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Purpose: We aim to ascertain the extent to which the blood urea nitrogen 
(BUN) to serum albumin (ALB) ratio (BAR) could be implemented to anticipate 
the short- and long-term prognosis of acute ischemic stroke (AIS) patients in 
intensive care units (ICUs).

Methods: The data was derived from the Marketplace for Intensive Care Medical 
Information-IV (MIMIC-IV v3.0) database, primarily pertaining to AIS patients as 
categorized by the International Classification of Diseases (ICD)-9 and ICD-10. 
The outcomes encompassed short-term ACM incorporating ICM admissions 
and 30-day, as well as longer-term ACM involving 90-day and 365-day. Any 
confounding effects were mitigated with a 1:1 propensity score matching (PSM) 
approach. We determined the critical BAR level affecting patient survival with 
the use of maximum chosen rank statistics. The connection between BAR 
and ACM at various time intervals was ascertained with the multivariate Cox 
regression (MCR) models after the adjustment for covariates. Kaplan–Meier (KM) 
survival curves were generated to illustrate variations in BAR and death over 
various time intervals. Additionally, the linear or non-linear connection between 
BAR and ACM was ascertained with restricted cubic spline (RCS) approaches, 
supplemented by interaction and subgroup analyses.

Results: Prior to PSM, we  incorporated 1,764 suitable subjects with a median 
BAR of 5.52 mg/g. This cohort was composed of 1,395 and 369 patients 
in the BAR <10.42 and ≥10.42 groups, respectively. The ICU ACM rates were 
9.53 and 19.24% (p < 0.001), respectively, while the 30-day ACM rates were 
19.00 and 40.11% (p < 0.001). The 90- and 365-day ACM rates were 26.95 and 
52.57% (p < 0.001), and 33.12 and 62.87%, respectively (p < 0.001). After fully 
adjustment, MCR models indicated a heightened mortality risk for the ICU 
(hazard ratio [HR] = 1.55, 95% confidence interval [CI]: 1.08–2.22; p  = 0.02), 
30-day (HR = 1.87, 95% CI: 1.46–2.38; p  < 0.001), 90-day (HR = 1.75, 95% CI: 
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1.42–2.15; p  < 0.001), and 365-day (HR = 1.81, 95% CI: 1.50–2.19; p  < 0.001) 
in the high BAR group as opposed to the low BAR group. Following PSM, the 
analysis included 352 matched patient pairs, revealing persistent links between 
the higher BAR group and increased ACM risk throughout ICU, 30-, 90-, and 
365-day intervals. Subsequent RCS studies before and after PSM highlighted a 
positive non-linear correlation between BAR and ACM in the short and long-
term. In the subgroup investigation of ICU ACM, a subgroup of diabetes had 
an interaction effect (Pfor interaction  = 0.02). In the subgroup analysis of 90-day 
ACM, subgroups of hypertension and CRRT had an interaction effect (all Pfor 

interaction < 0.05). In the subgroup analysis of 365-day ACM, subgroups of HTN, 
CRRT, and malignancy tumor had an interaction effect (all Pfor interaction < 0.05).

Conclusion: In this retrospective cohort study, our findings reveal that a 
confluence of deteriorated nutritional and renal function is significantly linked 
to heightened risks of ACM, and BAR may operate as an effective predictive 
indicator for AIS patients in ICUs. These findings have substantial importance 
for public health policy and practice. A comprehensive knowledge of these 
linkages may enable public health specialists and researchers to formulate 
more precisely targeted drugs and policies tailored to the unique requirements 
of the AIS patient group, hence improving their health outcomes. We  reveal 
a significant link between the BAR and ACM in persons with AIS, highlighting 
the BAR’s potential as an innovative, economical, and accessible measure for 
forecasting ACM in this demographic. However, further research is needed on 
other racial and ethnic groups before these findings can be widely applied in 
clinical practice.
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Introduction

Acute ischemic stroke (AIS) is a significant global health issue and 
is the prevailing reason for prolonged disability and death, accounting 
for approximately 85% of all stroke cases (1, 2). It affects individuals 
across all age groups, emphasizing the need for a comprehensive 
understanding of its global and regional impact (3–6). The AIS overall 
effect has been exacerbated by the fast population aging and 
urbanization, which has elevated the AIS incidence risk factors. China, 
housing almost one-fifth of the global population, possesses the 
greatest stroke rates globally. The AIS incidence rate in China elevated 
significantly from 117 instances per 100,000 persons in 2005 to 145 
instances per 100,000 by 2019 (7), underscoring substantial hurdles in 
both acute care and long-term rehabilitation. Therefore, it is essential 
to discover efficient, non-invasive, and easily obtainable biomarkers 
for anticipating clinical outcomes in AIS patients. The use of these 
indicators may facilitate more prompt and precise therapeutic choices, 
improve patient recovery, and decrease fatality rates.

Blood urea nitrogen (BUN) indicates renal function, nutritional 
condition, and protein metabolism. It has shown efficacy as a 
biomarker for many disorders’ severity and prognosis, including acute 
intracerebral hemorrhage (ICH), acute pancreatitis, and pneumonia 
(8–10). Additionally, acute aortic dissection (AAD) patients exhibit 
strongly correlated in-hospital mortality with elevated BUN levels 
(11). Albumin (ALB), a stable protein found in human serum, is 
linked to platelet activation, thrombosis, and inflammation. Prior 
investigation has demonstrated that serum ALB levels are reliable, 
independent indicators of mortality and prognosis in cardiovascular 
conditions encompassing acute coronary syndrome, AAD, and heart 

failure (HF) (12–15). The BUN to ALB ratio (BAR) is a comprehensive 
indicator of renal function, inflammation, nutritional status, and 
endothelium health. Since its inception, BAR has been significantly 
linked to several disorders, including pneumonia, sepsis, chronic 
obstructive pulmonary disease (COPD), COVID-19, cancer, 
gastrointestinal hemorrhage, ICH, and cardiovascular disorders (10, 
16–23). Nonetheless, evidence on the link between BAR and all-cause 
mortality (ACM) in AIS subjects is insufficient. We aimed to examine 
the capacity of BAR to forecast short- and long-term ACM in AIS 
patients hospitalized in intensive care units (ICUs).

Materials and methods

Data sources

Data from the Medical Information Mart for Intensive Care IV 
(MIMIC-IV version 3.0) database1 (24), a publicly accessible and 
open-source resource created by related labs at the Massachusetts 
Institute of Technology (MIT) were implemented. From 2008 to 2019, 
the MIMIC-IV database contains thorough clinical data, 
encompassing patient baseline characteristics, health status, imaging 
results, complications, medication consumption, and diagnoses for 
people admitted to a single-center ICU. MIMIC-IV, as a revised 
edition, integrates current data and improves several features of its 

1 https://mimic.physionet.org/about/mimic/
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predecessor, MIMIC-III, which has undergone intense academic 
scrutiny. Permission to access the database for this investigation was 
obtained from the relevant institutional authorities.

Population of the study

The most recent iteration of the MIMIC-IV database (version 3.0), 
covering the period from 2012 to 2024, has 364,627 entries. A total of 
8,217 individuals were recognized as having undergone AIS according 
to International Classification of Diseases codes—ICD-9 codes 433, 
434, 436, 437.0, 437.1 and ICD-10 codes I63, I65. Typically, 4,556 
patients were excluded for not being first-time ICU admissions, 
resulting in a total of 3,571 AIS patients. Data from the initial ICU 
hospitalization of people aged 18 and older were obtained. The 
biochemical parameters were immediately assessed for the first time 
after ICU admission to ensure consistency in the timing of 

measurements across all subjects. Moreover, patients without 
documented BUN or ALB values (1,640 instances), those who lived 
for less than 24 h (11 cases), and subjects with an ICU stay of below 
24 h (156 cases) were eliminated. Following the implementation of 
these exclusion standards, 1,764 patients were enrolled for the final 
analysis, as seen in Figure 1.

Ethical considerations and data privacy

This investigation was aligned with ethical standards and maintained 
patient confidentiality by using meticulously de-identified data from the 
MIMIC-IV database, so maintaining the secrecy of all patient 
information. By successfully passing the National Institutes of Health’s 
“Protecting Human Research Participants” online course (Record ID: 
12150448), the lead investigator secured authorization to access the 
database, therefore affirming adherence to essential ethical criteria for 

FIGURE 1

Flowchart illustrating the inclusion and exclusion criteria for subjects in the present research. MIMIC-IV, Medical Information Mart for Intensive Care-IV; 
AIS, acute ischemic stroke; ICU, intensive care unit; BAR, blood urea nitrogen to serum albumin ratio; PSM, propensity score matching.
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human subjects research. Before data extraction, specialist training was 
conducted to guarantee adherence to recognized research procedures 
and techniques. The study team systematically devised data extraction 
protocols, which were first evaluated to enhance their accuracy and 
practicality. Several validation procedures were used, including 
independent audits of crucial data points and the application of statistical 
tools for consistency assessments, therefore discovering and rectifying 
any differences or inaccuracies to ensure data dependability. The ethics 
committee at Beth Israel Deaconess Medical Center waived the informed 
consent requirement because of the dataset’s anonymized characteristics.

Extraction of variables

The main exposure variable in this research was the first complete 
blood count performed upon ICU admission. Data were retrieved 
from the MIMIC-IV database via SQL queries inside a PostgreSQL 
environment, concentrating on seven principal domains:

 1 Demographic Data: age, gender, and race/ethnicity.
 2 Comorbid Conditions: hypertension (HTN), diabetes mellitus 

(DM), HF, atrial fibrillation (AF), acute myocardial infarction 
(AMI), peripheral vascular disease (PVD), COPD, acute kidney 
injury (AKI), hyperlipidemia, malignancy, renal failure (RF), 
sepsis, liver disease, and the Charlson Comorbidity Index (CCI).

 3 Vital Signs: mean blood pressure (MBP), heart, and 
respiratory rates.

 4 Laboratory Findings: platelets (PLT), white blood cell count 
(WBC), red blood cell count (RBC), creatinine, activated partial 
thromboplastin time (APTT), BUN, ALB, prothrombin time 
(PT), international normalized ratio (INR), serum sodium, 
serum potassium, serum phosphate, and anion gap (AG).

 5 Clinical Severity Scores: Oxford Acute Severity of Illness Score 
(OASIS), Sequential Organ Failure Assessment (SOFA) score, 
Glasgow Coma Scale (GCS), Systemic Inflammatory Response 
Syndrome (SIRS) score, Simplified Acute Physiology Score II 
(SAPS-II), and Acute Physiology Score III (APS-III).

 6 Treatments Administered: continuous renal replacement 
therapy (CRRT), parenteral nutrition, thrombolysis, 
and thrombectomy.

 7 Clinical Outcomes: stay duration in ICU and hospital, 
and ACM.

The ACM was assessed at many time points: throughout the ICU 
hospitalization and at 30, 90, and 365 days following ICU admission 
thereafter. Mortality was assessed based on fatalities occurring during 
designated intervals after ICU admission, offering a temporal context 
instead of a fixed condition at predetermined time points. Variables 
with above 20% missing data were removed to preserve data integrity. 
Missing values were imputed with the “mice” utility in R software, 
which was implemented with multiple imputations and a random 
forest procedure for variables with below 20% missing data.

Propensity score matching (PSM)

Because of the retrospective form of this investigation, which 
presents risks of selection bias and confounding variables, a PSM 

strategy was implemented to mitigate these issues. Propensity scores 
were produced with a logistic regression model and used to match 
patients in a 1:1 ratio based on variables such as age, gender, race/
ethnicity, HTN, DM, HF, MBP, SOFA, RBC, WBC, and treatments like 
thrombolysis and thrombectomy. Nearest neighbor matching with a 
caliper width of 0.1 was implemented to mitigate discrepancies 
between matched pairs. The effectiveness of PSM was assessed by 
calculating Absolute Standardized Differences (ASDs) to ensure 
balanced baseline characteristics between groups. ASD values below 
0.10 post-matching indicated effective bias and confounder reduction, 
allowing a balanced group comparison.

Statistical analysis

Group variations were assessed with t- or Mann–Whitney U-tests, 
and continuous variables were represented as medians with 
interquartile ranges (IQR). Categorical variables were represented as 
counts and percentages, thereafter compared with the Chi-square or 
Fisher’s exact tests. The ideal BAR cutoff value in forecasting ACM was 
established by maximum chosen rank statistics, yielding a threshold 
of 10.42. This cutoff divided the BAR into two categories: less than 
10.42 and greater than or equal to 10.42, optimizing the risk ratio 
(Figure 2).

Graphical and statistical tools were used to evaluate the 
proportional risks assumption. Kaplan–Meier (KM) curves provide 
visual representations, while Schoenfeld residuals and Grambsch–
Therneau tests give formal statistical confirmation. Subjects who did 
not experience the event throughout the research period were 
classified as censored data and regarded as non-events in the Cox 
regression model. The time-to-event was quantified from ICU 
admission until either mortality or the conclusion of the 
research period.

Univariate and multivariate Cox proportional hazards models 
were implemented to ascertain predictive variables for short- and 
long-term mortality following AIS. Significant predictors of ACM 
were discovered and shown as hazard ratios (HRs) with 95% 
confidence intervals (CIs). Subgroup studies were implemented with 
multivariate Cox regression (MCR), stratified by covariates including 
age (<60 vs. ≥60 years), gender, race/ethnicity, and the existence of 
HTN, DM, AKI, RF, CRRT, and malignancy tumor, to investigate the 
BAR impact on mortality across various patient groups. The BAR 
variable was segmented into tertiles to analyze its association with 
ACM, emphasizing comparisons to the lowest tertile.

Restricted cubic splines (RCS) were used inside generalized 
additive models to explore possible non-linear correlations and 
provide a more flexible analysis of BAR’s effect on ACM. This approach 
aimed to determine threshold effects and the exact moment at which 
BAR affects mortality in AIS patients. Statistical testing was bilateral, 
with a significance threshold established at p < 0.05. Data analysis was 
performed with R statistical software (version 4.2.2), SPSS Statistics 
26, and GraphPad Prism 8, guaranteeing a thorough assessment.

Results

This study included 1,746 people from a cohort of 8,127 AIS 
patients who received care in the ICU. The median age was 69 years 
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(IQR: 57–79 years), and the demographic composition consisted of 
884 men (50.63%) and 862 females (49.37%). Participants were 
categorized into two cohorts using the BAR criterion, which was 
ascertained by the maximum specified rank statistics. The low BAR 
group was designated as BAR <10.42, while the high BAR group was 
designated as BAR ≥10.42. Before the implementation of PSM, a 
comparison study indicated that the low BAR group had a reduced 
proportion of males, an increased prevalence of HTN, and a decreased 
prevalence of DM, HF, AF, PVD, COPD, AKI, RF, malignant tumors, 
sepsis, and liver disease. Additionally, this group showed elevated 
MBP, RBC count, and ALB; decreased heart and respiratory rates; and 
lower WBC, PLT, BUN, creatinine, APTT, INR, potassium, phosphate, 
AG, and PT levels. This group reported mitigated scores in many 
critical care evaluation instruments, incorporating SOFA, SAPS-II, 
SIRS, OASIS, and APS-III, and confirmed a declined parenteral 
nutrition, CRRT, and thrombectomy incidence. Moreover, BAR 
patients of less than 10.42 had reduced lengths of ICU and hospital 
admissions. Table  1 systematically presents a comprehensive 
comparison of these studies, highlighting the increased likelihood of 
unfavorable outcomes in elevated BAR subjects.

Association between BAR and ACM at 
different time intervals before PSM

In the MCR study (Table 2), the connection between the BAR 
and ACM was ascertained using three various models. When BAR 
was considered as a binary variable (≥10.42 vs. <10.42), it 

confirmed a significant link to ACM at all time points in the 
unadjusted model. The HRs for ICU mortality were 1.88 (95% CI: 
1.40–2.50; p < 0.001), 2.38 (95% CI: 1.95–2.91; p < 0.001), 2.34 
(95% CI: 1.97–2.79; p < 0.001), and 2.41 (95% CI: 2.06–2.82; 
p < 0.001), and for 30- and 90- and 365-day mortality, respectively. 
When classified into tertiles, patients in the highest BAR tertile (T3) 
possessed a significantly elevated risk of ICU ACM as opposed to 
those in the smallest tertile (T1) across all three models. Model 1 
possessed an HR for ICU mortality of 1.88 (95% CI: 1.32–2.66; 
p < 0.001), Model 2 reported an HR of 1.77 (95% CI: 1.24–2.54; 
p = 0.002), and Model 3 exhibited an HR of 1.56 (95% CI: 1.03–
2.37; p = 0.04). Comparable substantial correlations were seen for 
30-, 90-, and 365-day mortality, with hazard ratios suggesting 
elevated risk in the top tertile across all models. Additionally, a 
notable trend was seen throughout ascending BAR tertiles for ICU 
ACM (Pfor trend < 0.001 in Models 1 and 2; Pfor trend = 0.02 in Model 3), 
as well as for 30-, 90-, and 365-day ACM (all Pfor trend < 0.001). This 
indicates that increased BAR levels correlate with a heightened risk 
of death.

The KM survival curves additionally confirmed the disparities in 
ACM rates between individuals with mitigated and greater BAR 
scores. The results indicated that subjects in the high BAR group 
possessed significantly elevated death rates relative to those in the low 
BAR group at every evaluated time point. Specifically, mortality rates 
were 19.24% vs. 9.53% for ICU mortality, 40.11% vs. 19.00% for 
30-day mortality, 52.57% vs. 26.95% for 90-day mortality, and 62.87% 
vs. 33.12% for 365-day mortality, all with p < 0.001. These findings are 
graphically illustrated in Figure 3.

FIGURE 2

Establishment of the BAR cutoff threshold with maximum chosen rank data.
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TABLE 1 Baseline features and outcomes of subjects prior to PSM based on BAR binary.

Variables Overall
(N = 1764)

BAR p-value

Low (<10.42)
(N = 1,395)

High (≥10.42)
(N = 369)

BAR 5.52 (3.75–9.18) 4.74 (3.42–6.55) 16.21 (12.61–23.33) <0.001

Demographics

Age, years 69 (57–79) 69 (57–79) 68 (59–79) 0.55

Gender, male, n (%) 884 (50.63) 679 (48.67) 205 (55.56) 0.02

Race/ethnicity, n (%) 0.50

  Asian 969 (54.93) 776 (55.63) 193 (52.30)

  White 182 (10.32) 143 (10.25) 39 (10.57)

  Black 613 (34.75) 476 (34.12) 137 (37.13)

Comorbidities

HTN, n (%) 955 (54.14) 807 (57.85) 148 (40.11) <0.001

DM, n (%) 609 (34.52) 447 (32.04) 162 (43.90) <0.001

Hyperlipidemia, n (%) 752 (42.63) 606 (43.44) 146 (39.57) 0.18

HF, n (%) 449 (25.45) 303 (21.72) 146 (39.57) <0.001

AF, n (%) 681 (38.61) 516 (36.99) 165 (44.72) 0.007

AMI, n (%) 27 (1.53) 22 (1.58) 5 (1.36) 0.76

PVD, n (%) 46 (2.61) 31 (2.22) 15 (4.06) 0.048

COPD, n (%) 96 (5.44) 66 (4.731) 30 (8.13) 0.01

AKI, n (%) 1,251 (70.92) 919 (65.88) 332 (89.97) <0.001

RF, n (%) 1,309 (74.21) 965 (69.18) 344 (93.22) <0.001

Malignancy tumor, n (%) 324 (18.37) 241 (17.28) 83 (22.49) 0.02

Sepsis, n (%) 968 (54.88) 683 (48.96) 285 (77.24) <0.001

Liver disease, n (%) 245 (13.89) 151 (10.82) 94 (25.47) <0.001

CCI 7 (5–9) 7 (5–8) 8 (6–10) <0.001

Vital signs

MBP, mmHg 91 (79–104) 93 (80–106) 85 (75–98) <0.001

Heart rate, times/min 84 (72–99) 82 (71–96) 90 (76–106) <0.001

Respiratory rate, beats/min 19 (16–22) 18 (16–22) 20 (16–25) <0.001

Laboratory parameters

RBC, 109/L 3.90 (3.31–4.42) 4.01 (3.52–4.48) 3.32 (2.89–3.95) <0.001

WBC, 109/L 10.7 (7.9–14.5) 10.4 (7.9–13.8) 12.7 (8.1–17.3) <0.001

Platelets, 109/L 200 (149–264) 207 (160–269) 168 (113–239) <0.001

BUN, mg/dL 18 (13–28) 16 (12–21) 45 (35–62) <0.001

Creatinine, mg/dL 1.0 (0.7–1.3) 0.9 (0.7–1.1) 2.0 (1.3–3.1) <0.001

APTT, s 28.9 (26.1–33.9) 28.7 (26.0–32.9) 30.2 (26.5–37.7) <0.001

INR 1.2 (1.1–1.4) 1.2 (1.1–1.3) 1.3 (1.2–1.6) <0.001

Sodium, mmol/L 139 (136–142) 139 (137–142) 139 (135–143) 0.80

Potassium, mmol/L 4.1 (3.7–4.5) 4.0 (3.7–4.4) 4.4 (3.9–5.0) <0.001

Phosphate, mmol/L 3.5 (2.9–4.1) 3.4 (2.9–3.9) 4.0 (3.4–4.9) <0.001

AG, mmol/L 14 (12–17) 14 (12–16) 16 (13–19) <0.001

PT, s 13.3 (12.0–15.3) 13.0 (11.9–14.65) 14.7 (12.9–17.9) <0.001

ALB, mg/dL 3.3 (2.8–3.8) 3.5 (3.1–3.9) 2.7 (2.3–3.1) <0.001

Clinical severity scores

GCS 15 (14–15) 15 (14–15) 15 (14–15) 0.08

(Continued)
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Connection between the BAR and ACM in 
AIS patients following PSM

We used a 1:1 PSM technique, yielding 352 matched patient pairs 
to rectify differences in baseline characteristics between the low and 
high BAR groups. Following matching, the groups exhibited a 
balanced distribution of demographics, comorbidities, most 
laboratory markers, clinical measures, and given therapies, as shown 
in Table 3. The PSM effectiveness was ascertained with computing 
ASDs before to and subsequent to matching (Figure 4).

Notwithstanding the matching, significant disparities 
persisted between the low and high BAR groups concerning 
ACM at different time intervals. The ICU mortality rate was 9.53 
and 19.54% in the low and high BAR groups, respectively 
(p < 0.001). The 30-day mortality rates for the low and high BAR 
groups were 19.00, 40.11, and 52.57%, respectively (p < 0.001). 
The 90-day death rates were 26.95 and 52.57%, whereas the 
365-day mortality rates were 33.12 and 62.87% (p < 0.001). The 
disparities in ICU and hospital durations of stay were not 
significant, with p values of 0.57 and 0.17, respectively. 
Additionally, the post-PSM MCR study validated that a BAR 
≥10.42 was significantly linked to heightened ACM throughout 
all evaluated intervals (Table 4). The HRs for ICU, 30-, 90-, and 
365-day mortality were 1.98 (95% CI: 1.23–3.17; p = 0.005), 2.10 
(95% CI: 1.54–2.87; p  < 0.001), 1.85 (95% CI: 1.43–2.40; 
p < 0.001), and 1.82 (95% CI: 1.45–2.29; p < 0.001), respectively. 
KM survival study demonstrated significantly worse survival 
rates for BAR patients above 10.42 contrasted with those with a 
BAR below 10.42, as demonstrated by short-and long-term 
assessments (Figure 5).

Subgroup analysis

Subgroup studies were conducted to ascertain the BAR influence 
on short- and long-term ACM in AIS patients. The investigations were 
allocated based on demographic and clinical variables, encompassing 
age (<60 and ≥60 years), gender, race/ethnicity, the existence of HTN, 
DM, AKI, RF, CRRT, and malignancy tumor. The findings consistently 
indicated that a greater BAR correlated with elevated risks of short- 
and long-term ACM across the majority of investigated subgroups 
(Figure 6). The correlation between an elevated BAR and heightened 
ICU ACM lacking significance in the White (p  = 0.96) and Black 
(p = 0.89) subgroups, nor among patients without HTN (p = 0.47), 
DM (p  = 0.96), AKI (p  = 0.16), and RF (p  = 0.16). A significant 
association between elevated BAR and heightened ICU ACM was 
mostly found in the Asian (p = 0.004), HTN (p = 0.01), DM (p < 0.001), 
AKI (p = 0.04), RF (p = 0.04), and non-CRRT (p = 0.04) subgroups. 
Analyses of interactions indicated no significant impacts on short- and 
long-term ACM across the majority of subgroups. Discrepancies were 
reported in the DM subgroup during the ICU stay (Pfor interaction = 0.02), 
in the HTN and CRRT subgroups at the 90-day and 365-day intervals 
(all Pfor interaction < 0.05), and in the malignancy tumor subgroup at the 
365-day intervals (Pfor interaction = 0.04), indicating that the link between 
BAR and mortality may vary in these particular cohorts.

Non-linear link of BAR and both short- and 
long-term ACM

We implemented RCS to ascertain any non-linear connections. 
We  implemented smooth curve fitting and generalized additive 

TABLE 1 (Continued)

Variables Overall
(N = 1764)

BAR p-value

Low (<10.42)
(N = 1,395)

High (≥10.42)
(N = 369)

SOFA 1 (0–2) 1 (0–2) 2 (0–5) <0.001

SAPS-II 36 (28–45) 33 (26–41) 47 (38–59) <0.001

SIRS 3 (2–3) 2 (2–3) 3 (2–4) <0.001

OASIS 35 (29–42) 34 (28–40) 40 (33–47) <0.001

APS-III 49 (34–70) 44 (31–61) 70 (55–92) <0.001

Treatments

Parenteral nutrition, n (%) 29 (1.64) 13 (0.93) 16 (4.34) <0.001

CRRT, n (%) 100 (5.67) 43 (3.08) 57 (15.45) <0.001

Thrombolysis, n (%) 159 (9.01) 136 (9.75) 23 (6.233) 0.04

Thrombectomy, n (%) 187 (10.6) 141 (10.11) 46 (12.47) 0.19

Clinical outcomes

LOS ICU, day 4.96 (2.40–9.75) 4.79 (2.26–9.65) 5.98 (3.01–10.17) 0.002

LOS Hospital, day 13.10 (6.88–23.44) 12.25 (6.54–21.88) 17.79 (8.88–28.00) <0.001

ICU mortality, n (%) 204 (11.56) 133 (9.53) 71 (19.24) <0.001

30-day mortality, n (%) 413 (23.41) 265 (19.00) 148 (40.11) <0.001

90-day mortality, n (%) 570 (32.31) 376 (26.95) 194 (52.57) <0.001

365-day mortality, n (%) 694 (39.34) 462 (33.12) 232 (62.87) <0.001
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models to ascertain the threshold consequence of the BAR on ACM 
rates across both short- and long-term durations, with the objective 
of identifying potential inflection points. We estimated that BAR had 
a linear link with short- and long-term ACM prior to PSM (ICU: 
Pnon-linear = 0.07; 30-day: Pnon-linear < 0.001; 90-day: Pnon-linear < 0.001; 
365-day: Pnon-linear < 0.001) and subsequent to PSM (ICU: Pnon-

linear = 0.008; 30-day: Pnon-linear < 0.001; 90-day: Pnon-linear < 0.001; 
365-day: Pnon-linear < 0.001). Figure 7 presents these detailed statistical 
data highlighting the association.

Discussion

The AIS presents a substantial danger to public health and safety, 
rendering early risk stratification a considerable problem in medicine 

(1). This work represents the first identification of high BAR levels as 
an independent risk factor for both short- and long-term ACM in AIS 
patients, even after controlling for possible confounders. KM survival 
analysis reported that BAR individuals >10.42 had significantly 
elevated death rates in the short and long term compared to those with 
a BAR <10.42. Subgroup analyses corroborated these results. 
Consequently, our research presents BAR as an innovative, 
straightforward, and effective indicator for death risk assessment in 
AIS patients.

In humans, BUN is the primary end product of protein 
metabolism. Under standard circumstances, the glomeruli filtrate it, 
and the renal tubules reabsorb it. Insufficient renal perfusion or 
substantially reduced renal function leads to the accumulation of 
BUN, indicating the extent of renal damage. Increased BUN levels 
may cause immunological dysfunction by facilitating hypercatabolism 

TABLE 2 Multivariate Cox regression (MCR) study to ascertain the connection between BAR and ACM at different time intervals in different models prior 
to PSM.

Outcomes Model 1 Model 2 Model 3

HR (95% CI) P-value HR (95% CI) P-value HR (95% CI) P-value

ICU ACM

BAR (≥10.42) 1.88 (1.40–2.50) <0.001 1.78 (1.33–2.38) <0.001 1.55 (1.08–2.22) 0.02

BAR (tertiles)

  T1 Reference Reference Reference

  T2 1.11 (0.75–1.63) 0.61 1.06 (0.72–1.58) 0.76 0.99 (0.66–1.50) 0.99

  T3 1.88 (1.32–2.66) <0.001 1.77 (1.24–2.54) 0.002 1.56 (1.03–2.37) 0.04

P for trend <0.001 <0.001 0.02

30-day ACM

BAR (≥10.42) 2.38 (1.95–2.91) <0.001 2.33 (1.90–2.85) <0.001 1.87 (1.46–2.38) <0.001

BAR (tertiles)

  T1 Reference Reference Reference

  T2 1.59 (1.20–2.10) 0.001 1.40 (1.05–1.86) 0.02 1.26 (0.94–1.69) 0.12

  T3 2.88 (2.23–3.72) <0.001 2.56 (1.97–3.33) <0.001 1.96 (1.45–2.63) <0.001

P for trend <0.001 <0.001 <0.001

90-day ACM

BAR (≥10.42) 2.34 (1.97–2.79) <0.001 2.31 (1.94–2.75) <0.001 1.75 (1.42–2.15) <0.001

BAR (tertiles)

  T1 Reference Reference Reference

  T2 1.77 (1.39–2.25) <0.001 1.53 (1.20–1.96) <0.001 1.37 (1.07–1.76) 0.01

  T3 3.15 (2.52–3.93) <0.001 2.75 (2.19–3.46) <0.001 2.04 (1.58–2.63) <0.001

P for trend <0.001 <0.001 <0.001

365-day ACM

BAR (≥10.42) 2.41 (2.06–2.82) < 0.001 2.39 (2.04–2.80) <0.001 1.81 (1.50–2.19) <0.001

BAR (tertiles)

  T1 Reference Reference Reference

  T2 1.77 (1.42–2.19) <0.001 1.50 (1.20–1.86) <0.001 1.33 (1.07–1.66) 0.01

  T3 3.24 (2.65–3.96) <0.001 2.76 (2.25–3.39) <0.001 2.02 (1.61–2.55) <0.001

P for trend <0.001 <0.001 <0.001

Model 1: Unadjusted.
Model 2: Adjusted age, gender, and race/ethnicity.
Model 3: Adjusted age, gender, ethnicity, hypertension, diabetes, heart failure, thrombolysis, thrombectomy, AKI, RF, CRRT, phosphate, parenteral nutrition, creatinine, malignancy tumor, and 
SOFA.
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and stimulating neurohumoral processes, thereby increasing mortality 
risk in critically sick AIS patients (25). Conversely, mitigating BUN 
levels could indicate insufficient protein intake or malnutrition (26), 
possibly obstructing neurological repair. AIS denotes a severe 
metabolic stress state, especially when many systems are involved (27), 
leading to an increase in energy requirements. Consequently, reduced 
BUN levels may hinder AIS patients from obtaining the essential basis 
for early neurological rehabilitation. Moreover, elevated BUN levels 
indicate worsening hemodynamics (28), implying that impaired 
hemodynamics significantly contribute to unfavorable stroke 
outcomes and heightened death rates (29, 30). BUN levels are affected 
by variables like age, high-protein meals, gastrointestinal hemorrhage, 
dehydration, and catabolic state. Thus, BUN alone has little use in 
forecasting the prognosis of AIS patients.

ALB, produced in the liver, is essential for maintaining 
intravascular colloid osmotic pressure, efficient circulating blood 
volume, and redox equilibrium. It also plays a crucial function in the 
transportation of molecules and pharmaceuticals (31). Evidence 
substantiates that ALB has anti-inflammatory and antioxidant 
characteristics, providing neuroprotection via its many intravascular 
mechanisms (32, 33). ALB restores fatty acids (FFAs) lost from cellular 
membranes and enhances neuronal metabolism under pathological 
circumstances by augmenting the export of pyruvate to neurons (33). 
Moreover, its thiol groups provide significant antioxidant capabilities, 
and ALB affects the prostacyclin (PGI2) bioavailability —a vasodilator 
and platelet aggregation inhibitor crucial for nitric oxide 

(NO)-induced vasodilation. The impairment of these activities in 
individuals with hypoalbuminemia may lead to elevated in-hospital 
and long-term death rates. Reduced ALB levels signify chronic or 
severe malnutrition and inflammation, often correlating with 
unfavorable prognoses and outcomes (34). A meta-analysis indicates 
that hypoalbuminemia independently predicts long-term mortality in 
AIS individuals (35). Nonetheless, due to the effect of parameters such 
as hepatic function, catabolism, and vascular extravasation on ALB 
levels, their prognostic significance in AIS may be limited.

The BAR incorporates the clinical relevance of BUN and ALB 
in patients with AIS, encompassing hepatic and renal function, 
protein metabolism, and nutritional status. Theoretically, the BAR 
may more precisely forecast AIS outcomes compared to the 
separate assessment of BUN and albumin. While BUN and 
albumin are readily available metrics in emergency situations, 
their integration into the BAR index might provide a more 
beneficial prognostic instrument (36). Prior research has shown 
the efficacy of BAR as a mortality predictor across diverse patient 
cohorts. For instance, BAR has been linked to mortality in 
pneumonia patients and those in critical care units (10, 37, 38). 
Zhao et  al. (39) indicated that elevated BAR levels upon ICU 
admission correlated with a heightened four-year ACM risk in 
AMI patients, suggesting that BAR serves as an independent 
predictor. Dundar et al. (40) discovered that an increased BAR 
might forecast in-hospital mortality in elderly patients inside the 
emergency department. Likewise, Ye et al. (41) showed that BAR 

FIGURE 3

Kaplan–Meier (KM) survival analysis curves for (A) ICU, (B) 30-day, (C) 90-day, and (D) 365-day ACM allocated by binary and tertiles of BAR pre-PSM.
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TABLE 3 Baseline features and outcomes of subjects after PSM based on BAR binaries.

Variables Overall
(N = 704)

BAR P-value

Low (<10.42)
(N = 352)

High (≥10.42)
(N = 352)

BAR 10.45 (5.58–16.15) 5.58 (4.14–7.50) 16.15 (12.59–23.00) <0.001

Demographics

Age, years 70 (60–79) 71 (61–79) 68 (58.5–79) 0.33

Gender, men, n (%) 380 (53.98) 189 (53.69) 191 (54.26) 0.88

Ethnicity, n (%)

  Asian 373 (52.98) 190 (53.98) 183 (51.99) 0.66

  White 80 (11.36) 42 (11.93) 38 (10.80)

  Black 251 (35.65) 120 (34.09) 131 (37.22)

Comorbidities

HTN, n (%) 955 (54.14) 807 (57.85) 148 (40.11) <0.001

DM, n (%) 609 (34.52) 447 (32.04) 162 (43.90) <0.001

Hyperlipidemia, n (%) 752 (42.63) 606 (43.44) 146 (39.57) 0.18

HF, n (%) 449 (25.45) 303 (21.72) 146 (39.57) <0.001

AF, n (%) 681 (38.61) 516 (36.99) 165 (44.72) 0.007

AMI, n (%) 27 (1.53) 22 (1.58) 5 (1.36) 0.76

PVD, n (%) 46 (2.61) 31 (2.22) 15 (4.06) 0.048

COPD, n (%) 96 (5.44) 66 (4.73) 30 (8.13) 0.01

AKI, n (%) 1,251 (70.92) 919 (65.88) 332 (89.97) <0.001

RF, n (%) 1,309 (74.21) 965 (69.18) 344 (93.22) <0.001

Malignancy tumor, n (%) 324 (18.37) 241 (17.28) 83 (22.49) 0.02

Sepsis, n (%) 968 (54.88) 683 (48.96) 285 (77.24) <0.001

Liver disease, n (%) 245 (13.89) 151 (10.82) 94 (25.47) <0.001

CCI 7 (5–9) 7 (5–8) 8 (6–10) 0.02

Vital signs

MBP, mmHg 91 (79–104) 93 (80–106) 85 (75–98) 0.56

HR, times/min 84 (72–99) 82 (71–96) 90 (76–106) 0.001

Respiratory rate, beats/min 19 (16–22) 18 (16–22) 20 (16–25) <0.001

Laboratory parameters

RBC, 109/L 3.90 (3.31–4.42) 4.01 (3.52–4.48) 3.32 (2.89–3.95) 0.61

WBC, 109/L 10.7 (7.9–14.5) 10.4 (7.9–13.8) 12.7 (8.1–17.3) 0.07

PLT, 109/L 178 (124–245.5) 181 (130.5–249) 173 (118–239.5) 0.07

BUN, mg/dL 18 (13–28) 16 (12–21) 45 (35–62) <0.001

Creatinine, mg/dL 1.0 (0.7–1.3) 0.9 (0.7–1.1) 2.0 (1.3–3.1) <0.001

APTT, s 28.9 (26.1–33.9) 28.7 (26.0–32.9) 30.2 (26.5–37.7) 0.53

INR 1.2 (1.1–1.4) 1.2 (1.1–1.3) 1.3 (1.2–1.6) 0.002

Sodium, mmol/L 139 (136–142) 139 (137–142) 139 (135–143) 0.66

Potassium, mmol/L 4.1 (3.7–4.5) 4.0 (3.7–4.4) 4.4 (3.9–5.0) <0.001

Phosphate, mmol/L 3.7 (3.1–4.4) 3.4 (2.9–4.0) 4.0 (3.4–5.0) <0.001

AG, mmol/L 14 (12–17) 14 (12–16) 16 (13–19) <0.001

PT, s 13.3 (12.0–15.3) 13.0 (11.9–14.65) 14.7 (12.9–17.9) 0.002

ALB, mg/dL 3.3 (2.8–3.8) 3.5 (3.1–3.9) 2.7 (2.3–3.1) <0.001

Clinical severity scores

GCS 15 (14–15) 15 (14–15) 15 (14–15) 0.02

(Continued)
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TABLE 3 (Continued)

Variables Overall
(N = 704)

BAR P-value

Low (<10.42)
(N = 352)

High (≥10.42)
(N = 352)

SOFA 1 (0–2) 1 (0–2) 2 (0–5) 0.12

SAPS-II 36 (28–45) 33 (26–41) 47 (38–59) <0.001

SIRS 3 (2–3) 2 (2–3) 3 (2–4) 0.002

OASIS 35 (29–42) 34 (28–40) 40 (33–47) <0.001

APS-III 49 (34–70) 44 (31–61) 70 (55–92) <0.001

Treatments

Parenteral nutrition, n (%) 17 (2.41) 2 (0.57) 15 (4.26) < 0.001

CRRT, n (%) 72 (10.23) 22 (6.25) 50 (14.20) 0.001

Thrombolysis, n (%) 159 (9.01) 136 (9.75) 23 (6.23) 0.04

Thrombectomy, n (%) 187 (10.60) 141 (10.11) 46 (12.47) 0.19

Clinical outcomes

LOS ICU, day 4.96 (2.40–9.75) 4.79 (2.26–9.65) 5.98 (3.01–10.17) 0.57

LOS Hospital, day 13.10 (6.88–23.44) 12.25 (6.54–21.88) 17.79 (8.88–28) 0.17

ICU mortality, n (%) 204 (11.56) 133 (9.53) 71 (19.24) <0.001

30-day mortality, n (%) 413 (23.41) 265 (19.00) 148 (40.11) <0.001

90-day mortality, n (%) 570 (32.31) 376 (26.95) 194 (52.57) <0.001

1-year mortality, n (%) 694 (39.34) 462 (33.12) 232 (62.87) <0.001

FIGURE 4

The matching variables’ absolute standardized variations between the two cohorts.

https://doi.org/10.3389/fnut.2024.1509284
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Huang et al. 10.3389/fnut.2024.1509284

Frontiers in Nutrition 12 frontiersin.org

correlates with worse prognosis in patients following cardiac 
surgery, offering predictive insights about in-hospital mortality. 
Within the realm of AIS, a singular investigation has ascertained 
the connection between BAR and in-hospital mortality (42), 
although it did not assess the link with long-term prognosis, which 
is of equal significance. We show that serum BAR is positively 
correlated with short- and long-term ACM risk in AIS patients, 
even following controlling for other possible confounding 
variables. These data indicate that assessing BAR is beneficial for 
forecasting short- and long-term outcomes in AIS patients. 
Employing BAR as an indicator could allow clinicians to ascertain 

the clinical state of AIS patients from two separate viewpoints—
renal function and nutritional status—thereby improving 
prognostic precision.

Strengths and limitations

When analyzing our study’s results, it is essential to acknowledge 
both its strengths and limits. A significant advantage is the application 
of a nationally representative sample of U.S. AIS patients, which 
augments our finding’s generalizability within the American populace. 

TABLE 4 Multivariate Cox regression study to ascertain the connection between BAR and ACM at different time interval in different models following 
PSM.

Outcomes Model 1 Model 2 Model 3

HR (95% CI) P-value HR (95% CI) P-value HR (95% CI) P-value

ICU ACM

BAR (<10.42) Reference Reference Reference

BAR (≥10.42) 1.78 (1.20–2.63) 0.004 1.75 (1.18–2.60) 0.005 1.98 (1.23–3.17) 0.005

30-day ACM

BAR (<10.42) Reference Reference Reference

BAR (≥10.42) 1.99 (1.52–2.62) <0.001 2.01 (1.53–2.64) <0.001 2.10 (1.54–2.87) <0.001

90-day ACM

BAR (<10.42) Reference Reference Reference

BAR (≥10.42) 1.80 (1.43–2.26) <0.001 1.84 (1.47–2.31) <0.001 1.85 (1.43–2.40) <0.001

365-day ACM

BAR (<10.42) Reference Reference Reference

BAR (≥10.42) 1.75 (1.42–2.14) <0.001 1.81 (1.47–2.22) <0.001 1.82 (1.45–2.29) <0.001

Model 1: Unadjusted.
Model 2: Adjusted age, gender, and ethnicity.
Model 3: Adjusted age, gender, ethnicity, hypertension, diabetes, heart failure, thrombolysis, thrombectomy, AKI, RF, CRRT, phosphate, parenteral nutrition, creatinine, malignancy tumor, and 
SOFA.

FIGURE 5

Kaplan–Meier survival analysis curves for (A) ICU, (B) 30-day, (C) 90-day, (D) 365-day ACM allocated by binary of BAR post-PSM.
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This approach allows for rigorous analysis while accounting for various 
confounders. Additionally, employing a 1:1 PSM method strengthens 
our outcomes by effectively controlling for confounding variables.

Despite these strengths, several limitations warrant attention. 
First, the retrospective approach and dependence on a single database 
constrain our capacity to conclusively determine causation. Although 
we used multivariate adjustments and subgroup analyses to reduce 
confounding, residual confounding cannot be completely eliminated. 
Second, our findings may not be  generalizable beyond the 
U.S. population. Although the MIMIC-IV database is representative 

of the U.S. population to some extent, our conclusions may not apply 
to other countries or ethnic groups. Third, we lacked longitudinal data 
on the BAR, preventing us from investigating its dynamic alterations 
over the follow-up interval, but a future research direction. This 
constraint highlights the need for forthcoming research to assess the 
predictive importance of BAR variations throughout time. Fourth, 
potential selection bias may have affected our results. Our dependence 
on ICD codes for diagnosing and excluding patients without BUN or 
ALB data might have introduced bias, impacting the representativeness 
of our sample.

FIGURE 6

Subgroup analyses of (A) ICU, (B) 30-day, (C) 90-day, and (D) 365-day ACM.

FIGURE 7

RCSs for ACM at various time periods (A) prior to PSM and (B) following PSM.
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Recognizing these limitations is essential when evaluating the 
results of our investigation. Subsequent work should seek to 
corroborate and enhance our results, specifically by investigating the 
complex interconnections among diet, renal function, and AIS. The 
examination of nutrition-renal parameters in evaluating inflammatory 
states in AIS patients is a vital domain for further research. Moreover, 
larger and more varied prospective cohort investigations are necessary 
to examine the causal connection between BAR and mortality risk in 
AIS patients.

Conclusion

In this retrospective cohort investigation, we  reported that 
deteriorations in nutritional and renal function are significantly linked 
to elevated ACM risks in patients with AIS admitted to ICUs. Our 
outcomes reveal that the BAR is a valuable, inexpensive, and readily 
available prognostic marker for predicting ACM in this patient 
population. These results possess considerable ramifications for public 
health policy and clinical practice. A thorough understanding of these 
linkages may enable healthcare professionals and researchers to 
develop more customized medicines and policies that cater to the 
unique requirements of AIS patients, thereby improving their health 
outcomes. However, additional investigation is needed in diverse 
racial and ethnic groups before these findings can be widely applied 
in clinical practice.
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