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Pea (Pisum sativum L.) is a nutrient-dense legume whose nutritional indicators 
influence its functional qualities. Traditional methods to identify these components 
and examine the relationships between their contents could be more laborious, 
hindering the quality assessment of the varieties of peas. This study conducted 
a statistical analysis of data about the sensory and physicochemical nutritional 
attributes of peas acquired using traditional techniques. Additionally, 90 sets of 
spectral data were obtained using a portable near-infrared spectrometer, which 
were then integrated with chemical values to create a near-infrared model for 
the basic ingredient content of peas. The correlation analysis revealed significant 
findings: pea starch displayed a substantial negative correlation with moisture, crude 
fiber, and crude protein, while showing a highly significant positive correlation 
with pea seed thickness. Furthermore, pea protein exhibited a significant positive 
correlation with crude fiber and crude fat. Cluster analysis classified all pea varieties 
into three distinct groups, successfully distinguishing those with elevated protein 
content, high starch content, and low-fat content. The combined contribution of 
PC1 and PC2 in the principal component analysis (PCA) was 51.2%. Partial least 
squares regression (PLSR) and other spectral preprocessing methods improved the 
predictive model, which performed well with an external dataset, with calibration 
coefficients of 0.89–0.99 and prediction coefficients of 0.71–0.88. This method 
enables growers and processors to efficiently analyze the composition of peas 
and evaluate crop quality, thereby enhancing food industry development.
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1 Introduction

The pea (Pisum sativum L.) ranks as the fourth-largest legume crop globally, cultivated in 
more than 90 countries. In China, it is produced across 20 provinces and regions, including 
Sichuan, Yunnan, Henan, and Gansu (1–4). Renowned for their high yield and cost-
effectiveness, peas are a primary source of commercial protein, offering a plethora of nutrients 
such as protein (20–25%), starch (36.9–49%), dietary fiber (14–26%), non-starch 
polysaccharides (12–24%), and lipids (1.2–2.4%), alongside significant levels of minerals like 
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potassium, magnesium, and calcium (2.3–3.4%) (5). Pea seeds and 
pods contain essential bioactive compounds, including polyphenols, 
primarily flavonoids and phenolic acids, which are predominantly 
concentrated in the pea epidermis (6).

Conducting a thorough investigation into the relationship 
between the physicochemical and nutritional properties of pea raw 
materials is crucial for aiding food companies in the development of 
products with targeted functionalities. A significant number of 
researchers have conducted these investigations. For instance, there 
exists a negative correlation between the content of straight-chain 
starch in peas and the in vitro digestibility of pea protein. In contrast, 
the content of slowly digestible starch positively correlates with this 
digestibility (7). Lipid content similarly influences the functional 
properties of pea protein concentrates and isolates (8).

The traditional approach to identifying fundamental components 
in peas is characterized by its complexity, high cost, and protracted 
duration, which may introduce health and environmental hazards 
associated with the use of chemical reagents. Traditional approaches for 
assessing physicochemical and nutritional quality indicators in peas, 
while authoritative and comprehensive, are complex, time-consuming, 
inflexible, and heavily reliant on equipment. This may hinder the 
development of new products with specific functions (9). Although 
benchtop near-infrared (NIR) spectroscopy has been used for analyzing 
pea protein, it suffers from slow detection speeds and complicated data 
processing (10). Other scholars have used chromatographic techniques 
to detect physicochemical nutrients in peas, but chromatographic 
techniques have the disadvantages of relatively weak qualitative ability, 
complex operation, high cost, and great influence by the environment 
(11, 12). There is an urgent requirement for a fast, portable, and flexible 
instrument that provides real-time feedback, ensures sample protection, 
and promotes sustainable use. The device should facilitate simple 
operation and easy maintenance while ensuring accurate data recording 
to minimize human error. This instrument aims to detect the 
fundamental components in peas and investigate the correlation 
between pea qualities, enabling the rapid classification of pea varieties 
and the identification of those suitable for processing.

The NIR spectroscopy, which capitalizes on the molecular 
vibrations of asymmetric molecules like CH3-CH2-OH or H2O, is 
exceptionally suited for analyzing organic compounds in plant biomass 
that are NIR active, including bonds like O-H, C-H, C-O, C-O-H, N-H, 
and C=C (11–13). Not only that, but Near-infrared spectroscopy 
detection technology makes up for the shortcomings of traditional 
detection technology, such as slow detection speed, complex sample 
pre-treatment steps, which destroy the integrity of the sample, and the 
detection process may require the use of a large number of chemical 
reagents, which can cause environmental pollution and other 
shortcomings. Traditional detection technology typically focuses on 
specific analytical indicators, necessitating multiple tests to mitigate the 
risk of chance results. In contrast, near-infrared spectroscopy enables 
the simultaneous determination of multiple components within a 
sample, making it suitable for rapid quality control across various 
sectors, including food, pharmaceuticals, the chemical industry, and 
agriculture (14–16). At the same time, this study used the portable NIR 
tachymeters as an optimal solution for rapid and low-cost analysis, 
offering the development and validation of calibration models that rival 
conventional and benchtop NIR tachymeters in accuracy (17).

This study developed a rapid and straightforward method utilizing 
near-infrared spectroscopy to correlate the organoleptic, nutritional, 

and processing qualities of peas, facilitating the selection of specialized 
pea varieties. This will aid breeding specialists in developing 
specialized varieties and support processors in establishing a 
specialized ingredient base, thereby enhancing the utility and 
application of peas in the food industry.

2 Materials and methods

2.1 Sample collection and preparation

In this study, we selected naturally air-dried, high-quality pea seeds, 
including different seed shapes and seed colors, from the northern (e.g., 
Hebei, Shandong), southwestern (e.g., Sichuan), southern (e.g., 
Yunnan), and northwestern (e.g., Ningxia) provinces of China. The 
extensive geographic distribution of these provinces, coupled with their 
diverse climates, soils, and ecological environments, may result in 
variations in growth characteristics and adaptations among pea varieties 
in each region. Utilizing geographically differentiated pea seeds for 
modeling enhances the accuracy of study results. Secondly, these 
regions play a crucial role in pea cultivation. Selecting these primary 
production areas as research samples ensures the representativeness 
and applicability of the research findings, facilitating their 
implementation in broader agricultural production practices. More 
photographs of the pea samples are shown in Supplementary Figure S1. 
The experimental pea samples were later removed from impurities and 
broken grains and stored at 4°C (Qingdao Haier Biotechnology Co., 
Shandong, China). Before scanning the spectra, the test pea samples 
were placed in the same environment as the portable NIR tachymeter 
for 24 h. The aim was to align the sample environment with the 
instrument operating environment (18). Near-infrared reflectance 
spectra of peas were collected and the content of their basic components 
was determined sequentially. Correlation analyses of sensory quality, 
physicochemical, and nutritional quality of different varieties of pea 
seeds were conducted. A sketch of the workflow for this study is shown 
in Supplementary Figure S2.

2.2 Sensory quality analysis of single pea 
seeds

Pea seed size (length, width, and thickness), 100-seed weight, color, 
seed shape, and other characteristics have a significant impact on seed 
quality. The dimensions of pea seeds (length, width, and thickness) and 
the 100-seed weight are directly correlated with the nutritional reserves 
of the seeds, serving as critical indicators for evaluating their fullness 
and nutritional quality (19–21). Pea seeds exhibit greater nutritional 
value when they are of moderate size and possess an optimal 100-seed 
weight (22). At the same time, the color of high-quality pea seeds should 
be  yellow-green or gray-green, and the shape of the seeds should 
be complete, full, with no cracks, and the epidermis should be glossy, 
not sticky (23). Pea seeds exhibiting these characteristics signify 
maturity and enhanced nutritional value (22). In the quality grading 
process, seeds that are of moderate size, possess a 100-seed weight, 
exhibit standard color, and have a typical seed shape are generally 
classified as high-quality seeds due to their superior growth stability (22).

In this study, the width, length, and height of different varieties of 
pea seeds were measured using vernier calipers (Shanghai Tool Works 
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Co., Ltd., Shanghai, China), and the measurements were repeated five 
times and the mean values were recorded (24). The 100-seed weights 
of different pea varieties were weighed by an analytical balance (Osho 
International Trading, Shanghai, China), repeated three times, and 
averaged (25). The color and seed shape of different pea varieties were 
classified according to previously reported results (26).

2.3 Compositional analysis

The basic compositional content of peas was determined 
according to conventional methods: starch, crude protein, moisture, 
crude fiber, and crude fat. Each chemical analysis was repeated three 
times, and the results were averaged for data analysis. Starch was 
determined using a fully automatic starch tester (FOSS, Hillerød, 
Denmark) (27). Crude protein was determined by the Kjeldahl 
method (28) with a conversion factor of 5.46 on a 2,300 nitrogen 
analyzer (FOSS, Hillerød, Denmark). Moisture was tested by the 
drying method (29). Crude fat was determined by an automatic cable-
type total fat analyzer (FOSS, Hillerød, Denmark) (30). Crude fiber 
was determined by a semi-automatic fiber analyzer (FOSS, Hillerød, 
Denmark) (31).

2.4 Portable NIRS and spectral collection

Portable near-infrared velocimeter using a 10 W halogen lamp 
source in the spectral range 908 nm to 1,676 nm with a sampling 
interval of 6 nm, based on the Micro-NIR spectrometer 
(Manufacturer: VIAVI Solutions Inc.) (32). Detailed parameters of the 
portable NIR tachymeter are shown in Supplementary Table S1. The 
device is controlled by a tablet computer (Surface, Microsoft 
Corporation, United States) and collects spectral data using a linear 
variable filter (LVF) in transmission mode. This high-throughput, 
non-destructive testing device includes components such as a case, 
cover, display, spectrometer, and a Teflon reference whiteboard. Before 
spectral acquisition, system parameters were set up using Micro-NIR 
Pro 2.4 software (VIAVI Solutions, United States). Different chemical 
components have specific absorption peaks in the near-infrared (NIR) 
band, so choosing an instrument that can fully cover the wavelength 
range of these peaks is critical to improving detection accuracy (33). 
The wavelength range of the spectra collected by the portable near-
infrared spectrometer used in this experiment covers exactly the full 
range of absorption peaks of peas (34). In addition, an appropriate 
extension of the integration time can reduce the impact of noise on 
the spectral data, thereby improving the reliability of detection (33). 
Therefore, in this study, the spectral integration time of the 
spectrometer was set to 12.7 ms, which is higher than that of a 
common benchtop near-infrared spectrometer, to obtain all the 
spectral data of the pea sample in the range of 908–1,676 nm (35). 
During spectral acquisition, room temperature must be maintained at 
25°C, and the temperature of the spectrometer must be consistent 
when collecting spectra for each sample to prevent baseline drift and 
ensure accurate spectral information (36). Therefore, when using the 
portable NIR tachymeter, first turn on the machine and preheat it at 
room temperature for 1 h. The spectrometer temperature will reach a 
constant before measurement. Experimental pea samples were placed 
in the sample cup (50 mm high; 51 mm in diameter), and gently 

shaken to distribute the seeds uniformly, and each pea sample was 
scanned five times. The sample cup rotated at a certain angle for each 
scan, and the process was repeated three times to average the result. 
Due to sample heterogeneity and distribution heterogeneity, the 
spectra of different sample parts are different, so it is necessary to mix 
several times and scan several times to average the spectra as the 
original spectra to reduce the error.

2.5 Construction of model

The models were constructed and analyzed using the Unscrambler 
X 10.3 software (CAMO, Norway) and MATLAB R2021a software 
(MathWorks, United States).

2.5.1 Removal of outliers
The Mahalanobis distance is a kind of generalized squared distance, 

which is based on the theory of multivariate normal distribution and 
effectively takes into account the three parameters of mean, variance, 
and covariance, and it is a comprehensive indicator that can 
comprehensively describe the overall multivariate structure (32). 
Principal component analysis (PCA) is a method used in mathematics 
for dimensionality reduction, where a set of multiple variables are 
recombined into a new set of mutually unrelated composite variables 
by orthogonal transformation to reduce the number of variables, and 
the information of the original variables is represented by selecting the 
principal components (PCs) whose contribution accounts for the larger 
cumulative contribution (37). The combination of PCA with 
Mahalanobis distance, whereby principal component scores are used in 
place of the original data to calculate Mahalanobis distance, not only 
reflects all the data information but also compresses the number of 
variables participating in the calculation of Mahalanobis distance and 
ensures that there is no covariance in the M-matrix (38).

This study used PCA combined with Martensitic Distance for 
outlier rejection work on all pea spectral data before spectral 
pre-processing. MATLAB R2021a software was used for the procedure 
writing of this method.

2.5.2 Spectra pretreatment
When calculating the results using NIR spectroscopy, factors such 

as the particle size of the sample to be measured, the homogeneity of 
the internal structure of the sample, the stability of the sample itself, 
and the noise of the instrument itself during the detection of the 
sample will all have an impact on the results (39, 40). To reduce the 
influence of the intrinsic factors of the instrument and the sample 
itself on the accuracy and stability of the quantitative analysis model, 
improved the quality of acquired spectral data, it is necessary to use a 
highly selective method to pre-process the NIR spectral data first, and 
then build the corresponding quantitative analysis model on this basis.

Commonly used spectral preprocessing methods mainly include 
Smoothing, Normalization, Baseline, standard normal variable (SNV), 
Detrend, multiple scattering corrections (MSC), 1st Derivative, and 
2nd Derivative (41). The derivative algorithm is used to eliminate the 
effect of the background or drift of the measuring instrument on the 
signal. The MSC and SNV transform belong to the scattering 
correction, which is used to eliminate the effect of scattering on the 
spectrum caused by the uneven distribution of particles and 
differences in particle size. Smoothing is mainly used to remove 
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random noise from the spectral signal (33, 42, 43). In this study, two, 
three, or even four of the above seven single preprocessing methods 
were selected to combine for composite spectral preprocessing, and 
the best spectral preprocessing method was finally selected.

2.5.3 Model building and evaluation
Near-infrared spectroscopy is an indirect analysis technique, 

through the establishment of a calibration model to quantitatively or 
qualitatively analyze unknown samples, the main process includes the 
establishment of the model and the detection of unknown samples. The 
specific NIR spectroscopy techniques analyzed are shown in 
Supplementary Figure S3 (44, 45). This flowchart was drawn by Figdraw1.

Quantitative analysis aims to establish stable and reliable models for 
quantitative analysis. The modeling consists mainly of the choice of 
calibration methods and the determination of chemical values, the 
choice of stoichiometry, and the prediction of unknown samples. 
Among them, the selection of calibration methods is the core of 
chemometrics. Currently, the commonly used calibration methods are 
principal component regression (PCR), partial least squares (PLS), 
multiple linear regression (MLR), artificial neural network (ANN), and 
topology, TP, etc. (46). Partial least squares regression (PLSR) is a 
regression modeling method that addresses the interdependence 
between two sets of multi correlated variables. It is used to investigate 
the use of one set of variables (independent or predictor variables) to 
predict another set of variables (dependent or response variables) (3). 
PLSR is an appropriate methodology for modeling when the number of 
variables in the two groups is considerable and linearly correlated, and 
the number of observations is limited. Compared with traditional 
multiple linear regression, PLSR can effectively solve the problem of 
multicollinearity between variables, has the advantages of simple 
calculation, high prediction accuracy, and easy qualitative interpretation, 
and its constructed model can more accurately identify the effective 
information (3, 47). This technique has been successfully used to predict 
the functional properties of grains, such as the content of protein 
subunits, gelatinization, solubility, etc. (32). Therefore, in this study, the 
preprocessed spectral and chemical values were analyzed by PLSR.

In this experiment, the Kennard-stone algorithm (3:1) is used to 
divide the correction and validation set samples during the modeling 
process (13, 48): the Kennard-stone algorithm is one of the commonly 
used techniques for selecting the samples of the correction set and the 
samples of the validation set, which means that all the samples are 
considered to be the candidate samples of the correction set, and the first 
one to be selected is the one with the furthest Euclidean distance from a 
pair of samples is chosen first, then the two samples that are farthest as 
well as closest to the selected samples are found by calculating the 
Euclidean distance from each of the remaining samples to each of the 
known samples in the validation set, and these two samples are then 
selected into the correction set, and the process is repeated until the 
desired number of samples is reached. The remaining samples are used 
as the validation set to validate the model, and the procedure is repeated 
several times to obtain the correction sample correlation coefficient (Rc

2), 
root mean standard error of calibration (RMSEC), residual predictive 
deviation of calibration (RPDC), prediction sample correlation 
coefficient (Rp

2), root mean standard error of prediction (RMSEP), and 

1 https://www.figdraw.com/#/

residual predictive deviation of prediction (RPDP), which are the metrics 
for evaluating the performance of the model: R2, the larger residual 
predictive deviation (RPD), the smaller square error of calibration (SEC), 
the standard error of cross-validation (SECV), the square error of 
prediction (SEP) indicate better model performance (39, 46, 49).

3 Results and discussion

3.1 Results of sensory quality analysis of 
different pea varieties

The distribution of organoleptic qualities (length, width, height, 
100-seed weight, color, seed shape) of different varieties of pea seeds 
was shown by a box plot (Figures 1A,B). Pea seeds’ length varied from 
6.83–9.69 mm in length (one outlier), 5.76–7.56 mm in width (no 
outlier), 5.10–6.88 mm in height (no outlier), and 15.80–30.53 g in 
100-seed weight (one outlier) (Table 1). This is similar to the results of 
previous studies on the 100-seed weight as well as the length, width, and 
height of pea seeds (50, 51). Following an analysis of the morphology 
and odor of different varieties of pea seeds, it was found that the 
morphology was that of normal varieties without insect erosion, mold, 
impurities, or foreign matter, the shape of the seeds was mainly 
wrinkled, round, concave-rounded and flat-rounded, and the colors 
were mainly brown, green, flaxen and purple. The smell of pea seeds is 
the inherent flavor of peas, no smell. In summary, the morphology and 
smell of different varieties of pea seeds were normal, with no significant 
differences noted among the varieties. This is similar to the results of a 
previous study on seed coat color and seed shape of pea seeds (6).

A scatter plot of pea sensory quality correlations was drawn using 
pea length as the horizontal coordinate. As shown in Figure 1C, pea 
width, high, 100-seed weight, color, and seed shape were positively 
correlated with pea length. At the same time, using the correlation 
analysis method as Pearson’s correlation analysis showed that the 
length of pea seeds was significantly and positively correlated with 
width (r = 0.52) and 100-seed weight (r = 0.59). This indicates that 
there is a close relationship between the morphology of pea seeds and 
100-seed weight, and changes in the morphology of pea seeds will 
significantly affect the changes in 100-seed weight. The width and 
height of pea seeds were also significantly positively correlated 
(r = 0.48), indicating that the greater the width of pea seeds, the 
greater the height. However, the seed shape of pea seeds showed a 
significant negative correlation (r = −0.46) with height (Figure 2A).

3.2 Results of the content of basic 
components of different pea varieties

Conventional methods were used to measure the content of 
essential components in the pea samples used for modeling, and a 
distribution plot consisting of a box plot (black box in a violin) and a 
violin plot shows the distribution of the content of essential components 
in the peas (Figure 1D), with the corresponding chemical values shown 
in Table 1. The Violin diagram was mapped using ChiPlot2. Among the 

2 https://www.chiplot.online/gene_cluster.html
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pea samples the variation of starch content ranged from 43.05 to 57.55% 
(no outlier), crude protein content ranged from 19.80 to 28.45% (no 
outlier), moisture content ranged from 10.14 to 13.31% (no outlier), 
crude fiber content ranged from 5.40 to 8.75% (no outlier), and crude 
fat content ranged from 3.00 to 4.25% (one outlier). These data are 
similar to the results of previous studies on the content of basic 
components of pea seeds (52). A comparison of current methods for 
testing pea nutritional quality indicators is shown in Table 2.

3.3 Combined analysis of sensory qualities 
and basic ingredient content

3.3.1 Correlation analysis between sensory quality 
and basic ingredient content

The method of correlation analysis was taken as Pearson’s 
correlation analysis as represented in Figure 2A: the closer the graph 
is to blue, the weaker the correlation between the indicators; the 
closer the graph is to red, the stronger the correlation between the 

indicators. The results show that pea height had a highly significant 
positive correlation with pea starch (r = 0.47), but a highly significant 
negative correlation with crude fiber (r = −0.51); seed shape also 
showed a significant positive correlation with crude fiber (r = 0.39), 
which is similar to the results of previous studies (53). Additionally, 
there was a significant negative correlation between pea starch and 
moisture (r = −0.53), crude fiber (r = −0.57), crude protein 
(r = −0.36); there was a significant positive correlation between crude 
protein and crude fiber (r = 0.64), crude fat (r = 0.66). This may 
be because the higher content of crude fiber aids in the efflux of 
proteins and fats, thereby increasing the protein extraction rate. 
Crude fiber was highly significantly and positively correlated with 
crude fat (r = 0.60). In summary, the selection of low-fat, high-
protein pea varieties should consider height varieties, a trend also 
observed in sweet potato leaves (54). The heat map was mapped using 
ChiPlot (see Footnote 2).

According to the chord diagram (Figure 2B), it can be seen that 
there is a significant relationship between pea sensory quality and 
physicochemical and nutritional quality and that one indicator may 

FIGURE 1

Box plots of pea sensory qualities (length, width, height, seed shape, color and 100-seed weight; the black line in the box is the mean) (A,B); scatter 
plots illustrating the correlation between pea sensory qualities (C); and distribution of basic pea constituents (starch, crude protein, moisture, crude 
fiber, and crude fat) (D).
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constrain or contribute to changes in several indicators, so that trends 
in one indicator may indicate trends in several indicators the contents 
of basic components of different varieties of peas are correlated, with 

the largest pathways for starch and crude protein. At the same time, it 
also demonstrates that peas have a higher starch content and 
protein content.

FIGURE 2

Heat map illustrating the correlation between pea sensory quality and fundamental ingredient content (darker blue color indicates weaker correlation, 
while darker red color indicates stronger correlation) (A), chord plot (B); PCA biplot of various pea samples (n = 30, distinct colored ovals represent different 
sample clusters, the length of the arrow indicates the rate of contribution of the indicator and the angle of the arrow indicates the correlation) (C).

TABLE 1 Descriptive examination of the chemical values of sensory quality and vital component composition of pea samples.

Factor Scope of 
change

Average 
value

Coefficient of 
variation

Highest 
four points

Upper 
quartile

Lower 
quartile

Standard 
deviation

Seed shape 1.00–4.00 1.97 ± 0.19 0.53 1.00 1.50 3.00 1.03

Color 1.00–4.00 1.60 ± 0.15 0.51 1.00 1.00 2.00 0.81

100-seed weight (g) 15.80–30.53 22.47 ± 0.66 0.16 20.03 22.38 24.14 3.59

High (mm) 5.10–6.88 5.96 ± 0.09 0.08 5.51 5.97 6.33 0.49

Length (mm) 6.83–9.69 7.78 ± 0.11 0.08 7.24 7.89 8.07 0.61

Width (mm) 5.76–7.56 6.65 ± 0.08 0.07 6.35 6.59 7.06 0.44

Starch (g/100 g) 43.05–57.55 51.41 ± 0.83 0.09 45.58 51.40 54.70 4.56

Crude protein (g/100 g) 19.80–28.45 23.80 ± 0.38 0.09 22.28 23.48 25.03 2.10

Moisture (%) 10.14–13.31 11.94 ± 0.17 0.08 11.17 11.94 12.73 0.94

Crude fiber (g/100 g) 5.40–8.75 6.55 ± 0.16 0.13 5.79 6.55 6.89 0.85

Crude fat (g/100 g) 3.00–4.25 3.53 ± 0.58 0.09 3.30 3.53 3.78 0.32
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TABLE 2 Comparison of common technical methods for detecting physicochemical and nutritional quality indexes in peas.

Testing 
technology

Advantages Disadvantages Main testing methods Test content Conclusions Bibliography

Chromatography

High sensitivity; high 

separation efficiency; high 

selectivity; rapid analysis; 

wide range of applications.

Relatively weak qualitative 

ability; the complexity of the 

operation; high cost; subject to 

environmental influences.

HPLC-MS/MS Pea protein in meat products
The limits of detection (LODs) of the method were about 

5 mg/kg meat product for pea protein.
(60)

Hydroxyapatite chromatography-

HPLC
Pea protein

The quantitative analysis of seed proteins from peas and many 

other seeds.
(61)

UPLC-QTOF-MS and HPLC-

QQQ-MS/MS
Phenolics in peas

The ethanol extracts of 10 peas mainly included 12 kinds of 

phenolic substances.
(11)

Spectroscopy

Simple; fast; cost-effective; 

no sample destruction.

Expensive; samples may require 

pre-treatment.

FT-MIR Pea starch and pea carotenoids
The starch PLSR model correlated greater than 0.75, and 

carotenoids had a correlation of 0.71 for the validation sets.
(34)

NIRS

Pea protein and methionine

The accuracy of prediction of methionine was ±0.01% and of 

protein ±0.76% of the whole peas with a commercially 

available near-infrared reflectance instrument. The time for 

testing each sample for both methionine and protein was 45 s.

(62)

Physicochemical quality parameters of peas 

(color, firmness, total soluble solids, pH, total 

polyphenols, ascorbic acid and protein content)

The coefficients of determination in the external validation 

ranged from 0.50 to 0.88.
(63)

Amino acid content in peas
The validation showed that 85–98% of the amino acid variance 

in the samples could be explained using NIRS.
(64)

FT-IR and UV–Vis spectroscopy Identifying green peas

The FTIR showed excellent performance (rval >  0.93) in 

predicting adulterant levels with a standard error of prediction 

(SEP) of 0.66% for green peas. The UV–VIS predicted 

(rval > 0.93) the adulterant levels with SEP 0.58% for green pea.

(65)

High sensitivity; high 

specificity;

fast and efficient; high 

sample recovery rate.

The test process is easily 

disturbed; difficult to operate.

SYBER Green qPCR Pea allergens The Pis s1 and Pis s2 are pea globulin storage proteins. (66)

TaqMan qPCR Pea ingredients
Limiting of detection for the pea component up to 0.10% 

(mass fraction) of its content.
(67)

The immunofluorescence method Pea protein
The detection limit (LOD) of the method for pea flour was 

0.50% addition, and for pea protein it was 0.001% addition.
(68)

Hydride generation-atomic 

fluorescence spectrometry
Selenium content in peas

The detection limit was 0.10 ng/mL and the linear range was 

0–80 ng/mL.
(69)

Conventional 

methods

Standardized; 

comprehensive; 

authoritative; widely 

applicable.

Complex; time-consuming; 

equipment-dependent; 

inflexible; lagging in updates.

Kjeldahl nitrogen determination 

(KND)
Pea protein Pea protein (19.75–26.48%).

(11)Enzymatic hydrolysis Pea starch Pea starch (32.56–32.56%).

Powdered sulfuric acid Pea dietary fiber Pea dietary fiber (11.34–16.13%).

Soxhlet extraction method Pea fat Pea lipids (0.57–3.52%).

Other methods

High specificity; high 

sensitivity; wide range of 

applications.

Higher cost; samples need to 

be handled; technology 

dependent.

A multiplex legume allergen 

detection assay (LADA)
Pea allergens and pea protein

Detecting intact units of allergenic proteins or at least larger 

fragments of allergenic proteins in food ingredients.
(70)
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3.3.2 Principal component analysis and cluster 
analysis of sensory quality and essential 
component content

The PCA was used to explore the relationship between the content 
of essential components in different pea samples. Figure 2C shows the 
PCA labeled plot (PCA scoring labeled plot combined with K-means 
clustering as an unsupervised clustering method). The sum of PC1 
and PC2 was 51.2%. At the same time, As can be seen in the Figure 2C 
the pea starch was negatively correlated with moisture, crude fiber, 
crude protein, and crude fat because the angles of their arrows were 
all greater than 90°. This is similar to previous studies (36, 40–42). The 
study also found that crude protein was also negatively correlated with 
the thickness of pea seeds. The angles of crude protein, crude fat, and 
moisture are all less than 90°, indicating a positive correlation between 
these three indicators, which is consistent with previous findings (52, 
55). In summary, pea varieties with higher crude protein content tend 
to be lower in starch. In addition, the arrows pointing to PC2 have the 
longest arrow lengths for pea height and starch, indicating that pea 
height and starch contribute the most to PC2.

K-means as an unsupervised method was used to cluster the peas 
based on all components analyzed. As shown in Figure 2C, the 30 pea 
varieties were categorized into three classes. Starch, protein, and fat 
are categorized into three separate classes. The blue dots represent the 
first category, which consists of six varieties from Hebei, Ningxia, 
Yunnan, and Sichuan, respectively. Compared with other experimental 
pea varieties, it is characterized by lower fat content, which can 
be classified into three levels according to the fat content in total, ≤5% 
for the first level, 5–9% for the second level, and ≥9% for the third 
level, and therefore it is recommended to use “Cui Lu 99” to make a 
low-fat functional food (56). The yellow triangle represents the second 
category, including 16 varieties from Hebei, Yunnan, Sichuan, and 
Shandong, which are characterized by higher starch content and larger 
seed shape and can be classified into three levels according to the 
starch content, with the content ≥55% for the first level, 45–55% for 
the second level, and ≤45% for the third level. It is therefore 
recommended that “Ba Wan 1” be used for canned goods, dried fruit, 
and other products, or processed into pea flour for bread, biscuits, and 
other products (56). Gray squares represent the third category, 
consisting of eight varieties from Shandong and Ningxia, which are 
characterized by high crude protein content and can be divided into 
three levels according to protein content, with ≥25% as the first level, 

20–25% as the second level, and ≤20% as the third level. For this 
reason, it is recommended to use “Qi Zhen 76” as a pea protein 
powder or pea protein meat substitute to provide a source of protein 
for dieters or vegetarians (56). Specific pea variety screening can 
be seen in Table 3.

3.4 Analysis of near-infrared spectral data

The raw NIR spectra of the pea samples are shown in Figure 3, 
where the horizontal coordinates are the wavelengths (908–1,676 nm) 
and the vertical coordinates are the absorbance. The analysis of 
spectral data plots indicates that the near-infrared diffuse reflectance 
spectra of all pea samples exhibit similar trends, primarily 
characterized by the doubling and combining frequency information 
of C-H, O-H, and other chemical bond stretching interactions. The 
presence of numerous hydrogen-containing groups, including C-H, 
O-H, and N-H, in the raw material of peas accounts for their near-
infrared absorption properties. Specifically, the 927 nm comes from 
the C-H tertiary telescoping multiplication of methylene (57), while 
the 952 nm is mainly from the O-H secondary telescoping 
multiplication (58). The 1,125 nm and 1,181 nm come from the C-H 
secondary telescoping multiplication, respectively (59) and C-H 
secondary stretching multiples in HC=CH. The literature also reports 
that the C-H secondary stretching multiplier in CH2-CH2 produces a 
1,212 nm absorption, while 1,243 nm comes from a 3 × C-H stretching 
combinatorial frequency (57). The 1,280 nm absorption is produced 
by the multiplication frequency of O-H, while the absorption of the 
combinatorial frequency of C-H3 is produced at 1385 nm (57). The 
1,428 nm absorption is generated by the N-H primary stretching 
frequency doubling, etc. (57). The PLSR model for the raw spectra of 
the basic ingredient content of peas was established based on the full 
wavelength (908–1,676 nm), as shown in Table 4 and Figure 4, and the 
Rc

2 of the PLSR model was 0.34–0.68, the RMSEC was 0.22–2.62, the 
Rp

2 was 0.00–0.21, and the RMSEP was 0.37–6.65, which indicated that 
the raw spectra of peas had a PLSR model had poor predictive 
performance. Therefore, either a single preprocessing method or a 
composite preprocessing method is needed to analyze the raw spectral 
data. Thus, the spectrally optimal preprocessing method was selected, 
leading to a more accurate and stable PLSR prediction model for pea 
basic ingredient content.

TABLE 3 Classification and grading status of peas (n = 30).

Classification of 
varieties

The first type The second type The third type

Norm Fat content Starch content Protein content

Classification of indicators
The First 

level: ≤5%

The second 

level: 5–9%

The third 

level: ≥9%

The First 

level: ≥55%

The second 

level: 45–55%

The third 

level: ≤45%

The First 

level: ≥25%

The second 

level: 20–25%

The third 

level: ≤20%

Foods suitable for 

preparation
Low-Fat Functional Foods

Used in canned goods, dried fruit, and other 

products, or processed into pea flour for bread, 

biscuits, and other products

Pea protein powder or pea protein meat 

substitute

Variety name

“S2055,” “Tian Cui Wan Dou,” “Cui Lu 99,” 

“Yun Wan 122,” “Tang Tian Wan 895,” “Yun 

Wan 121”

“Zhong Qin 1,” “Qian Jin 1,” “Tang Wan 3,” “Ji 

Zhang Wan 5,” “Yun Wan 125,” “Ba Wan 1,” “Yun 

Wan 128,” “Ji Zhang Wan 3,” “Yun Wan 21,” “Yun 

Wan 123,” “Zhong Hua 3,” “YW90,” “YP5102,” 

“Gan Cui 2,” “Yun Wan 129,” “Zhong Wan 6”

“Zhong Wan 8,” “Tai Wan Chang Shou Ren,” 

“Qi Zhen 76,” “Zhong Wan 11,” “Chang Shou 

Dou 1,” “Zhong Wan 18,” “Zhong Wan 9,” 

“Zhong Wan 4”
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3.5 Analysis of basic components in pea

Between different pea varieties, there are certain differences 
between their physicochemical and nutritional qualities, which leads to 
certain differences between pea ingredients. The NIR is a very sensitive 
measuring instrument, and when this difference is large, then the 
detection threshold of the instrument is reached, resulting in an error 
large enough to affect the modeling results. The use of PCA combined 
with the Mahalanobis distance method to screen the outliers in the 
sample set can determine the outliers and reject the abnormal samples, 
thus improving the modeling effect of the infrared spectra of peas. As 
shown in Figure 5, the Mahalanobis distance distribution of the near-
infrared raw spectra of the pea samples is plotted with the sample 
number as the horizontal coordinate and the Mahalanobis distance as 
the vertical coordinate. When the sample exceeds half or more of the 
value when the Mahalanobis distance is 1, this pea variety is considered 
to be an outlier, and then it needs to be rejected. However, if too many 

outliers were removed, then it may lead to the accuracy of the final NIR 
prediction model, so it was finally decided to remove 10 outliers and 
use the remaining 80 sets of spectral data for the construction of the 
NIR prediction model of pea’s basic ingredient content.

Compared with conventional methods, NIR detection technology 
has the advantages of non-destructiveness, rapidity, easy online 
monitoring and process control, wide applicability, and economic 
benefits, with specific parameter comparisons as shown in Table 5 (40).

3.6 Construction of model

3.6.1 Determination of spectral pretreatment 
method

To extract information related to chemical composition from 
spectra and eliminate interfering factors, it is crucial to use appropriate 
spectral preprocessing methods to build a stable and reliable model. 

FIGURE 3

The near-infrared spectrum of the pea sample set (n = 90).

TABLE 4 Construction and validation of PLSR models for raw and optimally preprocessed spectra.

Index Raw/pretreatment method Correction set (n = 54) Verification set (n = 26)

RC
2 RMSEC RPDC RP

2 RMSEP RPDP

Starch Raw/Derivative (2nd) 0.68/0.99 2.62/0.47 1.78/3.87 0.09/0.77 6.65/0.86 0.65/1.70

Crude protein Raw/Derivative (2nd) 0.53/0.98 1.12/0.21 1.46/3.82 0.00/0.77 3.33/0.24 0.81/1.82

Moisture Raw/Derivative (2nd) 0.34/0.85 1.35/0.90 1.23/1.90 0.21/0.71 1.52/1.00 0.66/1.18

Crude fiber Raw/Derivative (1st) + Derivative (2nd) 0.38/0.93 0.71/0.25 1.27/3.70 0.01/0.72 0.88/0.59 0.93/1.19

Crude fat
Raw/Derivative (1st) + Derivative 

(2nd) + Detrend
0.39/0.89 0.22/0.09 1.29/1.93 0.03/0.88 0.37/0.25 0.81/1.92
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Therefore, several spectral preprocessing methods were investigated to 
improve the signal-to-noise effect, including single and combined 
preprocessing methods. These methods were evaluated based on 
correlation coefficients and standard errors to determine the best 
pre-processing method. The effects of different spectral pre-treatments 
on the content of essential components of peas are shown in 

Supplementary Tables S2–S6. The optimal preprocessing method for 
the crude protein model was Derivative (2nd), for the crude fiber 
model was Derivative (1st) + Derivative (2nd), and for the crude fat 
model was Derivative (1st) + Derivative (2nd) + Detrend. The best 
preprocessing method for the starch model is Derivative (2nd), and the 
best preprocessing method for the moisture model is Derivative (2nd).

FIGURE 4

Comparison of untreated and pretreated models for pea starch (A); comparison of untreated and pretreated models for pea crude protein (B); 
comparison of untreated and pretreated models for pea moisture (C); comparison of untreated and pretreated models for pea crude fiber (D); 
comparison of untreated and pretreated models for pea crude fat (E).
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3.6.2 Construction and verification of the model
To better and more intuitively evaluate the model’s generalization 

ability, this study utilized the optimal preprocessing method identified 
in section 3.6.1 to construct the model for pea basic component content. 
Specifically, RMSEC, RMSEP, Rc

2, and Rp
2 were used as the evaluation 

indexes of the model, in which the larger the values of Rp
2 and Rc

2, and 
the smaller the values of RMSEP and RMSEC, indicated the higher the 
model performance (18). The PLSR method was used to quantitatively 
analyze the data, aiming to identify the optimal regression curve and 
establish a quantitative analysis model for the basic components of peas.

To validate the accuracy of the pea basic ingredient content 
model, pea samples (n = 80) were validated using the Kennard-
stone algorithm in which all pea samples (n = 80) were evenly 
divided into the calibration set samples and validation set samples 
in a ratio of 3:1, where 54 samples were used to construct the 
calibration model and 26 samples were used as validation set 
samples to verify the calibration model (48). The results are shown 
in Table 4. The pea starch RC

2 was 0.99, RMSEC was 0.47 (Figure 4A); 
the pea crude protein RC

2 was 0.98, RMSEC was 0.21 (Figure 4B); 
the pea moisture RC

2 was 0.85, RMSEC was 0.90 (Figure 4C); the pea 

FIGURE 5

Mahalanobis distance and appropriate thresholds for the raw spectra of pea samples for starch (A), crude protein (B), moisture (C), crude fiber (D), and 
crude fat (E) (an outlier is an outlier when it exceeds half or more of the Mahalanobis distance of 1).

TABLE 5 Comparison of metrics, such as accuracy, with those documented in analogous literature.

The sample size for the 
experiment after removing 
outliers

n = 80

Chemical method

Starch: GB 5009.9–2016 (27).

Crude protein: GB 5009.5–2016 (28).

Moisture: GB/T 21305–2007 (29).

Crude fiber: GB/T 5009.10–2003 (31).

Crude fat: GB 5009.6–2016 (30).

Near-infrared analytical methods

Starch model: the validation error is 0.21 g/100 g (71); the validation error is 7.05 g/100 g (34).

Crude protein model: the validation error is 1.16 g/100 g (71); the validation error is 0.88 g/100 g (34); the validation error is 

0.43 g/100 g (72).

Moisture modeling: the validation error is 2.17 g/100 g (71).

Crude fiber model: the validation error is 0.94 g/100 g (72); the validation error is 0.13 g/100 g (72).

Crude fat model: the validation error is 0.45 g/100 g (72); the validation error is 1.12 g/100 g (73).
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crude fiber RC
2 was 0.93 and RMSEC was 0.25 (Figure 4D); the pea 

crude fat RC
2 was 0.89 and RMSEC was 0.09 (Figure 4E); It was 

verified that the starch RP
2 reached 0.77, with RMSEP was 0.86 

(Figure 4A); the crude protein RP
2 reached 0.77, with RMSEP was 

0.24 (Figure 4B); the moisture RP
2 was 0.71, with RMSEP was 1.00 

(Figure  4C); the crude fiber RP
2 was 0.72 and RMSEP was 0.59 

(Figure 4D); the crude fat RP
2 reached 0.88 and RMSEP was 0.25 

(Figure 4E).
As shown in Figure 6, the pea varieties (n = 80) used for modeling 

were classified into three categories. This demonstrates that the high-
throughput NIR technique can quickly hierarchically classify different 
pea varieties compared to traditional methods. Circle heatmaps are 
plotted using ChiPlot (see Footnote 2).

A new method using a combination of portable rapid quality 
testing and near-infrared spectroscopy has been developed for the fast 
and non-destructive detection of the basic components in peas, to 

understand the correlation between the quality of pea varieties quickly 
and thus to carry out the work of pea variety quality grading. The 
technique starts with a routine chemical analysis of the sensory quality 
and basic components of peas, followed by correlation and cluster 
analysis of the data, and finally modeling and validation using near-
infrared spectroscopy data.

Correlation analysis results showed that pea starch exhibited a 
substantial negative correlation with moisture, crude fiber, and 
crude protein while demonstrating a highly significant positive 
correlation with the thickness of the pea seed thickness; additionally, 
pea protein showed a significant positive correlation with crude 
fiber and crude fat. The combined contribution of PC1 and PC2 in 
the PCA was 51.2%. Cluster analysis showed that the different pea 
varieties used in the experiment could be  classified into three 
groups. Starch, crude protein, and fat were classified into three 
classes, and specialized processing pea varieties were selected. 

FIGURE 6

Heat map of correlation clustering depicting important component quantities in 80 pea varieties employed for modeling purposes.
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Subsequent modeling using PLSR identified optimal preprocessing 
methods for various constituents: for pea starch, the Derivative 
(2nd) method resulted in a model RC

2 was 0.99 and RMSEP was 
0.86; for crude protein, the Derivative (2nd) method yielded RC

2 was 
0.98 and RMSEP was 0.24; for moisture, the Derivative (2nd) 
method RC

2 was 0.85 and RMSEP was 1.00; for crude fiber, a 
combination of first and second derivatives provided RC

2 was 0.93 
and RMSEP was 0.59; and for crude fat, a combination of first and 
second derivatives plus detrending resulted in RC

2 was 0.89 and 
RMSEP was 0.25.

This study has successfully demonstrated the use of near-
infrared spectroscopy for the simultaneous, rapid, and 
non-destructive detection of essential ingredient content in whole 
peas. The technique significantly reduces the reliance on extensive 
laboratory equipment and lowers costs compared to traditional 
methods. It eliminates the need for sample preparation, and it takes 
only 5 s to obtain comprehensive data on the basic ingredient 
content of peas, which saves a great deal of experimental time. This 
will allow a quicker understanding of the relevance of the quality 
and grading of the different varieties of peas, which will lead to the 
selection of specialized varieties for pea processing. The high 
efficiency, multifunctionality, and broad applicability of NIR 
detection technology offer substantial advantages, facilitating the 
work of breeding experts in developing specialized varieties and 
assisting processing enterprises in establishing dedicated raw 
material bases. At the same time, near-infrared spectroscopy 
technology can not only quickly detect the basic composition 
content of peas, but also realize the rapid, non-destructive detection 
of soybeans, lentils, chickpeas, chickpeas and other leguminous 
crops, and analyze the proteins, lipids, moisture, fibers and other 
nutrients in them, to provide a scientific basis for the quality 
assessment of leguminous crops. In addition, near-infrared 
spectroscopy can be used in breeding, harvesting and sorting to 
realize the monitoring of the dynamic trend of the internal 
composition of the fruit, as well as the determination of the optimal 
harvesting period, thus improving the superiority rate of the fruit 
and market competitiveness. In the future, NIR spectroscopy 
technology is expected to be applied in more agricultural product 
testing fields, such as agricultural product quality and safety testing, 
origin traceability and crop breeding. Meanwhile, combined with 
advanced technologies such as IoT and AI, NIR spectroscopy 
technology will further expand its application scenarios and 
advantages, injecting new vitality into the development of 
modern agriculture.

Data availability statement

The datasets presented in this study can be  found in online 
repositories. The names of the repository/repositories and accession 
number(s) can be found in the article/Supplementary material.

Author contributions

JZ: Data curation, Formal analysis, Investigation, 
Methodology, Visualization, Writing – original draft. GJ: Funding 
acquisition, Project administration, Resources, Supervision, 

Writing – review & editing. BC: Supervision, Writing – review & 
editing. BY: _. FR: Supervision, Writing – review & editing. NL: 
Funding acquisition, Project administration, Resources, 
Supervision, Writing – review & editing. XZ: Supervision, Writing 
– review & editing. SH: Supervision, Writing – review & editing. 
ZM: Funding acquisition, Project administration, Resources, 
Supervision, Writing – review & editing. HL: Conceptualization, 
Funding acquisition, Project administration, Supervision, Writing 
– review & editing.

Funding

The author(s) declare that financial support was received for the 
research, authorship, and/or publication of this article. This study was 
supported by Heilongjiang Province Engineering Research Center of 
Whole Grain Nutritious Food Project of Laboratory of Advanced 
Agricultural Sciences, Heilongjiang Province (ZY04JD05–012). This 
research was funded by the Beijing High-level Talent Team 
Construction Project (19008024075).

Acknowledgments

The authors would like to express their sincere thanks to the pea 
varieties collected by research institutes throughout China.

Conflict of interest

GJ, NL, and ZM were employed by Inner Mongolia Mengniu 
Dairy (Group) Co. Ltd.

The remaining authors declare that the research was conducted in 
the absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Generative AI statement

The authors declare that no Generative AI was used in the creation 
of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the 
authors and do not necessarily represent those of their affiliated 
organizations, or those of the publisher, the editors and the 
reviewers. Any product that may be evaluated in this article, or 
claim that may be made by its manufacturer, is not guaranteed or 
endorsed by the publisher.

Supplementary material

The Supplementary material for this article can be found online 
at: https://www.frontiersin.org/articles/10.3389/fnut.2024.1505407/
full#supplementary-material

https://doi.org/10.3389/fnut.2024.1505407
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/articles/10.3389/fnut.2024.1505407/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnut.2024.1505407/full#supplementary-material


Zhu et al. 10.3389/fnut.2024.1505407

Frontiers in Nutrition 14 frontiersin.org

References
 1. Chen Y, Luo G, Guo D. Comparative trials of new fresh pea varieties (lines). Yangtze 

River Veget. (2023) 10:41–5. doi: 10.3865/j.issn.1001-3547.2023.10.014

 2. Song Y, Ou J, Zhang G, Feng Z, Bu Y, Wang Y, et al. Isolation and identification of 
the causal agent of pea stem basal rot and determination of its susceptibility to 
fungicides. Bot J. (2023) 58:132–9. doi: 10.11983/CBB22169

 3. Hao H, Gu Q, Hu X. Research progress and prospects of intelligent mineral 
identification methods based on machine learning. Eart Scie. (2021) 46:3091. doi: 
10.3799/dqkx.2020.360

 4. Tong Y, Nie J, Zang H, Yang Y, Zeng Z. Global green pea production timing changes 
and trends, 1961-2018. Crops Magazine. (2022) 3:47–54. doi: 10.16035/j.
issn.1001-7283.2022.03.007

 5. Dahl WJ, Foster LM, Tyler RT. Review of the health benefits of peas (Pisum sativum 
L.). Br J Nutr. (2012) 108:S3–S10. doi: 10.1017/S0007114512000852

 6. Wu D-T, Li W-X, Wan J-J, Hu Y-C, Gan R-Y, Zou L. A comprehensive review of pea 
(Pisum sativum L.): chemical composition, processing, health benefits, and food 
applications. Food Secur. (2023) 12:2527. doi: 10.3390/foods12132527

 7. Chung H-J, Liu Q. Physicochemical properties and in vitro digestibility of flour and 
starch from pea (Pisum sativum L.) cultivars. Int J Biol Macromol. (2012) 50:131–7. doi: 
10.1016/j.ijbiomac.2011.10.004

 8. Pedrosa MM, Varela A, Domínguez-Timón F, Tovar CA, Moreno HM, Borderías 
AJ, et al. Comparison of bioactive compounds content and techno-functional properties 
of pea and bean flours and their protein isolates. Plant Foods Hum Nutr. (2020) 
75:642–50. doi: 10.1007/s11130-020-00866-4

 9. Kan L, Nie S, Hu J, Wang S, Cui SW, Li Y, et al. Nutrients, phytochemicals and 
antioxidant activities of 26 kidney bean cultivars. Food Chem Toxicol. (2017) 108:467–77. 
doi: 10.1016/j.fct.2016.09.007

 10. Köllmann N, Schreuders FKG, Mishra P, Zhang L, Der Goot AJV. Near-infrared 
spectroscopy-based quantification of sunflower oil and pea protein isolate in dense 
mixtures for novel plant-based products. J Food Compos Anal. (2023) 121:105414. doi: 
10.1016/j.jfca.2023.105414

 11. Chen S-K, Lin H-F, Wang X, Yuan Y, Yin J-Y, Song X-X. Comprehensive analysis 
in the nutritional composition, phenolic species and in vitro antioxidant activities of 
different pea cultivars. Food Chem X. (2023) 17:100599. doi: 10.1016/j.fochx.2023.100599

 12. Amarakoon R. Study on amino acid content in selected varieties of Pisum sativum 
by ion exchange chromatography. In International Conference on Nutrition and Food 
Sciences. (2012) 39:211–214.

 13. Muthamma K, Sunil D, Shetty P. Carbon dots as emerging luminophores in 
security inks for anti-counterfeit applications - an up-to-date review. Appl Mater Today. 
(2021) 23:101050. doi: 10.1016/j.apmt.2021.101050

 14. He Y, Chen X, Li J, Hu Z, Diao Y, Yan S. Progress of adulteration detection 
techniques for lotus root powder. J Food Saf Qual Test. (2024) 15:1–9. doi: 10.19812/j.
cnki.jfsq11-5956/ts.20240613006

 15. Beć KB, Grabska J, Huck CW. Miniaturized NIR spectroscopy in food analysis and 
quality control: promises, challenges, and perspectives. Food Secur. (2022) 11:1465. doi: 
10.3390/foods11101465

 16. Cortés V, Blasco J, Aleixos N, Cubero S, Talens P. Monitoring strategies for quality 
control of agricultural products using visible and near-infrared spectroscopy: a review. 
Trends Food Sci Technol. (2019) 85:138–48. doi: 10.1016/j.tifs.2019.01.015

 17. Cui H, Gu F, Qin J, Li Z, Zhang Y, Guo Q, et al. Assessment of peanut protein 
powder quality by near-infrared spectroscopy and generalized regression neural 
network-based approach. Food Secur. (2024) 13:1722. doi: 10.3390/foods13111722

 18. Yu H, Liu H, Erasmus SW, Zhao S, Wang Q, Van Ruth SM. Rapid high-throughput 
determination of major components and amino acids in a single peanut kernel based on 
portable near-infrared spectroscopy combined with chemometrics. Ind Crop Prod. 
(2020) 158:112956. doi: 10.1016/j.indcrop.2020.112956

 19. Wafula EN. Predicting functional properties of fresh and aged dry common 
beans from near-infrared spectra. Doctoral dissertation University of 
Copenhagen (2021).

 20. Rahman A, Cho BK. Assessment of seed quality using non-destructive 
measurement techniques: a review | seed science research|Cambridge Core. Seed Sci Res. 
(2016) 26:285–305. doi: 10.1017/S0960258516000234

 21. Massantini R, Frangipane MT. Progress in almond quality and sensory assessment: 
an overview. Agriculture. (2022) 12:710. doi: 10.3390/agriculture12050710

 22. Oyewole C, Iledun PA. Influence of seed size on seedling emergence, growth and 
yield of potted groundnut (Arachis hypogea L.). Asian J Agric Horticult Res. (2020) 
6:13–21. doi: 10.9734/AJAHR/2020/v6i230068

 23. Sun H, Xu L. Culinary ingredients Chongqing University Electronic Audio and 
Video Press Co. Chongqing University Electronic Imaging Press (2019).

 24. NY/T 136-1989. The national standard for peas for feed. Available at: http://down.
foodmate.net/standard/sort/5/4641.html (Accessed September 1, 1989)

 25. SN/T 0798-1999. Import and export grain and oil, feed inspection. Available at: 
http://down.foodmate.net/standard/sort/4/136.html (Accessed May 1, 2000)

 26. Zheng Z, Feng F, Liu F, Chen Y. Main agronomic and economic traits of pea variety 
resources in China. Crop variety resources. (1988):6–9. doi: 10.19462/j.
cnki.1671-895x.1988.04.003

 27. GB 5009.9-2016 second method. Determination of starch in food. Available at: 
http://down.foodmate.net/standard/sort/3/50384.html (Accessed June 23, 2017)

 28. GB 5009.5-2016 second method. Determination of starch in food. Available at: 
http://down.foodmate.net/standard/sort/3/50381.html (Accessed June 23, 2017)

 29. GB/T 21305-2007. Determination of moisture in cereals and cereal products. 
Available at: http://down.foodmate.net/standard/yulan.php?itemid=16487 (Accessed 
February 1, 2008)

 30. GB 5009.6-2016. Determination of fat in food. Available at: http://down.foodmate.
net/standard/sort/3/50382.html (Accessed June 23, 2017)

 31. GB/T 5009.10-2003. Determination of crude fiber in plant foods. Available at: 
http://down.foodmate.net/standard/sort/3/2688.html (Accessed January 1, 2004)

 32. Zhao S, Yu H, Gao G, Chen N, Wang B, Wang Q, et al. Detection of peanut protein 
fractions and their subunit contents by near-infrared analysis. Spectrosc Spectr Anal. 
(2021) 41:912–7. doi: 10.3964/j.issn.1000-0593(2021)03-0912-06

 33. Jia B, Wang W, Ni X, Lawrence KC, Zhuang H, Yoon S-C, et al. Essential processing 
methods of hyperspectral images of agricultural and food products. Chemom Intell Lab 
Syst. (2020) 198:103936. doi: 10.1016/j.chemolab.2020.103936

 34. Karunakaran C, Vijayan P, Stobbs J, Bamrah RK, Arganosa G, Warkentin TD. High 
throughput nutritional profiling of pea seeds using Fourier transform mid-infrared 
spectroscopy. Food Chem. (2020) 309:125585. doi: 10.1016/j.foodchem.2019.125585

 35. Mayr S, Beć KB, Grabska J, Schneckenreiter E, Huck CW. Near-infrared 
spectroscopy in quality control of Piper nigrum: a comparison of performance of 
benchtop and handheld spectrometers. Talanta. (2021) 223:121809. doi: 10.1016/j.
talanta.2020.121809

 36. Zhang M, Zhao C, Shao Q, Yang Z, Zhang X, Xu X, et al. Determination of water 
content in corn Stover silage using near-infrared spectroscopy. Int J Agric Biol Eng. 
(2019) 12:143–8. doi: 10.25165/j.ijabe.20191206.4914

 37. Zhao Y, Zeng L, Li K. Infrared spectroscopy combined with chemometrics for the 
examination of erasable pen inks. Spectrosc Spectr Anal. (2021) 41:2420–6. doi: 10.3964/i.
issn.1000-0593(2021)08-2420-07

 38. Wang H, Wang P, Yu J, Zeng X, Li Z, Shu J, et al. Comparison of volatiles in chicken 
meat from different chicken breeds by sensory evaluation combined with principal 
component analysis and martens distance. Food Indust Sci Technol. (2021) 42:235–40. 
doi: 10.13386/j.issn1002-0306.2020100031

 39. Beć KB, Grabska J, Huck CW. Principles and applications of miniaturized near-
infrared (NIR) spectrometers. Chem A Eur J. (2021) 27:1514–32. doi: 10.1002/
chem.202002838

 40. Liu R, Ji J, Zhao D, Zhang J. Current research status of near-infrared spectroscopy in 
ginseng quality evaluation. Food Saf J. (2024) 7:187–92. doi: 10.16043/j.cnki.cfs.2024.07.002

 41. Zuo X, Pan X, Geng Z, Ren X, Ma W, Feng A, et al. Establishment of three near-
infrared qualitative and quantitative models for forsythia leaf tea after 19 spectral pre-
processing screening. J Food Saf Qual Test. (2022) 13:6431–40. doi: 10.19812/j.cnki.
jfsq11-5956/ts.2022.19.032

 42. Blazhko U, Shapaval V, Kovalev V, Kohler A. Comparison of augmentation and 
pre-processing for deep learning and chemometric classification of infrared spectra. 
Chemom Intell Lab Syst. (2021) 215:104367. doi: 10.1016/j.chemolab.2021.104367

 43. Wang F, Zhao C, Yang G. Development of a non-destructive method for detection 
of the juiciness of pear via VIS/NIR spectroscopy combined with Chemometric 
methods. Food Secur. (2020) 9:1778. doi: 10.3390/foods9121778

 44. Jiang Y, Meng H, Zhao Y, Wang X, Wang S, Xue E, et al. Rapid near-infrared 
spectroscopic analysis of major quality parameters of green soybeans. Spectrosc Spectr 
Anal. (2022) 42:919–23. doi: 10.3964/i.issn.1000-0593(2022)03-0919-05

 45. Su Z, Zhao Z, Sun K, Wang J, Wu Y. Rapid non-destructive identification of 14 
types of fibers based on near-infrared spectroscopy. Cotton Text Technol. (2023) 51:43–6.

 46. Li X, Lian Y, Yang M, Lan Z, Sun W. Rapid determination of peach juice content by 
near-infrared spectroscopy. J Fuzhou Univ. (2019) 47:124–8. doi: 10.7631/issn.1000-2243.18160

 47. Shi S, Tu Z, Zou X, Sun S, Yang Z, Liu Y. Application of data-driven machine 
learning to the study of electrochemical energy storage materials. Energy Storage Sci 
Technol. (2022) 11:739–59. doi: 10.19799/j.cnki.2095-4239.2022.0051

 48. Ferreira RDA, Teixeira G, Peternelli LA. Kennard-stone method outperforms the 
random sampling in the selection of calibration samples in SNPs and NIR data. Cienc 
Rural. (2022) 52:e20201072. doi: 10.1590/0103-8478cr20201072

 49. Morais CLM, Santos MCD, Lima KMG, Martin FL. Improving data splitting for 
classification applications in spectrochemical analyses employing a random-mutation 
Kennard-stone algorithm approach. Bioinformatics. (2019) 35:5257–63. doi: 10.1093/
bioinformatics/btz421

 50. Smitchger J, Weeden NF. The Ideotype for seed size: a model examining the 
relationship between seed size and actual yield in pea. Int J Agron. (2018) 2018:1–7. doi: 
10.1155/2018/9658707

https://doi.org/10.3389/fnut.2024.1505407
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://doi.org/10.3865/j.issn.1001-3547.2023.10.014
https://doi.org/10.11983/CBB22169
https://doi.org/10.3799/dqkx.2020.360
https://doi.org/10.16035/j.issn.1001-7283.2022.03.007
https://doi.org/10.16035/j.issn.1001-7283.2022.03.007
https://doi.org/10.1017/S0007114512000852
https://doi.org/10.3390/foods12132527
https://doi.org/10.1016/j.ijbiomac.2011.10.004
https://doi.org/10.1007/s11130-020-00866-4
https://doi.org/10.1016/j.fct.2016.09.007
https://doi.org/10.1016/j.jfca.2023.105414
https://doi.org/10.1016/j.fochx.2023.100599
https://doi.org/10.1016/j.apmt.2021.101050
https://doi.org/10.19812/j.cnki.jfsq11-5956/ts.20240613006
https://doi.org/10.19812/j.cnki.jfsq11-5956/ts.20240613006
https://doi.org/10.3390/foods11101465
https://doi.org/10.1016/j.tifs.2019.01.015
https://doi.org/10.3390/foods13111722
https://doi.org/10.1016/j.indcrop.2020.112956
https://doi.org/10.1017/S0960258516000234
https://doi.org/10.3390/agriculture12050710
https://doi.org/10.9734/AJAHR/2020/v6i230068
http://down.foodmate.net/standard/sort/5/4641.html
http://down.foodmate.net/standard/sort/5/4641.html
http://down.foodmate.net/standard/sort/4/136.html
https://doi.org/10.19462/j.cnki.1671-895x.1988.04.003
https://doi.org/10.19462/j.cnki.1671-895x.1988.04.003
http://down.foodmate.net/standard/sort/3/50384.html
http://down.foodmate.net/standard/sort/3/50381.html
http://down.foodmate.net/standard/yulan.php?itemid=16487
http://down.foodmate.net/standard/sort/3/50382.html
http://down.foodmate.net/standard/sort/3/50382.html
http://down.foodmate.net/standard/sort/3/2688.html
https://doi.org/10.3964/j.issn.1000-0593(2021)03-0912-06
https://doi.org/10.1016/j.chemolab.2020.103936
https://doi.org/10.1016/j.foodchem.2019.125585
https://doi.org/10.1016/j.talanta.2020.121809
https://doi.org/10.1016/j.talanta.2020.121809
https://doi.org/10.25165/j.ijabe.20191206.4914
https://doi.org/10.3964/i.issn.1000-0593(2021)08-2420-07
https://doi.org/10.3964/i.issn.1000-0593(2021)08-2420-07
https://doi.org/10.13386/j.issn1002-0306.2020100031
https://doi.org/10.1002/chem.202002838
https://doi.org/10.1002/chem.202002838
https://doi.org/10.16043/j.cnki.cfs.2024.07.002
https://doi.org/10.19812/j.cnki.jfsq11-5956/ts.2022.19.032
https://doi.org/10.19812/j.cnki.jfsq11-5956/ts.2022.19.032
https://doi.org/10.1016/j.chemolab.2021.104367
https://doi.org/10.3390/foods9121778
https://doi.org/10.3964/i.issn.1000-0593(2022)03-0919-05
https://doi.org/10.7631/issn.1000-2243.18160
https://doi.org/10.19799/j.cnki.2095-4239.2022.0051
https://doi.org/10.1590/0103-8478cr20201072
https://doi.org/10.1093/bioinformatics/btz421
https://doi.org/10.1093/bioinformatics/btz421
https://doi.org/10.1155/2018/9658707


Zhu et al. 10.3389/fnut.2024.1505407

Frontiers in Nutrition 15 frontiersin.org

 51. Yalçın İ, Özarslan C, Akbaş T. Physical properties of pea (Pisum sativum) seed. J 
Food Eng. (2007) 79:731–5. doi: 10.1016/j.jfoodeng.2006.02.039

 52. Ren Y, Setia R, Warkentin TD, Ai Y. Functionality and starch digestibility of 
wrinkled and round pea flours of two different particle sizes. Food Chem. (2021) 
336:127711. doi: 10.1016/j.foodchem.2020.127711

 53. Daba SD, Morris CF. Pea proteins: variation, composition, genetics, and functional 
properties. Cereal Chem. (2022) 99:8–20. doi: 10.1002/cche.10439

 54. Shao R, Huang T, Wan W. Quality analysis of rice bran cake in Hubei province. 
Grain Feed Indust. (2023) 4:64–7. doi: 10.7633/j.issn.1003-6202.2023.04.014

 55. Wang N, Hatcher DW, Warkentin TD, Toews R. Effect of cultivar and environment 
on physicochemical and cooking characteristics of field pea (Pisum sativum). Food 
Chem. (2010) 118:109–15. doi: 10.1016/j.foodchem.2009.04.082

 56. Yu Y, Yang M, Lu C, Bai S, Zhang Q, Zou C, et al. Comprehensive evaluation of 
chestnut quality based on principal component and cluster analysis. Food Indust Sci 
Technol:1–19. doi: 10.13386/j.issn1002-0306.2024020255

 57. Workman J, Weyer L. Practical guide and spectral atlas for interpretive near-
infrared spectroscopy. CRC. (2012) 4:326. doi: 10.1201/b11894

 58. Williams P. Near-infrared technology in the agricultural and food industries 
American Association of Cereal Chemists. Cereals & Grains Assn. (1987). 330-pp p.

 59. Fernández-Novales J, Garde-Cerdán T, Tardáguila J, Gutiérrez-Gamboa G, Pérez-
Álvarez EP, Diago MP. Assessment of amino acids and total soluble solids in intact grape 
berries using contactless Vis and NIR spectroscopy during ripening. Talanta. (2019) 
199:244–53. doi: 10.1016/j.talanta.2019.02.037

 60. Hoffmann B, Münch S, Schwägele F, Neusüß C, Jira W. A sensitive HPLC-MS/MS 
screening method for the simultaneous detection of lupine, pea, and soy proteins in 
meat products. Food Control. (2017) 71:200–9. doi: 10.1016/j.foodcont.2016.06.021

 61. Chambers SJ, Bacon JR, Lambert N. The quantitative analysis of seed proteins from 
peas using high performance liquid chromatography. Phytochem Anal. (1992) 3:49–54. 
doi: 10.1002/pca.2800030202

 62. Williams PC, Mackenzie SL, Starkey PM. Determination of methionine in peas by 
near-infrared reflectance spectroscopy (NIRS). J Agric Food Chem. (1985) 33:811–5. doi: 
10.1021/jf00065a011

 63. del García-García MC, Martín-Expósito E, Font I, del Martínez-García BC, 
Fernández JA, Valenzuela JL, et al. Determination of quality parameters in mangetout 

(Pisum sativum L. ssp. arvense) by using Vis/near-infrared reflectance spectroscopy. 
Sensors. (2022) 22:4113. doi: 10.3390/s22114113

 64. Fontaine J, Hörr J, Schirmer B. Near-infrared reflectance spectroscopy enables the 
fast and accurate prediction of the essential amino acid contents in soy, rapeseed meal, 
sunflower meal, peas, fishmeal, meat meal products, and poultry meal. J Agric Food 
Chem. (2001) 49:57–66. doi: 10.1021/jf000946s

 65. Menevseoglu A, Aykas DP, Adal E. Non-targeted approach to detect green pea and 
peanut adulteration in pistachio by using portable FT-IR, and UV-vis spectroscopy. Food 
Measure. (2021) 15:1075–82. doi: 10.1007/s11694-020-00710-y

 66. Jabeen U, Ali A, Ullah S, Mushtaque R, Naqvi SWH, Uddin J, et al. Screening of 
food allergens in cereals using real-time PCR. Revue Françaised’ Allergol. (2023) 
63:103620. doi: 10.1016/j.reval.2023.103620

 67. Bai J, Zhao N, Gu H, Wan C, Chen X, Yang A. Establishment of Taq man real-
time fluorescence PCR assay for pea components. China Port Sci Technol. 
(2023) 5:70–5.

 68. Petrášová M, Pospiech M, Tremlová B, Javůrková Z. Immunofluorescence 
detection of pea protein in meat products. Food Addit Contamin A. (2016) 33:1283–9. 
doi: 10.1080/19440049.2016.1209573

 69. Ruan X, Li X, Wang X, Yang L. Determination of selenium in peas by hydride 
generation-atomic fluorescence spectroscopy. Spectr Laborat. (2007) 24:1029–32.

 70. Lidzba N, García Arteaga V, Schiermeyer A, Havenith H, Muranyi I, Schillberg S, 
et al. Development of monoclonal antibodies against pea globulins for multiplex assays 
targeting legume proteins. J Agric Food Chem. (2021) 69:2864–74. doi: 10.1021/acs.
jafc.0c07177

 71. Zhang J, Guo Z, Ren Z, Wang S, Yue M, Zhang S, et al. Rapid determination of 
protein, starch and moisture content in wheat flour by near-infrared hyperspectral 
imaging. J Food Compos Anal. (2023) 117:105134. doi: 10.1016/j.jfca.2023.105134

 72. Shang C, Zhang Y, Li Y, Hao R, Tang F, Han W, et al. Near-infrared reflectance 
spectroscopy analytic models established for the crude protein and crude fiber of alfalfa 
property. Spectrosc Spectr Anal. (2009) 29:3250–3. doi: 10.3964/j.
issn.1000-0593(2009)12-3250-04

 73. Vines LL, Kays SE, Koehler PE. Near-infrared reflectance model for the rapid 
prediction of total fat in cereal foods. J Agric Food Chem. (2005) 53:1550–5. doi: 10.1021/
jf040391r

https://doi.org/10.3389/fnut.2024.1505407
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://doi.org/10.1016/j.jfoodeng.2006.02.039
https://doi.org/10.1016/j.foodchem.2020.127711
https://doi.org/10.1002/cche.10439
https://doi.org/10.7633/j.issn.1003-6202.2023.04.014
https://doi.org/10.1016/j.foodchem.2009.04.082
https://doi.org/10.13386/j.issn1002-0306.2024020255
https://doi.org/10.1201/b11894
https://doi.org/10.1016/j.talanta.2019.02.037
https://doi.org/10.1016/j.foodcont.2016.06.021
https://doi.org/10.1002/pca.2800030202
https://doi.org/10.1021/jf00065a011
https://doi.org/10.3390/s22114113
https://doi.org/10.1021/jf000946s
https://doi.org/10.1007/s11694-020-00710-y
https://doi.org/10.1016/j.reval.2023.103620
https://doi.org/10.1080/19440049.2016.1209573
https://doi.org/10.1021/acs.jafc.0c07177
https://doi.org/10.1021/acs.jafc.0c07177
https://doi.org/10.1016/j.jfca.2023.105134
https://doi.org/10.3964/j.issn.1000-0593(2009)12-3250-04
https://doi.org/10.3964/j.issn.1000-0593(2009)12-3250-04
https://doi.org/10.1021/jf040391r
https://doi.org/10.1021/jf040391r

	High-throughput near-infrared spectroscopy for detection of major components and quality grading of peas
	1 Introduction
	2 Materials and methods
	2.1 Sample collection and preparation
	2.2 Sensory quality analysis of single pea seeds
	2.3 Compositional analysis
	2.4 Portable NIRS and spectral collection
	2.5 Construction of model
	2.5.1 Removal of outliers
	2.5.2 Spectra pretreatment
	2.5.3 Model building and evaluation

	3 Results and discussion
	3.1 Results of sensory quality analysis of different pea varieties
	3.2 Results of the content of basic components of different pea varieties
	3.3 Combined analysis of sensory qualities and basic ingredient content
	3.3.1 Correlation analysis between sensory quality and basic ingredient content
	3.3.2 Principal component analysis and cluster analysis of sensory quality and essential component content
	3.4 Analysis of near-infrared spectral data
	3.5 Analysis of basic components in pea
	3.6 Construction of model
	3.6.1 Determination of spectral pretreatment method
	3.6.2 Construction and verification of the model


	References

