphagia control, quality of life improvement, safety 
and tolerability, enhanced metabolic and cardiovascular health, and 
sustained long-term efficacy.

Efficacy of setmelanotide

In infants and children, weight stabilization—not weight loss—is 
prioritized to prevent adverse effects on growth (24, 67–70). Weight 
control is achieved primarily by reducing hyperphagia, as children 
with LEPR and POMC mutations consume three times more calories 
per kg of lean mass than controls (24). Additionally, children with 
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TABLE 1 Summary of studies on setmelanotide efficacy.

Author, year Population Intervention Outcomes, mean (SD)

LEPR and POMC deficiency

(71) ClinicalTrials.gov NCT03287960 LEPR (n = 11) deficiency, Hom or compound Het

50% female

Age at inclusion ≥6 years

 • Mean age 23.7 years (SD 8.4)

 • Of whom, 3 were younger than 18 years

Obesity (>95th percentile, or adult BMI ≥ 30 kg/m2)

 • Mean BMI 48.2 kg/m2 (SD 10.4) in adults

 • Mean BMI Z-score 3.5 (SD 0.4) in those younger 

than 18 years

Single-arm trial

Partially blinded

Setmelanotide for 52 weeks, with dose up-titration 

(0.5–3.0 mg for those younger than 18 years, 1.0–

3.0 mg for adults)

Baseline weight: 131.7 kg (SD 32.6)

One-year weight: 115.0 kg (SD 29.6)

Relative weight loss: −12.5% (SD 8.9, 90%CI –16.1 to −8.8, p < 0.0001), regardless of 

age

BMI decrease in those younger than 18 years: Z-score −0.5 (SD 0.4, 90%CI –1.1 to 

0.1, p = 0.14, n = 3)

BMI decrease in adults: −5.2 kg/m2 (SD 3.9, 90%CI –8.1 to −2.3, p = 0.01, n = 7)

Hunger score (11-point Likert scale):

7.0 (SD 0.8) at baseline → 4.1 (SD 2.1) at follow-up in those aged 12 years or older

Adverse effects: skin hyperpigmentation, injection site reaction, nausea, vomiting

(71) ClinicalTrials.gov NCT02896192 POMC (n = 9) and PCSK1 (n = 1) deficiency, Hom or 

compound Het

73% female

Age at inclusion ≥6 years

 • Mean age 18.4 years (SD 6.2)

 • Of whom, 6 were younger than 18, and 2 were 

younger than 12 y

Obesity (>95th percentile, or adult BMI ≥ 30 kg/m2)

 • Mean 40.4 kg/m2 (9.0) in adults

 • Mean BMI Z-score 3.4 (0.6) in those younger than 

18 years

Single-arm trial

Partially blinded

Setmelanotide for 52 weeks, with dose up-titration 

(0.5–3.0 mg for those younger than 18 years, 1.0–

3.0 mg for adults)

Baseline weight: 115.0 kg (SD 37.8)

One-year weight: 83.1 kg (SD 21.4)

Relative weight loss: −25.6% (SD 9.9, 90% CI –28.8 to −22.0, p < 0.0001), regardless 

of age

BMI decrease in those younger than 18 years: Z-score −1.6 (SD 0.9, 90%CI –2.3 to 

−0.9, p = 0.006, n = 6)

BMI decrease in adults: −9.3 kg/m2 (SD 6.9, 90% CI –17.4 to −1.2, p = 0.07, n = 4)

Hunger score (11-point Likert scale):

8.1 (SD 0.8) at baseline → 5.8 (SD 2.0) at follow-up in those aged 12 years or older

Adverse effects: skin hyperpigmentation, injection site reaction, nausea, vomiting

(76) ClinicalTrials.gov NCT03651765 POMC deficiency, compound Het (n = 1) and Hom 

(n = 1)

2 adult women

Age 21 and 26 at the start of treatment

Open-label extension study of setmelanotide 2.0 mg 

for 6.8–7.2 years

Follow-up of (77) (ClinicalTrials.gov NCT02507492)

Weight loss: 35.8% (−55.6 kg) in patient 1; 47.5% (−72.6 kg) in patient 2

BMI decrease: BMI Z-score from 4.5 to 2.7 in patient 1; from 4.8 to 2.1 in patient 2

Hunger scores (11-point Likert scale):

Pre-treatment 9–10 points

Post-treatment 2–5 points

See also (78) (QoL outcomes in LEPR-POMC deficiency)

(45) ClinicalTrials.gov NCT03651765 POMC (n = 3) or LEPR (n = 2) deficiency

4 male, 1 female

Age at inclusion ≥15 years

 • Mean age 23.8 years (range 15–33)

Open-label extension study of setmelanotide for 

3–4 years

Hunger scores (11-point Likert scale)

Pre-treatment 7–9 points (possible recall bias, some at the maximum 10 points)

Post-treatment 2–7 points

(Continued)
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TABLE 1 (Continued)

Author, year Population Intervention Outcomes, mean (SD)

Bardet-Biedl Syndrome

(72) ClinicalTrials.gov NCT03746522 BBS / Alström syndrome

→ results in this table only relate to BBS (n = 32)

53% female

Age at inclusion ≥6 years

 • 15 adults +16 younger than 18 + 1 withdrawal

 • Median age 17.5 years (IQR 12.0–25.5)

Obesity (>97th percentile, or adult BMI ≥ 30 kg/m2)

Double blind 14-week RCT of setmelanotide up-

titration to max 3.0 mg vs. placebo

+ Open-label follow-up for 52 weeks

All those younger than 18 years

BMI: 37.4 kg/m2 (SD 9.4) → 34.2 kg/m2 (SD 10.1)

BMI Z-score: 3.7 (SD 1.3) → 3.0 (SD 1.5), i.e., −0.8 (SD 0.5) over 52 weeks

Adults

BMI: 46.4 kg/m2 (SD 5.9) → 43.3 kg/m2 (SD 7.2)

BMI decrease: −4.2 kg/m2 (SD 3.3), i.e., -9.1% (SD 6.8) over 52 weeks

Hunger score: −30.5% (26.5%)

Adverse effects: skin hyperpigmentation, injection site erythema, nausea, vomiting

See also (73) (QOL improvements in BBS)

(46) ClinicalTrials.gov NCT03013543 

and NCT03746522

BBS (n = 8 patients)

75% female

Age at inclusion ≥15 years

 • Mean age 36 years (range 17–65)

Setmelanotide for an average 29 months (range 12–

48)

Hyperphagia: substantial improvement within 2 months of starting setmelanotide

Hunger scores (11-point Likert scale)

Pre-treatment 8–10 points (recall bias?)

Post-treatment reduction −2 to −6 points

Ongoing pediatric studies

 ClinicalTrials.gov NCT04966741

Pediatric population from 2 to <6 years old

Bi-allelic variants of POMC, PCSK1 or LEPR 

deficiency; or BBS

Phase 3 Setmelanotide for 52 weeks, with dose up-

titration (0.5–2.0 mg for children)

Active study, recruitment completed

Primary outcomes: BMI decrease in % and proportion of participants with at least 

0.2 BMI Z-score reduction

Numbers are reported as mean (SD) unless stated otherwise. BBS, Bardet-Biedl Syndrome; CI, confidence interval; Het, heterozygous; Hom, homozygous; LEPR, leptin receptor; PCSK1, proprotein convertase subtilisin/kexin type 1; POMC, pro-opiomelanocortin; 
QoL, Quality of life; RCT, randomized controlled trial.
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homozygous MC4R mutations consume more than those with partial 
loss-of-function variants (64). Setmelanotide has shown promising 
results in clinical trials and in countries where it is marketed. So far, a 
relatively small number of patients have been tested with this MC4R 
agonist, but setmelanotide efficiently leads to weight control in 
patients with LEPR and POMC deficiencies and BBS (71, 72) (Table 1). 
Hunger reduction has been measured on an 11-point Likert scale, 
though some studies used retrospective self-reports, introducing 
potential recall bias (45, 46). Nonetheless, most studies indicate a 
reduction in hyperphagia with setmelanotide (46, 73).

Side effects/contraindication of 
setmelanotide

As with any injectable medication, hypersensitivity to 
setmelanotide or its excipients can be observed. Additionally, due to 
cross-stimulation of MC1R in melanocytes, some patients experience 
skin hyperpigmentation and darkening of naevi (51, 72). For safety, 
regular skin monitoring and restricted prescription through 
specialized centers are recommended. The clinical and research 
community now awaits long-term data on this second-generation 
MC4R agonist and the potential development of new therapies.

Broader indications for setmelanotide?

Setmelanotide has been approved by the FDA for patients over 6 
years of age with POMC, PCSK1, LEPR deficiencies and BBS, while the 
EMA has approved it for biallelic POMC, PCSK1, LEPR deficiencies and 
BBS in Europe (51, 74). Recently, its approval expanded to include patients 
as young as 2 years old (Clinicaltrials.gov no. NCT04966741). Trials are 
also underway to assess its efficacy in acquired hypothalamic obesity (75) 
and in other leptin-melanocortin pathway genes, including SH2B1, CPE, 
and 16p11.2 chromosomal rearrangements (51).

Upcoming developments and outlook

With the high prevalence of obesity and advancing insights into 
its mechanisms, we anticipate drug developments targeting additional 
genes, alongside investigations into how different mutation types (e.g., 
null, frameshift, missense) affect treatment outcomes. Distinctions in 
receptor function—complete versus partial loss—may also yield 
varied drug responses (66). Given the diversity of outcomes in prior 
studies (Table  1), a standardized hunger scale, trial design, and 
extended follow-up are essential. In the development of MC4R 
agonists, we  expect next-generation drugs to avoid MC1R cross-
activity, thereby minimizing skin and naevi darkening, which 

currently necessitates regular monitoring. With the strong 
development GLP-1/GIP/glucagon receptor agonists, we expect some 
efficacy for individuals with monogenic and syndromic obesity in 
terms of weight loss and metabolic improvement (51).

Conclusion

Obesity is a heterogenous disorder, involving single genes to hundreds 
of genes (2, 4, 5). Improved and precision treatment is now required. 
Recent advances in understanding the mechanisms leading to obesity and 
controlling appetite, hunger, and satiety have led to the development of 
drugs that can override genetic defects, enabling precision treatment.
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