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Prospects of cold plasma in
enhancing food phenolics:
analyzing nutritional potential
and process optimization
through RSM and AI techniques
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Department of BioSciences, School of Bio Science and Technology (SBST), Vellore Institute of

Technology, Vellore, India

Consumption of plant-based food is steadily increasing and follows an

augmented trend owing to their nutritive, functional, and energy potential.

Di�erent bioactive fractions, such as phenols, flavanols, and so on, contribute

highly to the nutritive profile of food and are known to have a sensitivity toward

higher temperatures. This limits the applicability of traditional thermal treatments

for plant products, paving the way for the advancement of innovative and non-

thermal techniques such as pulsed electric field, microwave, ultrasound, cold

plasma, and high-pressure processing. Among these techniques, cold plasma

would be an operative choice in plant-based applications due to their higher

e�cacy, greenness, chemical exclusivity, and quality retention. The e�ciency

of the plasma process in ensuring the bioactive potential depends on several

factors, such as feeding gas, input voltage, exposure time, pressure, and current

flow. This review explains in detail the optimization of process parameters of

the cold plasma technique, ensuring greater extractability or retention of total

phenols and antioxidant potential. Response surface methodology (RSM) is one

of the common techniques involved in the optimization of these course factors.

It also covers the convention of artificial intelligence-based methods, such as

artificial neural networks (ANN) and genetic algorithms (GA), in evaluating the

data on process parameters. The review critically examines the strengths of each

optimization tool in determining the optimal process parameters for maximizing

phenol retention and antioxidant activity. The ascendancy of these techniques

was mentioned in the studies regarding fruit, vegetables, and their products, and

they can also be applied to other food products.
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1 Introduction

Food is a well-recognized source of nutrients and bioactive components essential for
sustaining life and promoting health. In recent years, food has emerged as a functional
component with additional physiological benefits, including the prevention or delay of
illnesses and health conditions. A new diet-health concept with a major emphasis on
positive aspects of food beyond basic nutrition is followed by different groups of people
irrespective of age, culture, and social domains (1). Current research is focused on
exploring the health-promoting, disease-preventing, and protective capabilities of major
food groups. Amid these stands, plant-based diets comprising fruits, vegetables, herbs,
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seeds, and so on have immense health potential with basic
nutritional value and incidence of other bioactive components.
The bioactive potential of these food groups has sparked interest
in their health-promoting roles, encouraging their incorporation
into regular diets. The presence of bioactive compounds in food is
considered essential, as they can influence the body holistically or
target specific tissues, contributing to overall health and wellness.
These compounds do not fit into the category of nutrients as
they are not considered elemental, but their existence offers
a constructive effect on the body in terms of their biological
activity. The major classes of bioactive components in plant foods
are phenols, flavonoids, carotenoids, plant sterols, tannins, and
other sulfur-based compounds (2). They are present in multiple
forms, such as esterified, glycosylated, hydroxylated, and so on, in
plant-derived food items and have an influential role in overall
systematic functioning (3). Fruits and vegetables are known for
their functional and antioxidant bioactive profile, which contribute
to antitumor, anti-cardiac, anti-inflammatory, anti-mutagenic,
anti-cancer, and neuroprotective potential (4).

Polyphenols are one of the important classes of secondary
metabolites, and they have a large range of structural and functional
possibilities in fruits, vegetables, and other plants. Known as natural
antioxidants, they are secondary metabolites of plants structured
with an aromatic ring consisting of 2 or more hydroxyl moieties.
They are water-soluble fractions having a molecular weight of
around 500 to 4,000 Da and have more than 8,000 types of
recognized orientations (5). They range from simple phenolics,
such as hydrobenzoic acids, to large high-molecular polymers such
as tannins. These compounds are considered to be important
determinants of agricultural produce, as they are physiological,
sensorial, morphological, and nutritional.

The phenol content of produce is dependent on environmental
factors such as sun exposure and soil type and varies according
to genetics, maturity, post-harvest operations, and other factors.
Choosing the right methods for technological processing is crucial
to maintaining the availability of high-quality agricultural produce
throughout the supply chain (6).

1.1 Phenols & their classes

Phenolic compounds include not only an array of molecules
with a basic polyphenol structure but also those with a single
phenol ring-like phenolic acids. They are divided into different
categories, conferring the number of phenol rings present and the
structural elements that bind these rings to each other (Figure 1).
The major classes of polyphenols are flavonoids, phenolic acids,
lignans, tannins, and stilbenes (4). Flavonoids, the most abundant
type of phenolic compounds, feature a basic C6-C3-C6 structure
that includes 15 carbon atoms. The characteristic construction of
flavonoids comprises two aromatic rings (A & B) combined by a 3-
carbon bridge in the form of a heterocyclic ring (C) (7). Varying
substitution arrangements of ring C result in the cataloging of
flavonoids as flavones, flavonols, flavanols, flavanones, flavanonols,
isoflavones, and anthocyanidins. Similarly, substitutions such as
oxygenation, glycosylation, acylation, alkylation, and sulfonation to
the aromatic rings (A & B) create variations within each category
of flavonoids. Owing to their high redox potential, flavonoids are

important antioxidants present widely in agricultural produce, and
they have a positive role in reducing diseases such as cancer and
heart-related issues (8). Among the different classes of flavonoids,
the structurally diverse and commonly found class of compounds
are flavonols and flavones. The structural configuration of these
classes is a basic flavonoid structure with a double bond between
the C2-C3 position and an oxygen atom at the C4 position with
an addition of a hydroxyl group at the C3 position for flavonols.
Flavanones are characterized by a saturated three-carbon chain and
a C4 position substituted by an oxygen atom, whereas isoflavones
constitute a diphenyl propane structure with the B ring positioned
at C3 (9). Although flavanones are predominantly found in high
concentrations in citrus fruit, they are also present in tomatoes,
grapefruits, licorice, berries, and aromatic plants such as mint (10).

The basic structure of anthocyanins is anthocyanidins,
which consist of aromatic ring A bonded to oxygen-substituted
heterocyclic ring C, which in turn is linked with ring B by a carbon-
carbon bond (11). They are water-soluble pigments characterized
in agriculture and produced by red, purple, and blue color profiles.
They are rich in red grapes, raspberries, cherries, strawberries,
and berries. Six common anthocyanidins present in plants are
petunidin, cyanidin, delphinidin, pelargonidin, peonidin, and
malvidin (12). Phenolic acids represent one-third of dietary phenols
and are categorized into two major subgroups: hydroxybenzoic
and hydroxycinnamic acids. The former group, which has a
characteristic C6-C1 structure, is commonly represented by gallic
acid, vanillic, p-hydroxybenzoic acid, and so on. In contrast, the
latter group with caffeic, ferulic, sinapic, and coumaric acids as
cinnamic acid derivatives are represented by three carbon side
chains (C6-C3) (13). While there is a very low distribution of
hydroxybenzoic groups in plants, excluding certain red fruits and
onions, the incidence of hydroxycinnamic acids is widespread in
fruits and vegetables, with blueberry, cherry, plum, and kiwi having
the highest content of this class (3).

Tannins are high molecular compounds that are further
grouped as hydrolyzable and condensed tannins. The most
widely recognized forms of condensed tannins are epicatechin
and catechin, which are polymerized flavonoids in nature (14).
Hydrolysable tannins are gallic acid derivatives that can be
easily degraded by biological systems. Tannic acid is an example
of this class, comprising eight to 10 molecules of gallic acid.
Tannins have described competence of substantial structural
variations and are considered potential metal chelators, biological
antioxidants, and protein precipitating agents (15). Lignans are
widely distributed compounds in the plant domain derived from
oxidative dimerization of two phenylpropane units. Based on the
positioned oxygen in their structural skeleton, oxidation levels of
side chains, and cyclization pattern, the compounds are classified
into eight different subgroups, including furan, furofuran, dibenzyl
butane, and so on. Lariciresinol, pinoresinol, matairesinol, and
secoisolariciresinol are commonly found in lignans in plants and
are distributed in fruits, vegetables, seeds, and in beverages such
as juices, coffee, and wine (16). Stilbenes appear in plants in cis
and trans configurations with major dietary sources such as grapes,
wine, juices, and peanuts. Resveratrol, one of the common forms
of stilbenes, is known for its chemopreventive, anti-inflammatory,
anti-proliferative, and antioxidant properties and includes grapes,
berries, pines, and so on as their major sources (17).
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FIGURE 1

Summary of major phenols in agricultural produce.

1.2 Importance of the cold plasma
technique

Thermal treatments are the primary traditional methods used
in the post-harvest treatment of vegetables and fruits to extend
the shelf life of the produce. Traditional techniques can reduce
the nutritional and functional potential of produce by altering
its component profile, which is a significant drawback. Research
on innovative non-thermal technologies gained popularity and
interest in this context, contemplating the demand for good,
safe, functional, and nutritionally superior food products in the
consumer markets (18). Cold plasma is a non-thermal technique
that ensures the quality of food products with maximum retention
of quality and safety. The reliability and versatility of this green
technique have promoted the application of the plasma technique
and have been reported to have a substantiated potential in food
packaging modification, decontamination, toxin removal, enzyme
inactivation, and even wastewater treatment (19). The efficiency
of the process in ensuring the bioactive and functional profile
of fruits and vegetables is dependent on several factors such as
feeding gas, input voltage, exposure time, pressure, current flow,
and so on. Optimization of process parameters and application
of different optimization techniques ensure maximum quality and
nutritive retention, along with a detailed understanding of the effect
of each parameter on the efficiency of the process. This review aims
to explore the possibilities of plasma technique in retaining the
phenolic profile of vegetables and fruits along with the optimization
of process parameters with different statistical methods such
as response surface methodology and artificial intelligence-based
techniques such as artificial neural networks (ANN) and genetic
algorithms (GA).

Mentioned as the fourth state of matter, plasma denotes quasi-
neutral ionized gas comprising ions, reactive species, photons, and
free electrons in addition to their excited or fundamental states with

a net neutral charge in the system (20). Similar to the phase change
from solid to liquid to gas, increasing the energy input beyond
a certain threshold in the gas phase leads to particle excitation,
resulting in the formation of plasma. The general classification of
a plasma system based on thermal equilibrium includes thermal
and low-temperature (non-equilibrium) plasma (21). The former
condition involves plasma generation by heating gases to higher
temperatures, thereby attaining a thermal equilibrium within the
species. The latter is further classified into quasi-equilibrium, where
the constituents are in local thermal equilibrium (100◦C−150◦C),
and non-equilibrium plasma, where they exist in thermal non-
equilibrium (<60◦C). The low-temperature, non-thermal, or non-
equilibrium plasma with a lower temperature range is termed cold
plasma (22). Any source of energy that can ionize gases can be
employed in the generation of these increased energy levels of
plasma in a system. It can be generated with the help of thermal,
electrical, optical, radioactive, or electromagnetic energy sources
applied through a gas system, resulting in the atoms’ dissociation,
excitation, and ionization. However, the widely accepted and
applied generation mode involves electric and electromagnetic
sources. In addition to the source and type, another important
point of consideration in plasma generation is the selection of
operational gas. Common gases involved in the generation process
are oxygen, nitrogen, and carbon dioxide, and there is a possibility
of encompassing noble gases such as argon and helium into the
system as operational gases (23). The selection of gas involved
in plasma generation, in turn, affects the efficiency and economic
feasibility of the process, making it one of the important parameters
of the process.

The different approaches actively involved in plasma generation
are dielectric barrier discharge (DBD), corona discharge,
microwave (MW), radio frequency plasma (RFP), atmospheric
plasma jet (APPJ), glow discharge (GDP), gliding arc discharge
(GAD), and resistive barrier discharge (RBD) plasma (24). Among
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these, DBD and plasma jet are the common techniques involved
in the treatment of food particulates. However, this commonality
is not always applicable, as the selection of a system of operation
should be dependent on the product characteristics. A dielectric
plasma system involves the generation of plasma by applying
a voltage between two known electrodes maintained at a small
distance from each other. This economically feasible and viable
option can be employed at a range of pressures, voltages, and
frequencies under different gas sources (25). The versatility in
application parameters of the DBD system presents it as a common
generation type with a wide application range. The plasma jet
system setup comprises a nozzle with two concentric electrodes
through which the carrier gas passes and is subjected to a high
voltage of 100–250V. Common carrier gases used in the system
are oxygen, carbon dioxide, helium, or a mixture of gases treated
at higher frequencies. Microwave discharge plasma system setup
encompasses a power source, standing wave radiometer, circulator,
quartz tube, and microwave-to-plasma applicator (26). Here, the
generation of plasma and excitation of gas electrons is aided by
the origination of microwaves at a general frequency of 2.45 GHz.
This plasma system functioned at a pressure range of 1–105 Pa and
does not require an electrode to generate plasma. The application
of different systems, in turn, results in the effective excitation and
ionization of gases, leading to the interactions between reactive
species and food components. These interactions act as the sole
reason for the modification of the functional, chemical, nutritional,
and microbiological profile of the food.

2 Mechanism of action on phenols

The relevance of cold plasma in food, including its interactions
and its effect on food components, remains an exploratory field
of study. A proper interpretation of the interactions of food and
plasma components has a decisive role in integrating the system
in the treatment of any food. In the case of phenolic compounds,
this mechanism of action is related to the synergistic effect of
generated plasma reactive species on the structural conformities of
phenolic compounds in food (23). There are different explanatory
approaches related to the variations in the phenolic profile owing
to the cold plasma treatment. Oxidation caused by reactive oxygen
species is a primary mechanism affecting phenol concentrations
(27). Interaction results in the alteration of structural features
of phenol fractions, resulting in the formation of new carbonyl
and carboxylic groups. Alteration in chemical structure could be
due to intense surface oxidation, which affects the antioxidative
and functional properties of the fraction. Hydroxylation reactions
that cause structural modification in benzene rings owing to the
reactive species result in a gush of related interreactions, such as
the formation of carbonyl radicals and generation of phenoxyl
radicals altering the phenolic content and functional activity of
the samples (28). For instance, superoxide radicals formed by
the dissociation of oxygen molecules in the plasma environment
exhibit oxidative degradation as well as double-bond structural
disruption in different phenolic compounds owing to the formation
of carboxylic and carbonyl compounds (29). Concurrently, the
reactive plasma species also includes a reactive nascent oxygen
species created by the dissociation of molecular oxygen by electron
effect. This powerful oxidizing atomic form reacts with the benzene

ring of phenol, forming primary diol products such as catechol
and resorcinol, which, in turn, react with atomic oxygen, forming
secondary products (30).

The presence of ozone is inevitable due to the high reactivity
of the compounds, which leads to the hydroxylation of the benzene
ring, forming hydroquinone. These dihydric phenols then undergo
ring cleavage, producing major intermediates such as oxalic acids
and glyoxalic acid, and are known to cause modifications in the
cell wall that enhance phenolic compounds (31). Furthermore,
hydroxyl radicals, which are reactive fragments generated by
plasma, initiate the hydroxylation of the benzene ring to form
hydroquinone (32). This is followed by an oxidation reaction
that leads to the production of intermediate benzoquinone and,
subsequently, the formation of fumaric, maleic, and oxalic acids
as end products. Consequently, reactive species from cold plasma
can affect cell viability by causing the rupture or disruption of
the cell membrane, thereby affecting the availability of phenolics.
Another significant approach resulting in phenol concentration
variations is the nitration process, where the accumulation of
nitrates or nitrites leads to the formation of nitrophenols, affecting
the functional profile and polymerization reactions, forming
larger polymeric structures of phenols modifying solubility and
bioavailability of these compounds (31). Approaches on the effect
of plasma on phenylalanine ammonia-lyase, an important enzyme
in synthesizing phenol concentration, influence the phenol activity
in samples. Inactivation or modification of enzymes encompassed
in the synthesis pathway of phenols can directly alter the phenolic
content of a product.

The effect of plasma on phenol and bioactive components
exhibits a varying trend involving positive and negative
inclinations. Compared to thermally treated and untreated
samples, there is a rise in phenol concentration of plasma-treated
samples with dependency on various parameters, including time,
gas flow rate, and so on, which is explained in detail in the coming
sections. There is a reported increase in phenolics by 64%−69%
owing to the plasma treatment at 4–5s in cloudy apple juice (33).
Parallel to these results, a more than 10% increase was induced by
atmospheric plasma treatment in cashew apple juice (34). There
are reported affirmations on the positive inclination of plasma
in apple juice (35), acerola juice (36), sour cherry juice (37), and
pomegranate juice (38).

Contrary to these samples, a decreasing trend in phenolic
activity was noticed in the case of prebiotic orange juice (39), white
grape juice (40), and strawberry fruit (41). These variations are
highly dependent on the product and the process characteristics,
and it is important to identify the significance of each parameter to
maximize the process efficacy. The outcome of plasma on phenolic
concentrations in various fruits and vegetables is given in Table 1.

3 Decisive parameters in cold plasma
treatment

Laterally, with the generation systems, the levels of different
parameters, such as input power, gas flow rates, treatment
periods, and sample placement, influence the positive and negative
variations observed in the food system (61). Power or voltage
applied across the electrode has an unswerving influence on the
reactive species generated. The dielectric breakdown of air is
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TABLE 1 Details on the e�ect of plasma on phenol concentrations.

Sample Treatment conditions Observations Advantages References

Tomato juice DBD plasma Voltage: 60 kV
Frequency: 50 Hz Time: 10,
15 min

Rise in phenol content by 4% at 10-min
treatment. A slight decreasing effect was
reported in the case of 15-min treatment

• Higher retention of nutrients
• Color improvement
• Minimal impact on

physicochemical properties

(42)

Apple juice Jet plasma Frequency: 25 kHz
Time: 30–120s

The increase in time was favorable, with
treatment time at 120s resulting in a 14%
increase in phenolic content

• Microbial resistance
• Non-destructive in nature and

shorter treatment times
• Retention of sensory and

nutritional properties

(35)

Banana slices DBD plasma system Voltage:
4.8–6.9 kV Frequency:
12–22 kHz Time: 35–155 s

Total phenol & flavonoid content exhibited
an increasing trend, mounting the treatment
time and voltage. The optimum treatment
condition was at 6.9 kV for 46s

• Enhanced bioactives and antioxidant
activity

• Retention of vitamin content
• Effective in enzyme inactivation

(43)

Strawberry fruit DBD plasma system Voltage:
60 kV Frequency: 50 Hz Time:
10–30 min

Treatment at 15min was found to have a
positive effect on the phenolic content

• Quality preservation
• Enhanced bioactive potential
• Synergistic effects

(41)

Cherry DBD plasma system Voltage: 40,
60, 80 kV Time: 60, 80, 100, 140 s

Higher voltages have a detrimental effect on
the overall phenolic content, with 60 kV
treatment having no significant effect.
Treatment time does not negatively affect the
phenol content

• Enhanced shelf life
• Retention of key quality attributes

such as color, firmness
• Enhanced bioactive potential

(44)

Fresh-cut pitaya
fruit

DBD plasma Voltage: 60 kV
Time: 5 min

The cumulative trend in the phenolic content
was observed at the prescribed parameter
range

• Promoted levels of antioxidants
• Better product quality

(45)

Tomato pomace DBD plasma Voltage: 120 V
Frequency: 60 kHz Time: 15 min
Working gas: air, argon, helium,
and nitrogen

Higher phenolic content was observed in the
nitrogen and helium plasma-treated samples
compared to the control, whereas air and
argon did not exhibit much difference.

• Enhanced phenolic content and
antioxidant activity

• Synergistic mechanisms
• Retention of physicochemical quality

(46)

Orange juice Jet plasma Frequency: 25 kHz
Time: 30–120s

More than 9% increase in phenolic
concentration owing to treatment time of
120s

• Microbial stability
• Minimal processing and reduced

treatment times
• Effective retention of nutritional and

sensorial parameters

(35)

Chokeberry juice Jet plasma Power: 4 W
Frequency: 25 kHz Time: 3,
5 min

No substantial change was noted in the
treatment

• Polyphenol stability
• Reduction in aerobic bacteria and

yeast counts

(47)

Fresh cut apples DBD plasma Frequency:
12.7 kHz Time: 15–120 min

No difference in phenolic content after
30min of treatment. A decrease in phenolic
content by 9%−33% was observed after the
30- and 120-min treatment period.

• Reduced enzyme activity and
browning reactions

• Increased shelf life

(48)

Apple juice DBD plasma Power: 30–50 W
Time: 0–40 s

Higher time periods and power had a
detrimental effect on phenolic content value.
Lower voltage values at 30 and 40W did not
have a substantial effect

• Faster treatment
• Faster inactivation of microbial

populations
• Color retention
• Enhanced phenol concentration

(49)

Blueberry DBD plasma system Voltage:
12 kV Frequency: 5 kHz Time:
0–90 s

Increase in phenol content with an increase
in treatment time

• Faster treatment
• Reduction in decay rate
• Retention of firmness value

(50)

Siriguela juice Glow discharge plasma Time:
5–15 min Nitrogen flow rate:
10–30 mL/min

A gas flow rate of 30 mL/min showed a
reduction in phenolic content by 30%. A 58%
increase in phenolic content was exhibited at
a 15min and 20 mL/min gas flow rate.

• Color stability
• Enhanced microbial stability
• Enhanced bioactive components

(51)

Orange juice DBD plasma system Voltage:
230 V Frequency: 50 Hz Time:
15–60 s

Phenolic content was affected only after 60s
of treatment. Till 45s of treatment, the total
phenolic content of the samples was retained

• Retention of physicochemical and
sensorial factors of the sample

• Smaller treatment times
• Enhanced oligosaccharide content

(39)

Pomegranate juice Plasma jet Frequency: 25 kHz
Time: 3, 5, 7 min Gas flow rate:
0.75, 1, 1.25 dm3min−1

A moderate treatment time of 5min resulted
in an increase of phenolic content by 33%.
There was a small decrease observed with
augmented flow rate

• Fast, accurate, and non-invasive
treatment

• Better stability of the sample

(38)

(Continued)
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TABLE 1 (Continued)

Sample Treatment conditions Observations Advantages References

Carrot juice DBD plasma system Voltage:
60–80 kV Frequency: 50 Hz
Time: 3, 4 min

No significant change between the different
evaluation parameters. Maximum retention
of phenolics was found with 70 kV treatment
for 4min

• A superior and viable alternative to
thermal treatment

• Maximum inactivation of enzymes
and microbes

• Enhanced stability of the juice

(52)

Okra pods DBD plasma system Power:
750 W Frequency: 20 kHz Time:
5–30s

With an increase in time, there is a noted
difference in total phenol content of 5%, 13%,
and 20%.

• Increase in chlorophyll beta content
• Faster treatment
• Better flavonoid retention

(53)

Tomato juice DBD plasma system Voltage:
220 V Frequency: 10 kHz Time:
0–5 min

Slight reduction in total phenol content by an
increase in time of more than 15%

• Faster treatment times
• Effective in fungicide degradation
• Better quality product

(54)

Carrot juice DBD plasma system Voltage: 8,
10, 12 kV Frequency: 18 kHz
Time: 0–5 min

Total phenolics of the sample did not show
much difference at 8 kV treatment, followed
by a decrease at 10 kV and a further increase
in total phenolic content

• Superior to traditional heat treatment
• Extended shelf life
• Better quality retention

(55)

Mango Gliding arc plasma Power: 600 W
Gas flow rate: 2 to 8 L/min Time:
5, 10 min

An increase in treatment time had a negative
impact on total phenolics. The increase in gas
flow rate resulted in an initial phenolic
content increase of 5 L/min, followed by a
reduction in parameters.

• Reduction in pesticide residues
• Increase in carotenoid content

(56)

Avocado pulp DBD plasma system Time:
10–30 min Gas flow rate: 10 to
30 mL/min

An increase in treatment time and lower gas
flow rates positively influence the phenolic
content of the sample. Treatment at 10
mL/min for 30min was reported to have an
increase of 18% in the phenol content of the
sample.

• Increased carotenoid levels
• Retention of quality attributes

(57)

Persian lime fruit
juice

Gliding arc plasma Power: 300 W
Flow rate: 10 mL Frequency:
50 Hz Time: 30–120s

Rising trend in the total phenolic content till
the 60s of treatment, followed by fluctuations
with an increase in time. The higher phenolic
content was observed in the treatment at 60s.

• Enhanced post-harvest storage life
• Retention of juice yield and other

sensorial attributes
• Better microbial stability

(58)

Yam slices Glow discharge plasma Power:
500 W Time: 90–180s

CP treatment showed retention in the phenol
content of the sample with the highest
phenolic content at the 90s of treatment.

• Reduction in peroxidase activity
• Enhanced antioxidant activity

(59)

Tomato juice DBD plasma system Voltage: 40,
45 V Time: 3, 4, 5 min

Significant reductions in the phenolic content
of the samples were observed with a rise in
voltage and treatment time. Higher values
were reported at 40V for 3min of the
treatments, followed by 45V for 3min.

• Reduction in fungicide levels
• Prolonged shelf life
• Microbial stability

(60)

known to be achieved by the application of electric field power
at 30 kV/cm (31). The power or voltage should be maintained
in a plasma system so that it is sufficient for the generation of
plasma, but it should not have a detrimental effect on the quality
properties of food. The effective parameter range depends on the
product characteristics, and it is known to have positive inclinations
at a lower range of voltage applied. An increase and retention
in the phenol concentration was reported in the case of cherry
samples treated by cold plasma at a voltage of 40–60 kV (44).
Elevated voltage levels resulted in a detrimental effect on the
total phenol concentration of the sample, which emphasizes the
viability of moderate treatment conditions. A similar trend was
observed in the case of apple juice, which underwent jet plasma
treatment, conveying an elevated power-dependent decrease in
phenol concentrations (35). Polyphenol content increased from
30.57 to 43 mg/100 g of fresh weight in banana slices with an
increasing voltage from 4.8 to 6.9 kV. The antioxidant activity and
total flavonoid content also followed a similar increasing trend
with a change in voltage (43). Plasma species and their reactivity

play a vital role in the interactions that happen post-treatment
in food products. Gas flow rates directly impact the reactivity of
these generated plasma species, and a reported increase is shown
in this with an increase in the discussed parameter. As in the
case of power applied, moderate conditions of gas flow rates are
favorable, with higher or elevated rates tending to shorten the
residence time of active species and thereby reduce the system
efficacy. On the contrary, very low flow rates may not be adequate
for initiating the interaction of plasma species with a short half-
life. In this case, higher flow rates will increase the likelihood of
interactions in the plasma environment (5). Retention of phenolics
was safeguarded in acerola juice samples when the flow rate was
maintained at 10 mL/min, and a further increase in flow rate (up to
20 mL/min) induced a decreasing trend in phenolic concentration
(36). Siriguela juice showed a varied result of positive correlation
with a gas flow rate of up to 20mL/min followed by a reduction
in the phenol concentration of 30% with a surge in the flow rate
to 30 mL/min (51). Ten mL/min was considered to be ideal in
plasma treatment of avocado pulp samples, with an increase in
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phenolic content by 5%−18%. Lower gas flow rate values were
found to safeguard a milder effect on the degradation reactions,
upholding the level of phenolic content in the sample. Higher
flow rates in the range of 20–30 mL/min were not favorable
in the retention of phenolics in the sample, and there was a
substantial decrease reported when the gas flow rate was increased
to 30 mL/min (57). Observations exhibited highlight the fact that
an ultimate elucidation on the feasible parameter range is not
conceivable, as the inclinations vary according to the product and
process characteristics.

Another important parameter under consideration is plasma
generation frequency, as it is directly associated with the excitation
behavior of ions from the plasma system. A maximum phenolic
activity of 720mg gallic acid equivalent/g was reported in apple
cubes treated with a dielectric plasma system at a frequency of
60 0Hz (62). A higher excitation frequency (900Hz) was reported
to have a detrimental effect on the phenolic profile of the treated
sample. Differing from the stated results, plasma-treated samples
showed higher phenolic content at lower and higher (200 and
960Hz) frequency ranges. An increase in frequency levels of
plasma treatment has substantially affected the phenol content and
antioxidant activity of camu-camu juices (63). The decrease in
phenol concentration was observed at moderate frequency levels of
420–628Hz in treated camu-camu juice. A similar trend is observed
in the case of the antioxidant activity of the samples, as the phenolic
content has a contributory effect on the mentioned parameter.
Variations in results can be viewed regarding the difference in the
synergistic profile of parameters such as power and frequency or
time and frequency of the plasma system and the generated plasma
species. Even the characteristics of the treated sample will act as a
combinatorial factor in the efficacy of the plasma system. Feed gas is
a significant parameter that alters the nature of the plasma reactive
species and the food interactions employed in the system. For
example, the change in oxygen concentration significantly affected
phenolic content during the CP jet treatment of blueberry juice
(64). The stable nature of argon gas does not affect the chemical
composition of the food product, retaining the phenolic content
and antioxidant capacity. A rise in O2 concentration had directed
a positive change in phenolics with maximum concentration at
a higher percentage of O2 in the system. The combination of
inert gas and oxygen resulted in decreased oxidative degradation
of functional compounds, maintaining their concentration and
antioxidant properties. Higher phenolic content was observed in
the nitrogen and helium plasma-treated samples compared to the
control, while air plasma treatment did not differ much (46).
Treatment time is one common and conducive parameter that
ensures the effectiveness of any treatment in food particulates.
In the case of plasma treatment, the time designed for treatment
will endorse the extent of the interactive nature of the reactive
plasma species. Reactive plasma species should have sufficient
time to interact with food components, positively influencing
the functional nature or engrossing in degradative inter-reactions
that closely affect the food characteristics at elevated times. The
prolonged processing time of CP treatment has displayed higher
phenolic content in blueberry juice (60), and this was in accordance
with studies onmandarin peel (65) and cashew apple juice (35) with
maximum retention of phenolic content.

Meanwhile, reported results showed a decrease in phenolic
content from 2.52 to 1.93 g/L in orange juice, owing to plasma
exposure for more than 60s (39). Higher treatment time also
showed a negative impact on the phenolic content of white
grape juice (40), acerola juice (36), and sour cherry marasca
juice (37). These contradictory findings emphasize the importance
of a detailed understanding of the product and active species
interaction to effectively comprehend the plasma process. Along
with the product-reactive species interactions, it is important to
understand how the plasma-treated samples behave during the
shelf-life period. The phenolic content and antioxidant activity of
the plasma-treated samples followed an increasing trend during
the initial storage period, followed by a decreasing inclination
compared to the control sample. However, the superiority of the
plasma-treated samples in terms of phenolic content was sustained
in whole blueberry samples for a period of 40 days (50). Similar
tendencies over the storage periods were reported in the case of
potato tubers treated with a plasma jet reactor for 0–40s time. The
total phenolics of the samples decreased with longer storage hours
after displaying an increasing trend during the initial days. After
8 days of storage, comparative analysis showed that the phenolic
content of the potato slices treated for 20 were 18% higher than
the control samples (66). The treatment at 20 and 30 maintained a
phenol content value superior to the control samples throughout 16
days of storage, whereas treatment at 40s was found to be inferior.
Time dependence on the efficiency of the process has already been
discussed, and there is a visible influence of the parameter variation
even in keeping the quality of the product. More investigations are
necessary to understand the parameter fluctuation range affecting
the process and the product.

In addition, external factors such as relative humidity, sample
matrix, and pH have an effect on the properties of reactive
species and the interactions happening in the system (67). When
considering the case of sample properties, starting from the state of
the food product, there will be changes in the interaction. Plasma
species interactions with a solid matrix will differ entirely from
a liquid matrix, with higher area or contact points. Within the
solid matrix, there will be differences according to the surface
microstructure & porosity, component profile, and even the
moisture content (68). This difference exists in regard to the relative
humidity and pH of the treatment environment, as the type and
effectiveness of the reactive species are, in turn, added to the
variations in these parameters. Supplementary to the discussed
aspects, the source type, material of construction, and packaging
variations, i.e., whether the process involves an open treatment or
in-package treatment of plasma, influence the effectiveness of the
interactions, thereby influencing the process variables.

4 Process optimization & modeling

Statistical methods can evaluate the extent of influence
of intrinsic parameters involved in the process dependency
representations are performed with the help of models.
This study proposes the right experimental model by
following different screening levels, aligning, and optimizing
data values.
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4.1 Response surface methodology

RSM is a set of statistical and mathematical models ascertained
on the fit of the polynomial model to data, which should exhibit
the conduct of the whole data set for making statistical predictions.
This approach effectively evaluates, optimizes, conceives, and
refines the processes where a response(s) is controlled by the
variation of several other variables (69). In the evaluation
process, the value of the response is envisaged based on the
factors considered, and the intricate interplay between the
presence of several independent variables is comprehended.
The following result encompasses a mathematical model having
an ideal combination of factors to deliver optimized results.
Selecting an appropriate experimental design is crucial for RSM
analysis, as the design of the experiment determines the points
at which the response should be assessed. The most used
experimental design models in the food industry are central
composite design (CCD), central composite design (CCRD), Box-
Behnken design (BBD), multilevel factorial design, and so on.
The application of RSM techniques in food research follows a
longer trail with applications around food drying, extraction,
encapsulation, enzymatic hydrolysis, blanching, and certain food
formulations (70).

4.1.1 Central composite design
CCD is an effective and most commonly applied form of design

that provides equitable evidence for investigating the lack of fit of
data without including larger experimental runs. Applied design
has the competency to predict both linear and quadratic models
with high quality, and they can also be employed to study factors
at three or four levels. In the case of cold plasma treatment,
CCD is believed to be the most common design form employed
in optimizing the parameters related to the quality of the final
product (71). A central composite design with 16 experimental
trials, three independent variables including gas flow, sample
volume, treatment time, and one output parameter was used to
evaluate the efficacy of gas phase plasma treatment in sour cherry
Marasca juice (35). Based on the analysis, themajor factorial change
was induced by variation in the treatment time of the plasma
technique, while the other two factors remain minor contributory.
Optimal treatment conditions for maximum phenolic retention
were 3min, 3mL, and 0.75 L/min of treatment time, sample
volume, and gas flow. Ideal values of plasma parameters in
retaining the phenolic content of ginger samples were determined
by the interaction between dependent and independent variables
in CCD design (72). The independent factors involved in the
study are power, time, pressure, and rotation, and each of them
is assigned three coded levels with a total of 37 trials in the
system. A linear effect of each parameter was visible in the
retention of TPC in the plasma-treated samples. With increased
treatment power and time, there is a negative inclination in
TPC values, ranging from 35mg to 14 GAE/g. The rotation of
samples was found to be effective in retaining the phenolic content,
having an observable difference from the non-rotated sample.
The factors involved in the study have distinct and combined
effects on the final phenol content of the sample. The optimized
treatment conditions after 1min at a power level of 50W and

pressure of 0.65 mbar retained higher concentrations of phenols in
the sample.

Central composite face-centered design (FCCD) is one of
the different designs within CCD that evaluate and optimize the
parameters in cold plasma treatment of blended beverages (73).
FCCD with two independent parameters, including treatment time
and voltage, are involved in the evaluation process. The optimized
treatment conditions recognized through RSM analysis reflected a
delicate steadiness between the analyzed parameters. Both voltage
and time had an influential role in the antioxidant activity of the
sample, exhibiting a plummeting trend with an increase in the
combined parameter values. Plasma treatment at a voltage of 18 kV
for 1.75min was optimized to balance the antioxidant profile and
microbial safety. FCCD design with six center points, four cube
points, and four axial points was used to assess the effect of DBD
cold plasma on the phenol content and antioxidant activity of green
tea leaves (74).

Three levels of treatment time and power were taken as
independent variables to understand the effect these variables have
on the final output. The influence of power and time on the
TPC values of the samples was significant, but the independent
effect of time on the phenolic profile was found to be marginal.
A predominant effect on the phenolic profile emanates from
the variation of power in the treatment and its combination
with treatment time. The optimized treatment parameters were
obtained as a power of 15W for a treatment time of 15min for
achieving an increase in phenol content by 41% and antioxidant
activity by 41.04%. Analogous to plasma treatments, CCD is
also employed in assessing the effect of different independent
parameters such as time, temperature, and solvent-to-solid ratio on
three responses during the extraction of phenols from potato peels
(75). Experimental design with 20 runs, eight factorial points, and
six axial and central points each provided an optimum parameter
value of 30min of treatment time at a temperature of 75◦C and 60
mLg−1 solvent-to-solid ratio.

4.1.2 Central composite rotary design
Central composite rotary design is considered an alternative

to the factorial design and can quantify the relationship between
controllable inputs and resultant responses. The key advantage of
the process design over other models is its capacity to optimize
multiple operational variables with a small experimental data
set. These possibilities assisted in the application of this design
format when the values of certain investigations were altered by
experimental error (76). CCRD has been found to be efficient in
predicting and formulating the interactions of input parameters
with the possible responses of cold plasma treatment (77). CCRD,
with five levels and two independent factors, including time and
voltage, is studied against six other parameters, including phenolic
content and antioxidant activity. Linear and square regression
coefficients of two independent variables are found to impact the
particular responses with optimized parameters at a range of 35
kV voltage for a treatment time of 510 seconds. The phenolic
content value of the treated sample showed an initial increase up
to a certain point, followed by a decreasing trend due to the rise
in voltage and time. The linear coefficients of both voltage and
time are positively correlated with phenolic content, whereas there
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is a negative correlation of square coefficients of parameters. In
the CCRD design of the experimental evaluation of cold plasma
parameters in kiwifruit juice, the juice depth was utilized as an
additional independent parameter (78). A set of 20 experiential
runs with six output parameters was involved in the experiential
pattern, and there was a linear dependency of TPC over-voltage
and time. Voltage and depth show a positive dependency on the
final phenolic content, and negative dependency was observed on
treatment time. There is a positive correlation between the phenolic
content of the sample and the voltage and time values up to a
certain point. Beyond this point, the phenolic content decreases. In
operations such as cold plasma, where each independent parameter
can insinuate a certain degree of variation in totality, it is always
preferred to choose these methods or designs where multivariate
analysis is feasible on a larger scale.

4.1.3 Box-Behnken design
BBD was first designed by Box and Behnken with the ability

to go with fewer experimental runs and has a definite set of
factorial combinations from the 3 k factorial design. This three-
level design has an economic ascendancy over other models,
as the employed experimental runs can be a minimum (76).
The Box–Behnken experimental design effectively predicted the
independent parameters’ possible interactive effects during the
cold plasma treatment of kiwi turbid juice (79). Here, voltage
and treatment time have an added authority over the phenolic
responses of the product more than the third factor. The phenol
content of the samples reported a decreasing trend with increasing
treatment voltage and time. The optimum experimental conditions
were reported to be at a treatment voltage of 12 kV and a
volume of 18ml for a treatment period of 1min. Parallel to
these findings, the optimization efficacy of the BBD design model
in ultrasound-assisted extraction from cherry fruit was reported.
With 29 experimental runs, four independent parameters, and
two dependent parameters, the experimental data were placed in
a second-order polynomial equation to understand the fit (80).
Independent variables showed a significant quadratic effect in
the phenolic content of the plasma-treated samples, whereas the
effect of linear variables was insignificant. The optimal conditions
with maximized response variables were found to be a 26 mLg−1

solvent-solid ratio, a solvent concentration of 58%, and 28%
amplitude for a treatment time of 31min. Even though economic
feasibility is associated with the process, it comes under the
category of the least explored design aspect regarding cold plasma
treatment and needs more experimental data to conclude the
degree of efficacy.

4.2 Model fitting

The application of different model systems is common in the
scientific research field, and it is also invariable in the case of the
food research segment. The feasibility and effectiveness of each
model in a system are deeply correlated with the parameters and
processes involved (Table 2). In the case of cold plasma treatment
of agricultural produce, regression models are commonly involved

in checking the feasibility of predicted responses. The validation
and selection of the model are based on their fit and alignment
with the experimentally obtained results. Themodel’s fit is validated
by ensuring a significant p-value of <0.05, no significant lack
of fit, a high R2 value, and a difference of <0.2 between the
predicted and experimental values (69). This predictive evaluation
involves the mathematical representation of response surfaces as
regression equations. Depending on the correlation between the
response surface and the input variables, the equations can be
first or second order in description (71). Response surface plots of
3min cold plasma treatment of sour cherry juice followed a 2nd

order polynomial equation, and there are linear, quadratic, and
interaction coefficients predicting the desired final response value
(37). All four variables exhibited a quadratic effect on the phenol
concentration of the sour cherry juice and were reported to have
significant interaction between the variables. The experimental
values obtained after evaluation were found to be 98% of the
predicted phenolic responses, emphasizing the model’s success
in envisaging the interactive correlations. From the discussed
instances, we have gained an understanding that time has a
significant impact on the efficiency of cold plasma. Therefore,
optimizing the process study with a broader range of time values
can enhance the model’s efficacy. Similar is the case with the
regression equation based on plasma treatment in tender coconut
water (81). The parameter range is so limited that the interactive
effects of the independent factors are difficult to recognize. The
proposed model of this study was effective as there were adequate
data points within the proposed smaller range of study. A good
fit concerning the experimental and predicted data is denoted
by a higher R2 value and a p-value of lack of fit higher than
0.05. A higher value of R2 can be considered the strength of the
quadratic representative form of cold plasma treatment of sour
cherry juice. RSM analysis of cold plasma treatment data showed an
R2 value higher than 0.95 and a p-value below 0.05, emphasizing the
uniformity of predicted and experimental values (80). The model’s
fitness in defining the data set can be attributed to its characteristic
aspect in judging the response structure over a range of input
variables. The 2nd order polynomial regression equation expressing
the relationship between the input variable and phenolic response
is given as:

Y = −14.15 + 3.13 x1 + 0.01x2 + 5.12× 10−6 x1x2

− 0.043 x1
2
− 2.3× 10−5x2

2 (1)

These coefficients, x1 (voltage) and x2 (time), represent the two
independent variables, and y is the response, in this case, phenol
content (77). Cross-product terms in the equation are responsible
for model interactions between the explanatory variables. The
single variable accounts for the linear effect, and the squared
terms account for the quadratic effects and are responsible for
response curvature. The positive values in the regression equation
represent a synergistic effect, whereas a negative term denotes
an antagonistic effect on the final parameter. Linear and squared
regression coefficients of voltage and time display a considerable
effect on the response of the samples, with marginal influence from
the interaction coefficients. Linear coefficients exhibit a positive
correlation in contrast with negatively correlated interaction
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TABLE 2 Details on RSM analysis of cold plasma treatment variables.

Sample Experimental
variables

Optimized
conditions

Equation Pros & cons of the selected
model

References

Kiwi turbid juice Voltage Time
Volume

Voltage: 12 kV
Time: 1 min
Volume: 18ml

Y2 = 2.84 – 0.11A+ 0.79B –
0.11C+ 0.11AC+ 0.19A2

+

0.52B2

• Easy to interpret & consolidate
• Works well with the linear relation of

parameters with phenol content
• Issues may arise when dealing with

complex relations
• Sensitive to outliner data

(79)

Tender coconut

water

Voltage Time Voltage: 18 kV
Time: 2.85min

Y1 = 26.59–0.85x1- 0.77x2 −0.23
x1x2 – 0.34 x21 + 0.11 x22

• Simple in form
• Have moderate flexibility
• Assumes a linear relationship

between independent and
non-independent variables

• Increased risk of overfitting
• Need of more resources

(81)

Ginger Power Time
Pressure Rotation

Power: 50 W
Time: 1 min
Pressure: 0.65 mbar
Rotation: On

Y4 = 8.49–0.4619A−1.04B+
0.1556 C-0.1318D – 0.5973AB –
0.2191AC+ 0.0714AD-
0.0282BC- 0.0234BD- 0.0203
CD+ 0.4917A2 -
0.0564B2−0.8279 C2

• Provides interaction effect analysis
• Reduction in experimental runs
• Provides perceptive visualization of

connected variables
• Does not provide mechanistic

insights into the processes affecting
the sample properties

(72)

Green tea leaves Power Time Power: 15 W
Time: 15min

Y1= 840.87−15.83A−56.00B
+ 2.75AB+ 2.52B2

• Reduction in number of experiments
saves time, resources, and cost

• Generates equivalences that envisage
extraction efficiency and antioxidant
activity under different experimental
conditions

• Sensitive to input data

(74)

Pineapple juice Voltage Time Time: 510 s
Voltage: 35 kV

YTPC =−14.15+ 3.13 x1 +0.01
x2 + 5.12× 10−6 x1 x2 - 0.043x21
−2.3× 10−5 x2 2

• Comprehensive optimization
• Generated outcomes can aid in

scaling up and process optimization
functions

• This might result in
oversimplification of the non-linear
effects of DBD plasma treatment

• Accuracy depends on the provided
data quality

(77)

Siriguela juice Gas flow Time Gas flow: 20
mL/min
Time: 15min

Z= 820.69–102.76x+ 6.0 x2 +
25.23 – 0:55y2 – 013xy

• Systematic optimization of cold
plasma parameters

• Effective interpretation of the plotted
data in understanding the underlying
interactions

• Effect the fit of the data if we consider
more complex interactions

• Limited to specific parameters
involved in the study

(51)

Kiwifruit juice Voltage Juice depth
Time

Voltage: 27.6 kV
Time: 6.8 min
Juice depth: 5.2mm

Yi = c0 + c1 x1 +c2 x2 +c3 x3 +
c4 x1 x2 +c5 x2x3 + c6 x3x1 + c7
x21 +c8 x22 + c9 x23

• Exploration of interactive effects on
juice quality

• Additional validation is required
owing to parameter specificity

• Limited scalability

(78)

Pear cactus fruit Power Time Power: 750 W
Time: 40min

Yi = 57.458 – 0.076X1 + 1.028X2

+ 2.171X1X2 + 1.101X2
1 +

2.171X2
2

• Involves fewer trial runs in predicting
the outcomes of the conditions tested
effectively

• Customization potential
• Identifies correlations but limits in

apprehending the underlying
mechanisms

• Limited in managing data complexity

(82)

Red globe grapes Gas flow rate Time
Voltage

Gas flow rate: 2.87
SLPM
Time: 1 min
Voltage: 3.36 kV

Yi =+0.8440+ 0.0006 X1 +

0.0094 X2 + 0.0075 X3 + 0.0010
X1 X2 −0.0002 X1 X3 – 0.0077
X2 X3 −0.0032 X2

1 – 0.0053 X
2
2

0.0020 X2
3

• Effective in predicting responses
related to the sample quality

• Data complexity is affecting the
efficacy of a selected representative
model

• Sensitive to the input data quality

(83)

Frontiers inNutrition 10 frontiersin.org

https://doi.org/10.3389/fnut.2024.1504958
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Shanker and Rana 10.3389/fnut.2024.1504958

coefficients. The coefficient of determination of treatment values
was around 0.945, explaining the goodness of fit and the parallel
nature of the target and predicted values.

Table 2 gives an explanation of the polynomial equation
involved in cold plasma treatment of food products. With an R2

value of 0.928, the quadratic regression model equation exhibited
a good fit between the predicted and experimental values of cold
plasma treatment of ginger samples (72). The model was developed
with a broader range of parameter values, which has helped in
understanding the interactions when it comes to higher ranges
of values. However, the iterations, or the number of data points
between the ranges, appear to be small and can be included
to provide a more profound understanding of the interactions.
Cold plasma treatment evaluations have already shown us how
the dependency of the process changes with the alterations in
process parameter values. Analogous to the results, the quadratic
model representing the phenol retention efficacy in cold plasma
treatment of green tea leaves (74) has made efforts to have a
wider range of independent variables, contributing to the model
efficacy. The proposed model is based on 3 data points in the case
of both variables, which could have affected the efficiency of the
optimization process.

Furthermore, including additional lower data points within
a modified broader range would have positively impacted the
proposed model. The model representing the DBD plasma
modification of kiwifruit juice (78) presented an R2 value of 0.95
with quadratic terms of voltage and time, showing a significant
effect in the response variable. Representing a larger data point in
two variables, the process evaluates several interactive parameter
combinations, which positively affect the suitability of the proposed
polynomial equation. In the case of the third variable (time), there
is a scope for extending the lower range of the data set, thereby
improving the proposed model.

4.3 Artificial intelligence based techniques

Artificial intelligence has now become prevalent across a
different range of industries and sectors, such as healthcare, finance,
manufacturing, transportation, and retail markets. It has also
speckled down to applications in agriculture and food industries.
The conceivable role of AI in the food industry is to leverage
developmental opportunities to enhance product quality, safeguard
consumer needs, manage supply chains, improve production, and
drive a sustainable and successive industrial stature. The basic idea
behind the AI technique revolves around the emulation of the
human thinking process, learning ability, and storage of knowledge.
It involves the development of algorithms and computational
models that enable machines to process and analyze large amounts
of data, identify patterns and relationships, and make predictions
or decisions based on that analysis (84).

The system incorporates a diverse array of algorithms, such
as artificial neural networks (ANNs), genetic algorithms (GAs),
logic programming, cognitive science, expert systems, swarm
intelligence, and fuzzy logic (FL). These algorithms facilitate
process estimation based on the sample set and the final output.

Notably, FL and ANN are specifically used for predicting and
classifying parameters, which contributes to increased yield,
reduced production costs, and enhanced safety and quality of the
final product (85).

4.3.1 Artificial neural networks
ANN is a powerful and unique modeling system that

outshines in capturing non-linear relationships and indicates
superior predicting capabilities. The elementary structure of an
ANN consists of an input layer, a few hidden layers, and a
yield layer. Each structural layer consists of a set of neurons
interconnected by a link, and communication between these
neurons is achieved by a value assigned to each link called weight.
It is one of the artificial intelligence-based elements fabricated to
mimic the human brain and evaluate the data through learning
and interneuron connections (85). The system’s expediency and
capability have accelerated feasibility studies on its application in
areas such as quality analysis, food safety management, image
analysis, classification, prediction of parameters, and modeling of
various processing operations.

The ANN model benefitted from the prediction and modeling
of the relation between input and output parameters in the
non-thermal plasma treatment of pineapple juice (77). A feed-
forward neural network with an input layer of two neurons (time
and voltage), a single hidden layer, and an output layer of 6
neurons, including total phenol content and total antioxidant
activity (Figure 2), was used in the analysis. The number of hidden
layers is determined through an iterative trial-and-error method.
During this process, the hidden layer of the training with the
maximum R-value and minimum MSE value is selected. A total
of 12 experiment data sets for the program were categorized as
70% for training, 15% for testing, and 15% for validation with
transfer functions for output and hidden layers as linear transfer
functions (purelin) and tangent transfer functions (tansig). The
objective of data set categorization in the ANN system is to
ensure the network’s robustness and normalize the network error,
which is considered to be a greater positive of the system than
others. High correlation coefficient (R) and low mean square
value (MSE) were used to confirm the feasibility of the number
of hidden layers employed and the model’s appropriateness. The
final evaluating structure consisted of two neurons in the input
layer, eight in the hidden layer, and six in the output. Training,
testing, and validation correlation coefficients were found to be
0.9986, 0.9997, and 0.9983, with an R-value of 0.9996 for the
overall developed ANN model, ensuring the system’s credibility in
evaluating and predicting data. An analogous R-value of 0.9997
was obtained for ultrasound-assisted extraction of polyphenols
from Meghalayan cherry fruit via an artificial neural network (80).
Here, the input layer consisting of four variables, eight neurons
in one hidden layer, and the output layer with two neurons
constituted a feasible design for forecasting this experimental
data with a minimum MSE value of 0.61. Input, hidden, and
output layer combinations, the transfer functions involved, data
categorization, and the number of neurons in each layer depend
on the characteristics of the data that’s been handled and the way
it is handled (Table 3). Parallel to these results, a categorization
of the data set as 70% for training, 15% for validation, and
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FIGURE 2

A schematic diagram of the ANN model used with two input layers,

one hidden layer, and six output layers.

TABLE 3 Summary of the reported transfer functions involved in cold

plasma data modeling.

Structural design Transfer functions involved
in the process

Input layer • f(p)= 1
1−e− p

Hidden layer • f(p)= 1
1−e−p

• (n)= 2
1+e−2n − 1

• (n)= 2
(1+exp(−2∗n))−1

• (n)= 1
1+exp (− n)

Output layer • (n)= n
• f(p)= 1

1−e− p

15% for testing was employed in the 3:10:10 ANN model for
thermosonication of sohshang fruit juice. The obtained value of
the coefficient of variation was around 0.97, which explains the
acceptability of the predicted fit. There is an excellent agreement
between the predicted and experiential values in the regression
analysis plots, justifying the significant relationship between the
data sets (86).

A good correlation of 0.99947 was obtained during ANN
analysis of plasma treatment of tender coconut water (81). In
this structured evaluation of parameters, it is important to fix
the number of hidden layers chosen, as too many layers may
cause overfitting of data. In contrast, too few may cause slower
processing of data in the network (77). A structured 2-7-2
model was utilized for cold plasma treatment with one of the
output neurons as antioxidant activity. This design showcases the
significance of interneuron connections between the layers, weight,
threshold values, and the matrix arrangement within the system’s
input, output, and hidden layers. The R2 values for individual
processes were 0.9993 for training, 0.9998 for validation, and
0.99976 for testing (81). The correlation coefficient value states the
positive relationship between the actual and predicted values of the
experiential learning procedure; the values showing closeness to 1
always emphasize a positive correlation in the study. A minimum
R2 value above 0.80 is considered a standard for all optimal models,
and with these higher correlation coefficient values, the model’s

accuracy is ensured. Training, validation, and testing of microwave
processing parameters on enzyme activity and phenolic content of
tender coconut water also showed similar correlation coefficients
of 0.99967, 0.99945, and 0.99987 for the tests, respectively (87).
A neural network type of 3-9-1 topology efficiently evaluated the
total phenolic content in strawberries. The result validates the
effectiveness of threshold transfer functions of purelin in the output
layer and transig in the hidden layer in achieving an R2 value of
0.9806 and a low MSE value of 0.00470, respectively (88).

In the ANN modeling of CP-independent parameters, an
experimental data distribution of 80%, 10%, and 10% was used for
training, validation, and testing, respectively, utilizing a multilayer
feed-forward neural network design (78). This network consists
of an input layer with three neurons (time, voltage, and juice
depth), two hidden layers, and an output layer with six neurons,
including measures for total phenolic content and total antioxidant
activity. The first and second hidden layers employed hyperbolic
tangent and log sigmoid transfer functions, respectively. After
several trials, the number of neurons in the hidden layers was
increased to ten, achieving a maximum R-squared (R2) value of
0.999. Correspondingly, the R2 values for the training, validation,
and testing phases each also reached 0.999.

The regression analysis data exhibited all regression lines closer
to 1. The error histogram of the evaluated value showcases that the
maximum data, in this case, exhibits a very low error of 0.00142,
verifying the prediction performance of the process evaluation.
With a low error value of 0.0527, the error histogram was divided
between 20 vertical bins between −3.424 and 1.6 in predicting
the quality attributes of pineapple juice after non-thermal plasma
treatment (77). These error values predict the difference between
the predicted and target values. Having a low error value for the
maximum data among the analyzed values signifies the correctness
of the data involved. Considerable data points amount to an
analogous error value of 0.080006, indicating the accuracy in
modeling the data related to the thermosonication of sohphie fruit
juice (89). Regression analysis of the data also showed a greater
correlation between the predicted and the actual values throughout
overall data sets. The correlation between the actual and predicted
data values always delivers a sense of reliability and accuracy
in the system’s application in evaluating the experimental array
of data. Although the related data on ANN looks assuring and
precise, added data evaluation, further experimental data sets, more
permutations, and combinations are needed to ensure the process’s
applicability, dependability, and accuracy.

4.3.2 ANN-GA optimization
A genetic algorithm (GA) recognized as a global search engine

in combination with ANN modeling will assist in plummeting
the complexity of the problems and discovering optimum process
conditions. The evaluation process helps obtain an optimum
value with maximum accuracy and minimum error (90). The
process commences with choosing a set of initial populations
followed by their corresponding set of fitness functions evaluated
based on Darwin’s theory or principles of genetics involving
selection, crossover, mutation, and reproduction. The best among
the present chromosomes is selected for the upcoming generation
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and combined during crossover to create progenies. Different food
processing operations, such as extraction, drying, puffing, and
roasting, have followed the application of a combination of ANN-
GA in evaluating, modeling, and optimizing the available data set.
The input parameters of cold plasma treatment in pineapple juice
were evaluated by coupling ANN with this built-in optimization
tool (77). The fitness function involved in the optimization process
is based on your data set and the output parameters considered
in the function. The fitness function of CP treatment in pineapple
juice is given by Equation 1 with three input parameters and six
output parameters, including the total phenol content of the treated
juice after treatment.

F = Y(1)+
1

1+ Y (2)
+ Y(3)+ Y(4)+ Y(5)+ Y(6) (2)

The optimization of the ANN model was completed after
68 generations amid voltage, juice depth, and treatment time
values of 30 kV, 5mm, and 6.7min. The predicted and validated
responses of the process remained comparable, with a small
error value of 0.83%. This shows the accuracy of the optimized
values, and in comparison with the control values, these results
exhibited the retention of TPC content of the plasma-treated
sample. Ultrasound-assisted extraction of total phenols and other
phytocomponents from dragon fruit peel was modeled and
optimized by the combined ANN-GA technique (91). The output
parameters or responses were selected based on the highest fitness
function, and the optimum value parameters of the process
were found to be 59.96◦C, 60%, 20min, and 25:1 for ultrasonic
temperature, solvent concentration, treatment time, and solvent-
to-solid ratio, respectively. The optimization process was validated
by conducting experiments at predicted ideal conditions, and
these obtained values are equated with the predicted data set to
identify the associated deviation. Relative deviations between the
predicted and target values of optimized parameters in ultrasound
treatment were 1.2–2.05, which emphasizes the accuracy of the
optimization process. GA optimization has reported an ideal
parameter combination of temperature at 40◦C, the amplitude
of 50% for a treatment time of 60min for thermosonication
of Elaeagnus latifolia fruit juice, and the results were found
to closely match with real outcomes based on optimized
results (86).

Optimal values for parameters of CP-treated kiwifruit juice
were found to be 38 kV and 631 s after 176 generations of the ANN-
GA optimization process. The optimal values of the process exhibit
good retention of phenolic compounds and reveal comparable
phenolic and antioxidant content on evaluation with thermally
treated samples. The lower percentage errors (1.00%) between the
predicted values and the targeted experimental values show the
suitability of the fit in the cold plasma technique. ANN coupled
with GA aided in predicting the optimum parameter values for the
thermosonication process of sohphie fruit juice after 15 iterations
in the study (89). The results obtained with optimized parameter
values were in conjunction with the projected denominations
produced by the ANN model with the least error values associated.
The optimized parameters for the ultrasonic treatment were a
40◦C temperature, 50% amplitude, and a treatment period of
60 min.

Precision in the GA optimization process is achieved by
either minimizing or maximizing the GA output parameters
to secure a high-fitness functional value. For the ANN-GA-
optimized process of cold plasma (CP) treatment in tender
coconut water, minimal error values were noted between the
predicted and experimental values. Optimal results were achieved
at a voltage of 18 kV and a treatment time of 2.85min,
with the predicted scavenging activity around 26.71%. Similarly,
extraction process parameters of pectin from sunflower heads
were determined using a coupled ANN-GA with a second-order
polynomial equation serving as the fitness function. The maximum
yield of pectin was comparable to the predicted results obtained
from GA optimization, affirming the adequacy of these models.
The reliability and accuracy of these predictions are evidenced
by minimizing error values, underscoring the effectiveness of
GA as a robust optimization tool for managing experimental
CP data.

5 Conclusion and future prospects

Cold plasma has gained significant popularity and interest
among stakeholders in recent years due to its innovative and
substantial potential in processing and preserving agricultural
produce. While most of the studies and findings revolve
around the possibility and viability of plasma in rendering
a safe product, the likelihood of the technique in functional
and quality characteristics of food particulates is still nascent.
Phenolic fractions are important bioactive compounds in
agricultural produce that can be regarded as contributory aspects
or determinants of antioxidant potential. The prospects for
quality modifications of plasma in agricultural produce are
directly correlated with the generated active plasma species,
processing conditions, and induced food interactions. Reaction
chemistry is crucial in understanding the intensity of functional
and nutritional modification of food. Reported outcomes
of oxidative degradation, hydroxylation of benzene rings,
nitration of phenols, and so on are proposed as the conceivable
explanations prompting the functional and structural modification
of the phenolic profile. There is still a prerequisite need to
understand and elucidate the intricate molecular-level interactions
behind these food interactions to increase the efficiency of the
whole process.

Cold plasma treatment, without a doubt, has been reported
to have a positive impact and the upper hand in the retention
of bioactive components compared with traditional thermal
treatments. The degree and inclination of this plasma impact
depend on different process parameters such as treatment
time, power, voltage, and gas flow rate. The system’s mode of
action and efficiency can also vary according to the generation
mechanism and food characteristics. Careful selection of
treatment parameters is essential to achieving desired results
and maintaining system efficacy. One aspect of accomplishing
this is conducting extensive research encompassing parameter
range variations and closely inspecting the effects these variations
have on product characteristics. This is where the application of
modeling, prediction, and control tools comes into the picture.
Comprehension of a feasible set of parameters significant to the
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study is made possible by the application of statistical-based
experiment design in different processes involved. Statistical-based
methods such as RSM could effectively help us understand
the cross relationships between these regulating parameters
and predict the possible permutations and combinations
related to the plasma treatment of agricultural produce. The
application of AI techniques such as ANN and GA optimization
in cold plasma can also widen the prospects of application
by disregarding the complexity of the selection of parameters,
thereby contributing to the efficacy of functional improvement
in agricultural produce. This possibility of statistical method
lacks practice in investigating parameters related to the plasma
treatment of agricultural produce. The studies related to the
application of statistical methods such as ANN and RSM in
cold plasma investigations were found to be imperative in
concluding the influential parameters and their effects on
product functional quality. Further research on plasma treatment
using statistical and predictive tools will help in drawing
conclusions about its efficiency and enhancing our understanding
of the process.
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